Literatura académica sobre el tema "1D-NLSE"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "1D-NLSE".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "1D-NLSE"

1

Nguyen, Cuong Duy, Khoa Xuan Dinh, Van Long Cao, Trippenbach M., Thuan Dinh Bui, and Thuy Thanh Do. "Spontaneous Symmetry Breaking of Solitons Trapped in a Double-Gauss Potentials." Communications in Physics 28, no. 4 (2018): 301. http://dx.doi.org/10.15625/0868-3166/28/4/13195.

Texto completo
Resumen
We consider an extended model of the model considered before with double-square potential, namely one-dimensional (1D) nonlinear Schrödinger equation (NLSE) with self-focusing nonlinearity and a 1D double-gauss potential. Spontaneous symmetry breaking has been presented in terms of the control parameter which is propagation constant in the case of optics and chemical potential in the of Bose-Einstein Condensate (BEC), correspondingly. The numerical simulations predict a bifurcation breaking the symmetry of 1D trapped in the double-gauss potential of the supercritical type as in the case of dou
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Farag, Neveen G. A., Ahmed H. Eltanboly, M. S. EL-Azab, and S. S. A. Obayya. "On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation." Mathematical Problems in Engineering 2021 (November 3, 2021): 1–15. http://dx.doi.org/10.1155/2021/3094011.

Texto completo
Resumen
In this paper, four compelling numerical approaches, namely, the split-step Fourier transform (SSFT), Fourier pseudospectral method (FPSM), Crank-Nicolson method (CNM), and Hopscotch method (HSM), are exhaustively presented for solving the 1D nonlinear Schrodinger equation (NLSE). The significance of this equation is referred to its notable contribution in modeling wave propagation in a plethora of crucial real-life applications such as the fiber optics field. Although exact solutions can be obtained to solve this equation, these solutions are extremely insufficient because of their limitation
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mirón, M., and E. Sadurní. "Stationary scattering for the nonlinear Schrödinger equation with point-like obstacles: exact solutions." Nonlinear Dynamics, October 15, 2024. http://dx.doi.org/10.1007/s11071-024-10448-7.

Texto completo
Resumen
AbstractWe solve the Nonlinear Schrödinger Equation (NLSE) in 1D in presence of one, two and several Dirac delta potentials. With the help of an equivalent central force problem we obtain the analytical solutions in terms of a biparametric family containing the Jacobi functions. Elliptic Jacobi functions are already reported in the literature but they have not been used in the context of a scattering problem under causal boundary conditions. In the simplest examples of one or two Dirac deltas we analyze how the nonlinear term of the equation affects the modulus and phase profiles of the wave f
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "1D-NLSE"

1

Colléaux, Clément. "Modélisation de turbulence optique unidimensionnelle." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5055.

Texto completo
Resumen
L'étude de l'optique non-linéaire est d'importance pratique car cela désigne des systèmes tels que les fibres optiques et des cristaux liquides mais aussi d'importance théorique car la lumière non-linéaire possède des propriétés très similaires à l'hydrodynamique. Les systèmes optiques non-linéaires sont modélisés par une équation non-intégrable qui contient une physique riche. Dans cette thèse, nous explorons deux aspects de cette équation. Nous analysons d'abord la propagation de structures localisées dans ce système et nous concluons que ce dernier tend vers un état final qui agit comme un
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "1D-NLSE"

1

Weiss, C. O., and K. Staliunas. "Optical Vortices and Dark Spatial Solitons." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.wb4.

Texto completo
Resumen
Since Zacharov and Shabat integrated one-dimensional Nonlinear Schrödinger Equation (1D NLSE) and found solitons [1,2], much have been done in one-dimensional, but very little in two-dimensional soliton physics. The integrability of 2D NLSE as well as existence of solitons in it is under the question to the time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

McLeod, Robert, Kelvin Wagner, and Steve Blair. "Collisions of Stable Spatio-Temporal Solitons." In Nonlinear Guided Waves and Their Applications. Optica Publishing Group, 1995. http://dx.doi.org/10.1364/nlgw.1995.nfa9.

Texto completo
Resumen
Silberberg1 has recently shown that, in a homogeneous nonlinear Kerr material exhibiting anomalous group-velocity dispersion (AGVD), the propagation of the slowly-varying envelope of the electric-field can be described by a 3+1D nonlinear Schrodinger equation (NLSE): which is written in a group-velocity coordinate frame. The AGVD has been used to make temporal dispersion isomorphic to spatial diffraction which in turn gives rise to the possibility of simultaneous two-dimensional, radially symmetric self-focusing and temporal pulse compression resulting in a 3D soliton or “light-bullet”. This l
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!