Literatura académica sobre el tema "1D-NLSE"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "1D-NLSE".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "1D-NLSE"
Nguyen, Cuong Duy, Khoa Xuan Dinh, Van Long Cao, Trippenbach M., Thuan Dinh Bui y Thuy Thanh Do. "Spontaneous Symmetry Breaking of Solitons Trapped in a Double-Gauss Potentials". Communications in Physics 28, n.º 4 (27 de diciembre de 2018): 301. http://dx.doi.org/10.15625/0868-3166/28/4/13195.
Texto completoFarag, Neveen G. A., Ahmed H. Eltanboly, M. S. EL-Azab y S. S. A. Obayya. "On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation". Mathematical Problems in Engineering 2021 (3 de noviembre de 2021): 1–15. http://dx.doi.org/10.1155/2021/3094011.
Texto completoMirón, M. y E. Sadurní. "Stationary scattering for the nonlinear Schrödinger equation with point-like obstacles: exact solutions". Nonlinear Dynamics, 15 de octubre de 2024. http://dx.doi.org/10.1007/s11071-024-10448-7.
Texto completoTesis sobre el tema "1D-NLSE"
Colléaux, Clément. "Modélisation de turbulence optique unidimensionnelle". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5055.
Texto completoStudying non-linear optics systems is of practical importance because it applies to systems such as optical fibers and liquid crystals but also of theoretical importance because non-linear light exhibit properties very similar to hydrodynamics. Non-linear optics are modeled by an non-integrable equation which contains a rich physics. In this thesis, we explore two aspects of this equation. We first analyse the propagation of localized structures in this system and we conclude that the system tends to a final state which acts as a statistical attractor. We identify this attractor as a bound-state, a localized structure which oscillates in amplitude and in width and which propagates among weakly non-linear waves.We also study the turbulent cascades of this system with the help of an reduced model of the wave kinetics. This reduced model allows us to derive the Kolmogorov-Zakharov spectra of cascading quantities. The Kolmogorov-Zakharov spectrum for the wave-action is found to be non-local and replaced by a no-local prediction. These theoretical predictions are then compared to numerical simulations and show an overall good accordance with numerics, particularly for the non-local spectrum of wave-action. Such numerical simulations show the existence of Incoherent Solitons, which are localized structures propagating with an envelope approximately constant but with propagation of smaller structures inside it. Incoherent Solitons have been found in coexistence with cascade, but for different directions in the Fourier space
Actas de conferencias sobre el tema "1D-NLSE"
Weiss, C. O. y K. Staliunas. "Optical Vortices and Dark Spatial Solitons". En Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.wb4.
Texto completoMcLeod, Robert, Kelvin Wagner y Steve Blair. "Collisions of Stable Spatio-Temporal Solitons". En Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/nlgw.1995.nfa9.
Texto completo