Literatura académica sobre el tema "22~nm"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "22~nm".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "22~nm"
Bloomstein, T. M., Michael F. Marchant, Sandra Deneault, Dennis E. Hardy y Mordechai Rothschild. "22-nm immersion interference lithography". Optics Express 14, n.º 14 (2006): 6434. http://dx.doi.org/10.1364/oe.14.006434.
Texto completoSadana, Devendra, Stephen W. Bedell, J. P. De Souza, Y. Sun, E. Kiewra, A. Reznicek, T. Adams et al. "CMOS Scaling Beyond 22 nm Node". ECS Transactions 19, n.º 5 (18 de diciembre de 2019): 267–74. http://dx.doi.org/10.1149/1.3119551.
Texto completoBuengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper et al. "Process Window Centering for 22 nm Lithography". IEEE Transactions on Semiconductor Manufacturing 24, n.º 2 (mayo de 2011): 165–72. http://dx.doi.org/10.1109/tsm.2011.2106807.
Texto completoParker, Matthew. "A sub-terahertz transceiver in 22 nm FinFET". Nature Electronics 5, n.º 3 (marzo de 2022): 126. http://dx.doi.org/10.1038/s41928-022-00741-x.
Texto completoKurd, Nasser, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas, Christopher Mozak, Brent Boswell, Praveen Mosalikanti et al. "Haswell: A Family of IA 22 nm Processors". IEEE Journal of Solid-State Circuits 50, n.º 1 (enero de 2015): 49–58. http://dx.doi.org/10.1109/jssc.2014.2368126.
Texto completoHuang, Ru, HanMing Wu, JinFeng Kang, DeYuan Xiao, XueLong Shi, Xia An, Yu Tian et al. "Challenges of 22 nm and beyond CMOS technology". Science in China Series F: Information Sciences 52, n.º 9 (septiembre de 2009): 1491–533. http://dx.doi.org/10.1007/s11432-009-0167-9.
Texto completoShiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Yasuyuki Fukushima, Ryuji Ohnishi, Takeo Watanabe y Hiroo Kinoshita. "Dual Grating Interferometric Lithography for 22-nm Node". Japanese Journal of Applied Physics 47, n.º 6 (20 de junio de 2008): 4881–85. http://dx.doi.org/10.1143/jjap.47.4881.
Texto completoSeifert, N., B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Quan Shi, R. Allmon y A. Bramnik. "Soft Error Susceptibilities of 22 nm Tri-Gate Devices". IEEE Transactions on Nuclear Science 59, n.º 6 (diciembre de 2012): 2666–73. http://dx.doi.org/10.1109/tns.2012.2218128.
Texto completoZhang, Bo, Min Zhang y Tianhong Cui. "Low-cost shrink lithography with sub-22 nm resolution". Applied Physics Letters 100, n.º 13 (26 de marzo de 2012): 133113. http://dx.doi.org/10.1063/1.3697836.
Texto completoLi, Zongru, Christopher Jarrett Elash, Chen Jin, Li Chen, Jiesi Xing, Zhiwu Yang y Shuting Shi. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies". Electronics 11, n.º 11 (1 de junio de 2022): 1757. http://dx.doi.org/10.3390/electronics11111757.
Texto completoTesis sobre el tema "22~nm"
Bansal, Anil Kumar. "CMOS scaling considerations in sub 10-nm node multiple-gate FETS". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8046.
Texto completoBaldauf, Tim. "Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-132044.
Texto completoWithin the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work
Hamioud, Karim. "Élaboration et caractérisation des interconnexions pour les nœuds technologiques CMOS 32 et 22 nm". Lyon, INSA, 2010. http://www.theses.fr/2010ISAL0011.
Texto completo[The overall performance of integrated circuits should grow by about 20% at each new technology node. The interconnects have to be involved in increasing the performance and specially the reduction of signal propagation. The use of porous ultra low-k dielectric is necessary for the Sub-45 nm generation. In a first step, a roadmap for the 32 nm BEOL is proposed. The elementary processes developments have demonstrated the functionality of a multi-level demonstrator at minimum design rules of 32 nm technology node. In second step, a mature 45 nm technology has enabled the integration study of porous dielectric k = 2. 3 and k = 2. 2 which are potential candidates, respectively, for the 32 and 22 nm technology nodes. The introduction of these materials in the BEOL architecture scheme improves circuit performance but the dielectric reliability is found damaged from the reference k = 2. 5 material. Consequently, after to have identified the different sources of the dielectric reliability degradation, a response to the reliability standard has allowed the definition of reliable architecture. This reliable architecture used a robust metal barrier TaN/Ta robust and an additional layer in the dielectric stack technology. This reliable and efficient architecture represents a good beginning for the future 32 and 22 nm BEOL technology nodes. ]
Öberg, Eric y Gustav Kindeskog. "16 GS/s Continuous-Time ΣΔ Modulator in a 22 nm SOI Process : a Simulation and Feasibility Study". Thesis, Linköpings universitet, Tekniska fakulteten, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155781.
Texto completoBauer, Heiner. "Dynamic instruction set extension of microprocessors with embedded FPGAs". Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222858.
Texto completoZunehmend komplexere Anwendungen und Besonderheiten moderner Halbleitertechnologien haben zu einer großen Nachfrage an leistungsfähigen und gleichzeitig sehr energieeffizienten Mikroprozessoren geführt. Konventionelle Architekturen versuchen den Befehlsdurchsatz durch Parallelisierung zu steigern und stellen anwendungsspezifische Befehlssätze oder Hardwarebeschleuniger zur Steigerung der Energieeffizienz bereit. Rekonfigurierbare Prozessoren ermöglichen ähnliche Performancesteigerungen und besitzen gleichzeitig den enormen Vorteil, dass die Spezialisierung auf eine bestimmte Anwendung nach der Herstellung erfolgen kann. In dieser Diplomarbeit wurde ein rekonfigurierbarer Mikroprozessor mit einem eng gekoppelten FPGA untersucht. Im Gegensatz zu früheren Forschungsansätzen wurde eine umfangreiche Entwurfsraumexploration der FPGA-Architektur im Zusammenhang mit einem kommerziellen 22nm Herstellungsprozess durchgeführt. Bisher verwendeten die meisten Forschungsprojekte entweder kommerzielle Architekturen, die nicht unbedingt auf diesen Anwendungsfall zugeschnitten sind, oder die vorgeschlagenen FGPA-Komponenten wurden nur unzureichend untersucht und charakterisiert. Jedoch ist gerade dieser Baustein ausschlaggebend für die Leistungsfähigkeit des gesamten Systems. Deshalb wurden im Rahmen dieser Arbeit über 200 verschiedene logische FPGA-Architekturen untersucht. Zur Modellierung wurden konkrete Schaltungstopologien und ein auf den Herstellungsprozess zugeschnittenes Modell zur Abschätzung der Layoutfläche verwendet. Generell wurden die gleichen Trends wie bei vorhergehenden und ähnlich umfangreichen Untersuchungen beobachtet. Auch hier wurden die Ergebnisse maßgeblich von der Größe der LUTs (engl. "Lookup Tables") und der Struktur des Routingnetzwerks bestimmt. Gleichzeitig wurde ein viel breiterer Bereich von Architekturen mit nahezu gleicher Effizienz identifiziert. Zur weiteren Evaluation wurde eine FPGA-Architektur mit 5-LUTs und 8 Logikelementen ausgewählt. Die Performance des ausgewählten Mikroprozessors, der auf einer erprobten Befehlssatzarchitektur aufbaut, wurde mit Ergebnissen eines 28nm Testchips abgeschätzt. Eine modifizierte Sammlung von akademischen Softwarewerkzeugen wurde verwendet, um Spezialbefehle auf die modellierte FPGA-Architektur abzubilden und eine Netzliste für die anschließende Simulation und Verifikation zu erzeugen. Für eine Reihe unterschiedlicher Anwendungs-Benchmarks wurde eine relative Leistungssteigerung zwischen 3 und 15 gegenüber dem ursprünglichen Prozessor ermittelt. Obwohl die vorgeschlagene FPGA-Architektur vergleichsweise primitiv ist und keinerlei arithmetische Erweiterungen besitzt, musste dabei, bis auf eine Ausnahme, kein überproportionaler Anstieg der Chipfläche in Kauf genommen werden. Die gewonnen Erkenntnisse zu den Abhängigkeiten zwischen den Architekturparametern, der entwickelte Ablauf für die Exploration und das konkrete Kostenmodell sind essenziell für weitere Verbesserungen der FPGA-Architektur. Die vorliegende Arbeit hat somit erfolgreich den Vorteil der untersuchten Systemarchitektur gezeigt und den Weg für mögliche Erweiterungen und Hardwareimplementierungen geebnet. Zusätzlich wurden eine Reihe von Optimierungen der Architektur und weitere potenziellen Forschungsansätzen aufgezeigt
Baldauf, Tim [Verfasser], Gerald [Akademischer Betreuer] Gerlach y Roland [Akademischer Betreuer] Stenzel. "Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie / Tim Baldauf. Gutachter: Gerald Gerlach ; Roland Stenzel. Betreuer: Gerald Gerlach ; Roland Stenzel". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068444916/34.
Texto completoDelpeyroux, Francis. "Insertions dans l'antigène de surface du virus de l'hépatite B expression d'un épitote de neutralisation du poliovirus à la surface departicules de 22 nm". Grenoble : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37593763m.
Texto completoDelpeyroux, Francis. "Insertions dans l'antigene de surface du virus de l'hepatite b : expression d'un epitope de neutralisation du poliovirus a la surface de particules de 22 nm". Paris 7, 1987. http://www.theses.fr/1987PA077198.
Texto completoLecat-Mathieu, de Boissac Capucine. "Developing radiation-hardening solutions for high-performance and low-power systems". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0413.
Texto completoNew actors have accelerated the pace of putting new satellites into orbit, and other domains like the automotive industry are at the origin of this development. These new actors rely on advanced technologies, such as UTBB FD-SOI in order to be able to achieve the necessary performance to accomplish the tasks. Albeit disruptive in terms of intrinsic soft-error resistance, the growing density and complexity of spaceborne and automotive systems require an accurate characterization of technologies, as well as an adaptation of traditional hardening techniques. This PhD focuses on the study of radiation effects in advanced FD-SOI and bulk silicon processes, and on the research of innovative protection mechanisms. A custom, self-calibrating transient measurements structure with automated design flow is first presented, allowing for the characterization of four different technologies during accelerated tests. The soft-error response of 28~nm FD-SOI and 40~nm bulk logic and storage cells is then assessed through beam testing and with the help of TCAD simulations, allowing to study the influence of voltage, frequency scaling and the application of forward body biasing on sensitivity. Total ionizing dose is also investigated through the use of an on-chip monitoring block. The test results are then utilized to propose a novel hardening solution for system on chip, which gathers the monitoring structures into a real-time radiation environment assessment and a power management unit for power mode adjustments. Finally, as an extension of the SET sensors capability, an implementation of radiation monitors in a context of secure systems is proposed to detect and counteract laser attacks
Lallement, Guénolé. "Extension of socs mission capabilities by offering near-zero-power performances and enabling continuous functionality for Iot systems". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0573.
Texto completoRecent developments in the field of low voltage integrated circuits (IC) have paved the way towards energy efficient electronic devices in a booming global network called the internet-of-things (IoT) or the internet-of-everything (IoE). However, the sustainability of all these inter- connected sensors is still undermined by the constant need for either an on-board battery – that must be recharged or replaced – or an energy harvester with very limited power efficiency. The power consumption of present consumer electronic systems is fifty times higher than the energy available by cm 2-size harvester or limited to a few months on a small battery, thus hardly viable for lifetime solutions. Upcoming systems-on-chip (SoCs) must overcome the challenge of this energy gap by architecture optimizations from technology to system level. The technical approach of this work aims to demonstrate the feasibility of an efficient ultra-low-voltage (ULV) and ultra-low-power (ULP) SoC using exclusively latest industrial guidelines in 28 nm and 22 nm fully depleted silicon on insulator (FD-SOI) technologies. Several multi-power-domain SoCs based on ARM cores are implemented to demonstrate wake up strategies based on sensors inputs. By optimizing the system architecture, properly selecting and designing compo- nents with technology features chosen adequately, carefully tuning the implementation, a fully energy-optimized SoC is realized
Libros sobre el tema "22~nm"
IEEE, International Nonvolatile Memory Technology Conference (7th 1998 Albuquerque New Mexico). Seventh biennial IEEE Nonvolatile Memory Technology Conference: Proceedings : 1998 conference : June 22-24, 1998, Albuquerque, NM, USA. Piscataway, N.J: IEEE, 1998.
Buscar texto completoIEEE Geoscience and Remote Sensing Society., Lasers and Electro-optics Society (Institute of Electrical and Electronics Engineers) y IEEE Microwave Theory and Techniques Society., eds. Topical Symposium on Combined Optical-microwave Earth and Atmosphere Sensing: Conference proceedings, March 22-25, 1993, Albuquerque, NM. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1993.
Buscar texto completoWang, Guilei. Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6.
Texto completoSymposium, on Time-of-Flight Diffraction at Pulsed Neutron Sources (1993 Albuquerque N. M. ). Proceedings of the Symposium on Time-of-Flight Diffraction at Pulsed Neutron Sources: At Albuquerque Convention Center, Albuquerque, NM, May 22-28, 1993. Buffalo, NY: American Crystallographic Association, 1994.
Buscar texto completoCenter for Nonlinear Studies. International Conference. Nonlinearity in materials science: Proceedings of the twelfth annual International Conference of the Center for Nonlinear Studies, Los Alamos, NM 87545, USA, 18-22 May 1992. Editado por Bishop Alan, Ecke R y Gubernatis James. Amsterdam: North-Holland, 1993.
Buscar texto completoCenter of Nonlinear Studies. International Conference. Nonlinearity in biology and medicine: Proceedings of theseventh annual international conference of the Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, May 18-22, 1987. Editado por Perelson Alan S. New York: Elsevier, 1988.
Buscar texto completoLabor, United States Congress House Committee on Education and. Civil Rights Restoration Act of 1985: Joint hearings before the Committee on Education and Labor, and the Subcommittee on Civil and Constitutional Rights of the Committee on the Judiciary, House of Representatives, Ninety-ninth Congress, first session on H.R. 700 ... hearings held in Philadelphia, PA, March 4; Washington, DC, March 7, 27, 28, and April 2; Atlanta, GA, March 11; Chicago, Il, March 15; Los Angeles, CA, March 22; and Santa Fe, NM, March 25, 1985. Washington: U.S. G.P.O., 1986.
Buscar texto completoBalasinski, Artur. Design for Manufacturability: From 1d to 4D for 90 22 NM Technology Nodes. Springer New York, 2016.
Buscar texto completoBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90–22 nm Technology Nodes. Springer, 2013.
Buscar texto completoBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90-22 Nm Technology Nodes. Springer London, Limited, 2013.
Buscar texto completoCapítulos de libros sobre el tema "22~nm"
Valasa, Sresta y Shubham Tayal. "Modeling and Analysis of Low Power High-Speed Phase Detector and Phase Frequency Detector Using Nano Dimensional MOS Transistors at 16 nm, 22 nm, 32 nm". En Lecture Notes in Electrical Engineering, 1–11. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6780-1_1.
Texto completoPoiroux, T., F. Andrieu, O. Weber, C. Fenouillet-Béranger, C. Buj-Dufournet, P. Perreau, L. Tosti, L. Brevard y O. Faynot. "Ultrathin Body Silicon on Insulator Transistors for 22 nm Node and Beyond". En Semiconductor-On-Insulator Materials for Nanoelectronics Applications, 155–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_8.
Texto completoDelwar, Tahesin Samira, Sourav Biswas y Anindya Jana. "Realization of hybrid single electron transistor based low power circuits in 22 nm technology". En Computational Science and Engineering, 27–32. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press, 2016. http://dx.doi.org/10.1201/9781315375021-7.
Texto completoCordova, David, Wim Cops, Yann Deval, François Rivet, Herve Lapuyade, Nicolas Nodenot y Yohan Piccin. "Low-Power High-Speed ADCs for ADC-Based Wireline Receivers in 22 nm FDSOI". En VLSI-SoC: Design Trends, 1–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81641-4_1.
Texto completoImtiaz, Shamim y Ruqaiya Khanam. "Design and Analysis Delay of FinFET and CMOS 6T SRAM Using 22 nm Technology". En Studies in Autonomic, Data-driven and Industrial Computing, 449–60. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5435-3_32.
Texto completoKannaujiya, Aryan, Narendra Yadava, Mangal Deep Gupta y Rajeev Kumar Chauhan. "Improvement of Leakage Current in Double Pocket FDSOI 22 nm Transistor Using Gate Metal Arrangement". En Lecture Notes in Electrical Engineering, 227–35. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_23.
Texto completoVasudeva, G. y B. V. Uma. "Two-Stage Folded Resistive String 12-Bit Digital to Analog Converter Using 22-nm FINFET". En Sustainable Communication Networks and Application, 119–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6605-6_8.
Texto completoProuvée, J., G. Mangraviti, B. Debaillie, P. Wambacq, D. Borggreve, R. Ciocoveanu, H. Fredriksson et al. "Digital Beamforming Transceiver Design in 22 nm FD-SOI Technology for 39 GHz 5G Access". En Technologies Enabling Future Mobile Connectivity & Sensing, 31–55. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781032633039-4.
Texto completoWang, Guilei. "Introduction". En Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 1–7. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_1.
Texto completoWang, Guilei. "Strained Silicon Technology". En Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 9–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_2.
Texto completoActas de conferencias sobre el tema "22~nm"
Bakker, Jelle H. T., Mark S. Oude Alink, Jurriaan Schmitz y Bram Nauta. "Characterisation of Photodiodes in 22 nm FDSOI at 850 nm". En ESSDERC 2023 - IEEE 53rd European Solid-State Device Research Conference (ESSDERC). IEEE, 2023. http://dx.doi.org/10.1109/essderc59256.2023.10268483.
Texto completoBuengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper et al. "Process Window Centering for 22 nm lithography". En 2010 21st Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2010. http://dx.doi.org/10.1109/asmc.2010.5551447.
Texto completoSeo, Soon-Cheon, Chih-Chao Yang, Chun-Chen Yeh, Bala Haran, Dave Horak, Susan Fan, Charles Koburger et al. "Copper contact metallization for 22 nm and beyond". En 2009 IEEE International Interconnect Technology Conference - IITC. IEEE, 2009. http://dx.doi.org/10.1109/iitc.2009.5090326.
Texto completoAuth, Chris. "22-nm fully-depleted tri-gate CMOS transistors". En 2012 IEEE Custom Integrated Circuits Conference - CICC 2012. IEEE, 2012. http://dx.doi.org/10.1109/cicc.2012.6330657.
Texto completoBourdillon, Antony J., Gwyn P. Williams, Yuli Vladimirsky y Chris B. Boothroyd. "22-nm lithography using near-field x rays". En Microlithography 2003, editado por Roxann L. Engelstad. SPIE, 2003. http://dx.doi.org/10.1117/12.484989.
Texto completoTIAN, Ming, Cuiqin XU y Haibo LEI. "Advanced 22 nm FD-SOI devices integration platform". En 2019 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, 2019. http://dx.doi.org/10.1109/s3s46989.2019.9320694.
Texto completoShiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Takeo Watanabe, Yasuyuki Fukushima, Ryuji Ohnishi y Hiroo Kinoshita. "Dual grating interferometric lithography for 22-nm node". En 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456097.
Texto completoGambino, J. P. "Copper interconnect technology for the 22 nm node". En 2011 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2011. http://dx.doi.org/10.1109/vtsa.2011.5872228.
Texto completoYang, Edward y Torsten Lehmann. "High Gain Operational Amplifiers in 22 nm CMOS". En 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702381.
Texto completoAfifah Maheran, A. H., P. S. Menon, I. Ahmad, H. A. Elgomati, B. Y. Majlis y F. Salehuddin. "Scaling down of the 32 nm to 22 nm gate length NMOS transistor". En 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417117.
Texto completoInformes sobre el tema "22~nm"
Becher, Julie, Samuel Beal, Susan Taylor, Katerina Dontsova y Dean Wilcox. Photo-transformation of aqueous nitroguanidine and 3-nitro-1,2,4-triazol-5-one : emerging munitions compounds. Engineer Research and Development Center (U.S.), agosto de 2021. http://dx.doi.org/10.21079/11681/41743.
Texto completoPerkins, Dustin. Invasive exotic plant monitoring at Fossil Butte National Monument: 2021 field season. Editado por Alice Wondrak Biel. National Park Service, septiembre de 2022. http://dx.doi.org/10.36967/2288496.
Texto completo