Literatura académica sobre el tema "3D non-rigid shapes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "3D non-rigid shapes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "3D non-rigid shapes"
Yang, Jingyu, Ke Li, Kun Li y Yu-Kun Lai. "Sparse Non-rigid Registration of 3D Shapes". Computer Graphics Forum 34, n.º 5 (agosto de 2015): 89–99. http://dx.doi.org/10.1111/cgf.12699.
Texto completoLladó, Xavier, Alessio Del Bue, Arnau Oliver, Joaquim Salvi y Lourdes Agapito. "Reconstruction of non-rigid 3D shapes from stereo-motion". Pattern Recognition Letters 32, n.º 7 (mayo de 2011): 1020–28. http://dx.doi.org/10.1016/j.patrec.2011.02.010.
Texto completoKuang, Zhenzhong, Zongmin Li, Xiaxia Jiang, Yujie Liu y Hua Li. "Retrieval of non-rigid 3D shapes from multiple aspects". Computer-Aided Design 58 (enero de 2015): 13–23. http://dx.doi.org/10.1016/j.cad.2014.08.004.
Texto completoLiu, Bin, Weiming Wang, Jun Zhou, Bo Li y Xiuping Liu. "Detail-Preserving Shape Unfolding". Sensors 21, n.º 4 (8 de febrero de 2021): 1187. http://dx.doi.org/10.3390/s21041187.
Texto completoAgudo, Antonio, Francesc Moreno-Noguer, Begoña Calvo y J. M. M. Montiel. "Real-time 3D reconstruction of non-rigid shapes with a single moving camera". Computer Vision and Image Understanding 153 (diciembre de 2016): 37–54. http://dx.doi.org/10.1016/j.cviu.2016.05.004.
Texto completoKuang, Zhenzhong, Zongmin Li, Xiaxia Jiang y Yujie Liu. "Exploration in improving retrieval quality and robustness for deformable non-rigid 3D shapes". Multimedia Tools and Applications 74, n.º 23 (14 de agosto de 2014): 10335–66. http://dx.doi.org/10.1007/s11042-014-2170-4.
Texto completoHu, Xiaobo, Dejun Zhang, Jinzhi Chen, Yiqi Wu y Yilin Chen. "NrtNet: An Unsupervised Method for 3D Non-Rigid Point Cloud Registration Based on Transformer". Sensors 22, n.º 14 (8 de julio de 2022): 5128. http://dx.doi.org/10.3390/s22145128.
Texto completoShen, Jiayan, Shutong Du, Ziyao Xu, Tiansheng Gan, Stephan Handschuh-Wang y Xueli Zhang. "Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels". Gels 8, n.º 6 (25 de mayo de 2022): 331. http://dx.doi.org/10.3390/gels8060331.
Texto completoRaju, Ashwin, Shun Miao, Dakai Jin, Le Lu, Junzhou Huang y Adam P. Harrison. "Deep Implicit Statistical Shape Models for 3D Medical Image Delineation". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 2 (28 de junio de 2022): 2135–43. http://dx.doi.org/10.1609/aaai.v36i2.20110.
Texto completoZhu, Mengru y Jong Han Lee. "Deep Learning-Based 3D Shape Feature Extraction on Flash Animation Style". Wireless Communications and Mobile Computing 2022 (24 de marzo de 2022): 1–9. http://dx.doi.org/10.1155/2022/7999312.
Texto completoTesis sobre el tema "3D non-rigid shapes"
Limberger, Frederico Artur. "Spectral signatures for non-rigid 3D shape retrieval". Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/18036/.
Texto completoTao, Lili. "3D non-rigid reconstruction with prior shape constraints". Thesis, University of Central Lancashire, 2014. http://clok.uclan.ac.uk/10717/.
Texto completoZhang, Chao. "Learning non-rigid, 3D shape variations using statistical, physical and geometric models". Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/22342/.
Texto completoValencia, Angel. "3D Shape Deformation Measurement and Dynamic Representation for Non-Rigid Objects under Manipulation". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40718.
Texto completoAllain, Benjamin. "Suivi volumétrique de formes 3D non rigides". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM017/document.
Texto completoIn this thesis we propose algorithms for tracking 3D deformable shapes in motion from multiview video. Although series of reconstructed 3D shapes can be obtained by applying a static reconstruction algorithm to each temporal frame independently, such series do not represent motion. Instead, we want to provide a temporally coherent representation of the sequence of shapes resulting from temporal evolutions of a shape. Precisely, we want to represent the observed shape sequence as a 3D surface mesh whose vertices move in time but whose topology is constant.In contrast with most existing approaches, we propose to represent the motion of inner shape volumes, with the aim of better accounting for the volumetric nature of the observed object. We provide a fully volumetric approach to the fundamental problems of deformable shape tracking, which are the association between corresponding shape elements and the deformation model. In particular, we extend to a volumetric shape representation the EM-ICP tracking framework and the association-by-detection strategy.Furthermore, in order to better constrain the shape tracking problem, we propose a model for the temporal evolution of deformation. Our deformation model defines a shape space parametrized by variables that capture local deformation properties of the shape and whose values are automatically learned during the tracking process.We validate our tracking algorithms on several multiview video sequences with ground truth (silhouette and marker-based tracking). Our results are better or comparable to state of the art approaches.Finally, we show that volumetric tracking and the shape representation we choose can be leveraged for producing shape animations which combine captured and simulatated motion
Gallardo, Mathias. "Contributions to Monocular Deformable 3D Reconstruction : Curvilinear Objects and Multiple Visual Cues". Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC021/document.
Texto completoMonocular deformable 3D reconstruction is the general problem of recovering the 3D shape of a deformable object from monocular 2D images. Several scenarios have emerged: the Shape-from-Template (SfT) and the Non-Rigid Structure-from-Motion (NRSfM) are two approaches intensively studied for their practicability. The former uses a single image depicting the deforming object and a template (a textured 3D shape of this object in a reference pose). The latter does not use a template, but uses several images and recovers the 3D shape in each image. Both approaches rely on the motion of correspondences between the images and deformation priors, which restrict their use to well-textured surfaces which deform smoothly. This thesis advances the state-of-the-art in SfT and NRSfM in two main directions. The first direction is to study SfT for the case of 1D templates (i.e. curved, thin structures such as ropes and cables). The second direction is to develop algorithms in SfT and NRSfM that exploit multiple visual cues and can solve complex, real-world cases which were previously unsolved. We focus on isometric deformations and reconstruct the outer part of the object. The technical and scientific contributions of this thesis are divided into four parts. The first part of this thesis studies the case of a curvilinear template embedded in 2D or 3D space, referred to Curve SfT. We propose a thorough theoretical analysis and practical solutions for Curve SfT. Despite its apparent simplicity, Curve SfT appears to be a complex problem: it cannot be solved locally using exact non-holonomic partial differential equation and is only solvable up to a finite number of ambiguous solutions. A major technical contribution is a computational solution based on our theory, which generates all the ambiguous solutions.The second part of this thesis deals with a limitation of SfT methods: reconstructing creases. This is due to the sparsity of the motion constraint and regularization. We propose two contributions which rely on a non-convex energy minimization framework. First, we complement the motion constraint with a robust boundary contour constraint. Second, we implicitly model creases with a dense mesh-based surface representation and an associated robust smoothing constraint, which deactivates curvature smoothing automatically where needed, without knowing a priori the crease location. The third part of this thesis is dedicated to another limitation of SfT: reconstructing poorly-textured surfaces. This is due to correspondences which cannot be obtained so easily on poorly-textured surfaces (either sparse or dense). As shading reveals details on poorly-textured surfaces, we propose to combine shading and SfT. We have two contributions. The first is a cascaded initialization which estimates sequentially the surface's deformation, the scene illumination, the camera response and then the surface albedos from deformed monocular images. The second is to integrate shading to our previous energy minimization framework for simultaneously refining deformation and photometric parameters.The last part of this thesis relaxes the knowledge of the template and addresses two limitations of NRSfM: reconstructing poorly-textured surfaces with creases. Our major contribution is an extension of the second framework to recover jointly the 3D shapes of all input images and the surface albedos without any template
Ye, Mao. "MONOCULAR POSE ESTIMATION AND SHAPE RECONSTRUCTION OF QUASI-ARTICULATED OBJECTS WITH CONSUMER DEPTH CAMERA". UKnowledge, 2014. http://uknowledge.uky.edu/cs_etds/25.
Texto completoMelzi, Simone. "Local Geometry Processing for Deformations of Non-Rigid 3D Shapes". Doctoral thesis, 2018. http://hdl.handle.net/11562/982676.
Texto completoCapítulos de libros sobre el tema "3D non-rigid shapes"
Jribi, Majdi y Faouzi Ghorbel. "A Novel Canonical Form for the Registration of Non Rigid 3D Shapes". En Computer Analysis of Images and Patterns, 230–41. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23117-4_20.
Texto completoDai, Hang, Nick Pears y William Smith. "Non-rigid 3D Shape Registration Using an Adaptive Template". En Lecture Notes in Computer Science, 48–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11018-5_5.
Texto completoWang, Hanyu, Jianwei Guo, Dong-Ming Yan, Weize Quan y Xiaopeng Zhang. "Learning 3D Keypoint Descriptors for Non-rigid Shape Matching". En Computer Vision – ECCV 2018, 3–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01237-3_1.
Texto completoGolyanik, Vladislav. "Shape Priors in Dense Non-Rigid Structure from Motion". En Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds, 89–133. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30567-3_5.
Texto completoPérez de la Blanca, Nicolás y Antonio Garrido. "Recovering Non-rigid 3D Shape Using a Plane+Parallax Approach". En Articulated Motion and Deformable Objects, 251–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36138-3_21.
Texto completoShi, Xiangfu, Jieyu Zhao, Long Zhang y Xulun Ye. "Non-rigid 3D Object Retrieval with a Learned Shape Descriptor". En Lecture Notes in Computer Science, 24–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71589-6_3.
Texto completoWu, Yujuan, Haisheng Li, Yujia Du y Qiang Cai. "Non-rigid 3D Shape Classification Based on Low-Level Features". En Proceedings of 2018 Chinese Intelligent Systems Conference, 651–59. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2288-4_62.
Texto completoChiotellis, Ioannis, Rudolph Triebel, Thomas Windheuser y Daniel Cremers. "Non-rigid 3D Shape Retrieval via Large Margin Nearest Neighbor Embedding". En Computer Vision – ECCV 2016, 327–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46475-6_21.
Texto completoWang, Quan, Fei Wang, Daming Li y Xuan Wang. "Clustering-Based Latent Variable Models for Monocular Non-rigid 3D Shape Recovery". En Intelligent Computing Methodologies, 162–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09339-0_17.
Texto completoYu, Ruixuan, Jian Sun y Huibin Li. "Learning Spectral Transform Network on 3D Surface for Non-rigid Shape Analysis". En Lecture Notes in Computer Science, 377–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11015-4_28.
Texto completoActas de conferencias sobre el tema "3D non-rigid shapes"
Koh, Sung Shik, Thi Thi Zin y Hiromitsu Hama. "Accurate Reconstruction of Non-rigid 3D Shapes". En 2007 Digest of Technical Papers International Conference on Consumer Electronics. IEEE, 2007. http://dx.doi.org/10.1109/icce.2007.341495.
Texto completoKuang, Zhenzhong, Zongmin Li, Xiaxia Jiang y Yujie Liu. "Graph Contexts for Retrieving Deformable Non-rigid 3D Shapes". En 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.486.
Texto completoXiong, Yuehan y Hongkai Xiong. "Graph-Based Descriptor Learning for Non-Rigid 3D Shapes". En 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702733.
Texto completoAouada, Djamila, David W. Dreisigmeyer y Hamid Krim. "Geometric modeling of rigid and non-rigid 3D shapes using the global geodesic function". En 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE, 2008. http://dx.doi.org/10.1109/cvprw.2008.4563075.
Texto completoRakprayoon, Panjawee y Miti Ruchanurucks. "An Adaptive Descriptor for Functional Correspondence Between Non-Rigid 3D Shapes". En 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, 2018. http://dx.doi.org/10.1109/wiecon-ece.2018.8783183.
Texto completoWu, Huai-Yu y Hongbin Zha. "Robust consistent correspondence between 3D non-rigid shapes based on “Dual Shape-DNA”". En 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, 2011. http://dx.doi.org/10.1109/iccv.2011.6126292.
Texto completoKeshavarzi, Vahid y Farshid Hajati. "Non-rigid 3D shapes retrieval using a hybrid algorithm based on local descriptors". En 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP). IEEE, 2017. http://dx.doi.org/10.1109/iranianmvip.2017.8342337.
Texto completoAbdelrahman, Mostafa, Aly Farag, David Swanson y Moumen T. El-Melegy. "Heat diffusion over weighted manifolds: A new descriptor for textured 3D non-rigid shapes". En 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. http://dx.doi.org/10.1109/cvpr.2015.7298614.
Texto completoLindau, Björn, Kristina Wärmefjord, Lars Lindkvist y Rikard Söderberg. "Virtual Fixturing: Inspection of a Non-Rigid Detail Resting on 3-Points to Estimate Free State and Over-Constrained Shapes". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24515.
Texto completoJindal, Rahul y Nabanita Datta. "Free Dry and Wet Vibration of 2-Way Tapered Hollow Marine Rudder With Non-Classical Pivot: Theoretical Study". En ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41106.
Texto completo