Artículos de revistas sobre el tema "2D magneto optical trap"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: 2D magneto optical trap.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "2D magneto optical trap".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xie, Weibin, Qing Wang, Xuan He, Shengwei Fang, Zhichao Yuan, Xianghui Qi y Xuzong Chen. "A cold cesium beam source based on a two-dimensional magneto-optical trap". AIP Advances 12, n.º 7 (1 de julio de 2022): 075124. http://dx.doi.org/10.1063/5.0099415.

Texto completo
Resumen
A beam source is proposed for the production of an intense cold cesium atomic beam that can be used in cesium beam atomic clocks. The source is based on a two-dimensional magneto-optical trap (2D-MOT), but introduces hollow cooling and pushing lights in the axial direction to create a 2D+-MOT, which separates the cooling and pushing functions while the low-power pushing light pushes atoms out to form a cold atomic beam. This cold cesium atomic beam source reduces the light shift due to leakage light and retains longitudinal cooling to increase the flux of the cold atomic beam compared with that of the conventional 2D+-MOT scheme. The specifics of the design are investigated, the atomic velocity and beam flux are calculated, and the results are experimentally verified. The results demonstrate that when the power of the pushing light is 180 µW and when its frequency resonates with the 4 → 5′ transition of the Cs D2 line, the most probable longitudinal velocity of the outgoing cold atomic beam, the width of velocity distribution, and the atomic beam flux are 19.38 m/s, 8.1 m/s, and 1.7 × 1010 atoms/s, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dörscher, Sören, Alexander Thobe, Bastian Hundt, André Kochanke, Rodolphe Le Targat, Patrick Windpassinger, Christoph Becker y Klaus Sengstock. "Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup". Review of Scientific Instruments 84, n.º 4 (abril de 2013): 043109. http://dx.doi.org/10.1063/1.4802682.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Berthoud, P., A. Joyet, G. Dudle, N. Sagna y P. Thomann. "A continuous beam of slow, cold cesium atoms magnetically extracted from a 2D magneto-optical trap". Europhysics Letters (EPL) 41, n.º 2 (15 de enero de 1998): 141–46. http://dx.doi.org/10.1209/epl/i1998-00122-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Bao Wu, Nicolò Porfido, Francesco Tantussi, Francesco Fuso, Yan Ma, Wen Tao Zhang y Tong Bao Li. "Simulation of Two-Dimensional Transverse Laser Cooling of Cesium Beam from Pyramidal Magneto-Optical Trap Atom Funnel". Advanced Materials Research 189-193 (febrero de 2011): 3736–39. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.3736.

Texto completo
Resumen
Simulation of two-dimensional (2D) transverse laser cooling of Cs atomic beam from pyramidal magneto-optical trap atom funnel (PMOTAF) conceived for atom lithography is presented. The results show that both the minimum full width at half maximum (FWHM) and the maximum peak value of the spatial profile of the atomic beam occur at the frequency detuning of optical molasses equals to -0.5 Г. Moreover, for each frequency detuning, an increase in the intensity of the optical molasses leads to smaller FWHM and higher peak value. The not negligible role of gravity on the atomic beam of sub-thermal longitudinal velocity along the horizontal direction is that every atomic trajectory possesses a parabolic motion either before or after laser cooling which leads to a noticeable displacement of the peak value at the observation plane with respect to the starting point.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Carrat, Vincent, Citlali Cabrera-Gutiérrez, Marion Jacquey, José W. Tabosa, Bruno Viaris de Lesegno y Laurence Pruvost. "Long-distance channeling of cold atoms exiting a 2D magneto-optical trap by a Laguerre–Gaussian laser beam". Optics Letters 39, n.º 3 (31 de enero de 2014): 719. http://dx.doi.org/10.1364/ol.39.000719.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chauhan, Vikas Singh, Dixith Manchaiah, Sumit Bhushan, Rohit Kumar y Raghavan K. Easwaran. "Theoretical design of quantum memory unit for under water quantum communication using electromagnetically induced transparency protocol in ultracold 87Rb atoms". International Journal of Quantum Information 18, n.º 05 (agosto de 2020): 2050027. http://dx.doi.org/10.1142/s0219749920500276.

Texto completo
Resumen
In this paper, we present a theoretical proposal to realize Quantum Memory (QM) for storage of blue light pulses (420 nm) using Electromagnetically Induced Transparency (EIT). Three-level lambda-type EIT configuration system is solved in a fully quantum mechanical approach. Storing blue light has the potential application in the field of underwater quantum communication as it experiences less attenuation inside the sea water. Our model works by exciting the relevant transitions of [Formula: see text]Rb atoms using a three-level lambda-type configuration in a Two-Dimensional Magneto-Optical Trap (2D MOT) with an optical cavity inside it. We have estimated Optical Depth inside the cavity (ODc) of [Formula: see text], group velocity ([Formula: see text]) [Formula: see text][Formula: see text]ms[Formula: see text], Delay Bandwidth Product(DBP) of 23 and maximum storage efficiency as [Formula: see text] in our system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Li, Jianing, Kelvin Lim, Swarup Das, Thomas Zanon-Willette, Chen-Hao Feng, Paul Robert, Andrea Bertoldi et al. "Bi-color atomic beam slower and magnetic field compensation for ultracold gases". AVS Quantum Science 4, n.º 4 (diciembre de 2022): 046801. http://dx.doi.org/10.1116/5.0126745.

Texto completo
Resumen
Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to [Formula: see text] atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the 88Sr 1[Formula: see text]P1 transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Seitz, Michael, Marc Meléndez, Nerea Alcázar‐Cano, Daniel N. Congreve, Rafael Delgado‐Buscalioni y Ferry Prins. "Mapping the Trap‐State Landscape in 2D Metal‐Halide Perovskites Using Transient Photoluminescence Microscopy (Advanced Optical Materials 18/2021)". Advanced Optical Materials 9, n.º 18 (septiembre de 2021): 2170072. http://dx.doi.org/10.1002/adom.202170072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bhattacharya, Shatabda, Diptiman Dinda y Shyamal K. Saha. "Role of trap states on storage capacity in a graphene/MoO3 2D electrode material". Journal of Physics D: Applied Physics 48, n.º 14 (18 de marzo de 2015): 145303. http://dx.doi.org/10.1088/0022-3727/48/14/145303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lee, Keun Woo, Kyung Min Kim, Si Joon Kim, Sreekantha Reddy Dugasani, Junwye Lee, Sung Ha Park y Hyun Jae Kim. "Charge-trap effects of 2D DNA nanostructures implanted in solution-processed InGaZnO thin-film transistor". Journal of Physics D: Applied Physics 46, n.º 21 (9 de mayo de 2013): 215102. http://dx.doi.org/10.1088/0022-3727/46/21/215102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

FUKUCHI, Mamoru, Chihiro MATSUI y Ken TAKEUCHI. "System Performance Comparison of 3D Charge-Trap TLC NAND Flash and 2D Floating-Gate MLC NAND Flash Based SSDs". IEICE Transactions on Electronics E103.C, n.º 4 (1 de abril de 2020): 161–70. http://dx.doi.org/10.1587/transele.2019cdp0005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Boutchacha, T. y G. Ghibaudo. "Semianalytical Modelling and 2D Numerical Simulation of Low-Frequency Noise in Advanced N-Channel FDSOI MOSFETs". Active and Passive Electronic Components 2020 (2 de diciembre de 2020): 1–10. http://dx.doi.org/10.1155/2020/7989238.

Texto completo
Resumen
Thorough investigations of the low-frequency noise (LFN) in a fully depleted silicon-on-insulator technology node have been accomplished, pointing out on the contribution of the buried oxide (BOX) and the Si-BOX interface to the total drain current noise level. A new analytical multilayer gate stack flat-band voltage fluctuation-based model has been established, and 2D numerical simulations have been carried out to identify the main noise sources and related parameters on which the LFN depends. The increase of the noise at strong inversion could be explained by the access resistance contribution to the 1/f noise. Therefore, considering uncorrelated noise sources in the channel and in the source/drain regions, the total low-frequency noise can simply be obtained by adding to the channel noise the contribution of the excess noise originating from the access region (Δr). Moreover, only two fit parameters are used in this work: the trap volumetric density in the BOX, and the 1/f access noise level originating from the access series resistance, which is assumed to be the same for the front and the back interfaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Najam, Faraz, Michael Loong Peng Tan, Razali Ismail y Yun Seop Yu. "Two-dimensional (2D) transition metal dichalcogenide semiconductor field-effect transistors: the interface trap density extraction and compact model". Semiconductor Science and Technology 30, n.º 7 (16 de junio de 2015): 075010. http://dx.doi.org/10.1088/0268-1242/30/7/075010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Myatt, C. J., N. R. Newbury, R. W. Ghrist, S. Loutzenhiser y C. E. Wieman. "Multiply loaded magneto-optical trap". Optics Letters 21, n.º 4 (15 de febrero de 1996): 290. http://dx.doi.org/10.1364/ol.21.000290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Snadden, M. J., A. S. Bell, R. B. M. Clarke, E. Riis y D. H. McIntyre. "Doughnut mode magneto-optical trap". Journal of the Optical Society of America B 14, n.º 3 (1 de marzo de 1997): 544. http://dx.doi.org/10.1364/josab.14.000544.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Marangoni, Bruno S., Carlos R. Menegatti y Luis G. Marcassa. "Loading a39K crossed optical dipole trap from a magneto-optical trap". Journal of Physics B: Atomic, Molecular and Optical Physics 45, n.º 17 (9 de agosto de 2012): 175301. http://dx.doi.org/10.1088/0953-4075/45/17/175301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Kowalski, K., V. Cao Long, K. Dinh Xuan, M. Głódź, B. Nguyen Huy y J. Szonert. "Magneto-optical Trap: Fundamentals and Realization". Computational Methods in Science and Technology Special Issue, n.º 02 (2010): 115–29. http://dx.doi.org/10.12921/cmst.2010.si.02.115-129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Gan, Jian-hua, Yi-min Li, Xu-zong Chen, Hai-feng Liu, Dong-hai Yang y Yi-qiu Wang. "Magneto-Optical Trap of Cesium Atoms". Chinese Physics Letters 13, n.º 11 (noviembre de 1996): 821–24. http://dx.doi.org/10.1088/0256-307x/13/11/006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chevrollier, M., E. G. Lima, O. Di Lorenzo, A. Lezama y M. Oriá. "Magneto-optical trap near a surface". Optics Communications 136, n.º 1-2 (marzo de 1997): 22–26. http://dx.doi.org/10.1016/s0030-4018(96)00680-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Atutov, S. N., V. Biancalana, A. Burchianti, R. Calabrese, L. Corradi, A. Dainelli, V. Guidi et al. "The Legnaro Francium Magneto-Optical Trap". Hyperfine Interactions 146/147, n.º 1-4 (2003): 83–89. http://dx.doi.org/10.1023/b:hype.0000004223.90077.27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Witkowski, Marcin, Bartłomiej Nagórny, Rodolfo Munoz-Rodriguez, Roman Ciuryło, Piotr Szymon Żuchowski, Sławomir Bilicki, Marcin Piotrowski, Piotr Morzyński y Michał Zawada. "Dual Hg-Rb magneto-optical trap". Optics Express 25, n.º 4 (7 de febrero de 2017): 3165. http://dx.doi.org/10.1364/oe.25.003165.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

di Stefano, A., D. Wilkowski, J. H. Müller y E. Arimondo. "Five-beam magneto-optical trap and optical molasses". Applied Physics B 69, n.º 4 (octubre de 1999): 263–68. http://dx.doi.org/10.1007/s003400050806.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Clifford, M. A., G. P. T. Lancaster, R. H. Mitchell, F. Akerboom y K. Dholakia. "Realization of a mirror magneto-optical trap". Journal of Modern Optics 48, n.º 6 (mayo de 2001): 1123–28. http://dx.doi.org/10.1080/09500340108230979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Szczepkowski, J., E. Paul-Kwiek, G. Auböck, L. Holler, C. Binder y L. Windholz. "Semiclasical model of magneto-optical trap depth". European Physical Journal Special Topics 144, n.º 1 (mayo de 2007): 265–71. http://dx.doi.org/10.1140/epjst/e2007-00139-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Sørensen, J. L., J. Hald y E. S. Polzik. "Spectroscopy on a modulated magneto-optical trap". Optics Letters 23, n.º 1 (1 de enero de 1998): 25. http://dx.doi.org/10.1364/ol.23.000025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Morinaga, Makoto. "Circular Magneto-Optical Trap for Neutral Atoms". Journal of the Physical Society of Japan 77, n.º 10 (15 de octubre de 2008): 104402. http://dx.doi.org/10.1143/jpsj.77.104402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Steane, A. M., M. Chowdhury y C. J. Foot. "Radiation force in the magneto-optical trap". Journal of the Optical Society of America B 9, n.º 12 (1 de diciembre de 1992): 2142. http://dx.doi.org/10.1364/josab.9.002142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Liu, Hong-Li, Shi-Qi Yin, Kang-Kang Liu, Jun Qian, Zhen Xu, Tao Hong y Yu-Zhu Wang. "Magneto-optical trap for neutral mercury atoms". Chinese Physics B 22, n.º 4 (abril de 2013): 043701. http://dx.doi.org/10.1088/1674-1056/22/4/043701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Emile, O., F. Bardou, C. Salomon, Ph Laurent, A. Nadir y A. Clairon. "Observation of a New Magneto-optical Trap". Europhysics Letters (EPL) 20, n.º 8 (15 de diciembre de 1992): 687–91. http://dx.doi.org/10.1209/0295-5075/20/8/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Hennequin, D. "Stochastic dynamics of the magneto-optical trap". European Physical Journal D - Atomic, Molecular and Optical Physics 28, n.º 1 (1 de enero de 2004): 135–47. http://dx.doi.org/10.1140/epjd/e2003-00293-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Stefano, A., Ph Verkerk y D. Hennequin. "Deterministic instabilities in the magneto-optical trap". European Physical Journal D 30, n.º 2 (agosto de 2004): 243–58. http://dx.doi.org/10.1140/epjd/e2004-00089-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Noh, H. R., J. O. Kim, D. S. Nam y W. Jhe. "Isotope separation in a magneto‐optical trap". Review of Scientific Instruments 67, n.º 4 (abril de 1996): 1431–33. http://dx.doi.org/10.1063/1.1146869.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Chapovsky, P. L. "Compact magneto-optical trap for rubidium atoms". Journal of Experimental and Theoretical Physics 100, n.º 5 (mayo de 2005): 911–19. http://dx.doi.org/10.1134/1.1947315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Yan-Xu, Han, Liu Yong-Hong, Zhang Chun-Hong, Li Shu-Jing y Wang Hai. "Realization of High Optical Density Rb Magneto-optical Trap". Chinese Physics Letters 26, n.º 2 (febrero de 2009): 023201. http://dx.doi.org/10.1088/0256-307x/26/2/023201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Maier, T., H. Kadau, M. Schmitt, A. Griesmaier y T. Pfau. "Narrow-line magneto-optical trap for dysprosium atoms". Optics Letters 39, n.º 11 (20 de mayo de 2014): 3138. http://dx.doi.org/10.1364/ol.39.003138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Dammalapati, U., I. Norris, L. Maguire, M. Borkowski y E. Riis. "A compact magneto-optical trap apparatus for calcium". Measurement Science and Technology 20, n.º 9 (14 de julio de 2009): 095303. http://dx.doi.org/10.1088/0957-0233/20/9/095303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Aubin, S., E. Gomez, L. A. Orozco y G. D. Sprouse. "High efficiency magneto-optical trap for unstable isotopes". Review of Scientific Instruments 74, n.º 10 (octubre de 2003): 4342–51. http://dx.doi.org/10.1063/1.1606093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Xie, Dizhou, Wenhao Bu y Bo Yan. "Microwave-mediated magneto-optical trap for polar molecules". Chinese Physics B 25, n.º 5 (mayo de 2016): 053701. http://dx.doi.org/10.1088/1674-1056/25/5/053701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bongs, Kai, Wiebke Brinkmann, Hansjörg Dittus, Wolfgang Ertmer, Ertan Göklü, Greta Johannsen, Endre Kajari et al. "Realization of a magneto-optical trap in microgravity". Journal of Modern Optics 54, n.º 16-17 (10 de noviembre de 2007): 2513–22. http://dx.doi.org/10.1080/09500340701621266.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Williams, H. J., S. Truppe, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer y M. R. Tarbutt. "Characteristics of a magneto-optical trap of molecules". New Journal of Physics 19, n.º 11 (23 de noviembre de 2017): 113035. http://dx.doi.org/10.1088/1367-2630/aa8e52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Dinneen, Timothy P., Kurt R. Vogel, Ennio Arimondo, John L. Hall y Alan Gallagher. "Cold collisions ofSr*−Srin a magneto-optical trap". Physical Review A 59, n.º 2 (1 de febrero de 1999): 1216–22. http://dx.doi.org/10.1103/physreva.59.1216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Rushton, Jo, Ritayan Roy, James Bateman y Matt Himsworth. "A dynamic magneto-optical trap for atom chips". New Journal of Physics 18, n.º 11 (9 de noviembre de 2016): 113020. http://dx.doi.org/10.1088/1367-2630/18/11/113020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Townsend, C. G., N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin y J. Dalibard. "Phase-space density in the magneto-optical trap". Physical Review A 52, n.º 2 (1 de agosto de 1995): 1423–40. http://dx.doi.org/10.1103/physreva.52.1423.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Prudnikov, O. N., A. V. Taichenachev y V. I. Yudin. "Three-dimensional theory of the magneto-optical trap". Journal of Experimental and Theoretical Physics 120, n.º 4 (abril de 2015): 587–94. http://dx.doi.org/10.1134/s1063776115040147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Jie, Ma, Wang Li-Rong, Ji Wei-Bang, Xiao Lian-Tuan y Jia Suo-Tang. "Saturation of Photoassociation in Cs Magneto-optical Trap". Chinese Physics Letters 24, n.º 7 (28 de junio de 2007): 1904–7. http://dx.doi.org/10.1088/0256-307x/24/7/032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hemmerich, A., M. Weidemüller, T. Esslinger y T. W. Hänsch. "Collective Atomic Dynamics in a Magneto-optical Trap". Europhysics Letters (EPL) 21, n.º 4 (1 de febrero de 1993): 445–50. http://dx.doi.org/10.1209/0295-5075/21/4/011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Romain, R., D. Hennequin y P. Verkerk. "Phase-space description of the magneto-optical trap". European Physical Journal D 61, n.º 1 (8 de octubre de 2010): 171–80. http://dx.doi.org/10.1140/epjd/e2010-00260-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Vangeleyn, Matthieu, Paul F. Griffin, Erling Riis y Aidan S. Arnold. "Single-laser, one beam, tetrahedral magneto-optical trap". Optics Express 17, n.º 16 (23 de julio de 2009): 13601. http://dx.doi.org/10.1364/oe.17.013601.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hou, Ji-dong, Yi-min Li, Dong-hai Yang y Yi-qiu Wang. "An Improved Magneto-Optical Trap for Cesium Atom". Chinese Physics Letters 15, n.º 5 (1 de mayo de 1998): 335–37. http://dx.doi.org/10.1088/0256-307x/15/5/009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wiegand, B., B. Leykauf, K. Döringshoff, Y. D. Gupta, A. Peters y M. Krutzik. "A single-laser alternating-frequency magneto-optical trap". Review of Scientific Instruments 90, n.º 10 (1 de octubre de 2019): 103202. http://dx.doi.org/10.1063/1.5110722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía