Siga este enlace para ver otros tipos de publicaciones sobre el tema: Β-Trefoil.

Artículos de revistas sobre el tema "Β-Trefoil"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Β-Trefoil".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Longo, Liam M., Rachel Kolodny y Shawn E. McGlynn. "Evidence for the emergence of β-trefoils by ‘Peptide Budding’ from an IgG-like β-sandwich". PLOS Computational Biology 18, n.º 2 (14 de febrero de 2022): e1009833. http://dx.doi.org/10.1371/journal.pcbi.1009833.

Texto completo
Resumen
As sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, β-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If β-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the β-trefoil lineage itself arose de novo. To better understand β-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both ‘β-trefoil bridging themes’ (evolutionarily-related sequence segments) and ‘β-trefoil-like motifs’ (structure motifs with a hallmark feature of the β-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering β-trefoil sequence segments or structure motifs rather than the β-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the β-trefoil fold itself–namely, that it is a derived fold formed by ‘budding’ from an Immunoglobulin-like β-sandwich protein. These results demonstrate how the evolution of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature’s sewing table.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Murzin, Alexey G., Arthur M. Lesk y Cyrus Chothia. "β-Trefoil fold". Journal of Molecular Biology 223, n.º 2 (enero de 1992): 531–43. http://dx.doi.org/10.1016/0022-2836(92)90668-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Valenti, Maria Teresa, Giulia Marchetto, Massimiliano Perduca, Natascia Tiso, Monica Mottes y Luca Dalle Carbonare. "BEL β-Trefoil Reduces the Migration Ability of RUNX2 Expressing Melanoma Cells in Xenotransplanted Zebrafish". Molecules 25, n.º 6 (11 de marzo de 2020): 1270. http://dx.doi.org/10.3390/molecules25061270.

Texto completo
Resumen
RUNX2, a master osteogenic transcript ion factor, is overexpressed in several cancer cells; in melanoma it promotes cells migration and invasion as well as neoangiogenesis. The annual mortality rates related to metastatic melanoma are high and novel agents are needed to improve melanoma patients’ survival. It has been shown that lectins specifically target malignant cells since they present the Thomsen–Friedenreich antigen. This disaccharide is hidden in normal cells, while it allows selective lectins binding in transformed cells. Recently, an edible lectin named BEL β-trefoil has been obtained from the wild mushroom Boletus edulis. Our previous study showed BEL β-trefoil effects on transcription factor RUNX2 downregulation as well as on the migration ability in melanoma cells treated in vitro. Therefore, to better understand the role of this lectin, we investigated the BEL β-trefoil effects in a zebrafish in vivo model, transplanted with human melanoma cells expressing RUNX2. Our data showed that BEL β-trefoil is able to spread in the tissues and to reduce the formation of metastases in melanoma xenotransplanted zebrafish. In conclusion, BEL β-trefoil can be considered an effective biomolecule to counteract melanoma disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Avanzo Caglič, Petra, Miha Renko, Dušan Turk, Janko Kos y Jerica Sabotič. "Fungal β-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the β-trefoil fold". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1844, n.º 10 (octubre de 2014): 1749–56. http://dx.doi.org/10.1016/j.bbapap.2014.07.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Khan, Farha, Devanshu Kurre y K. Suguna. "Crystal structures of a β-trefoil lectin from Entamoeba histolytica in monomeric and a novel disulfide bond-mediated dimeric forms". Glycobiology 30, n.º 7 (21 de enero de 2020): 474–88. http://dx.doi.org/10.1093/glycob/cwaa001.

Texto completo
Resumen
Abstract β-Trefoil lectins are galactose/N-acetyl galactosamine specific lectins, which are widely distributed across all kingdoms of life and are known to perform several important functions. However, there is no report available on the characterization of these lectins from protozoans. We have performed structural and biophysical studies on a β-trefoil lectin from Entamoeba histolytica (EntTref), which exists as a mixture of monomers and dimers in solution. Further, we have determined the affinities of EntTref for rhamnose, galactose and different galactose-linked sugars. We obtained the crystal structure of EntTref in a sugar-free form (EntTref_apo) and a rhamnose-bound form (EntTref_rham). A novel Cys residue-mediated dimerization was revealed in the crystal structure of EntTref_apo while the structure of EntTref_rham provided the structural basis for the recognition of rhamnose by a β-trefoil lectin for the first time. To the best of our knowledge, this is the only report of the structural, functional and biophysical characterization of a β-trefoil lectin from a protozoan source and the first report of Cys-mediated dimerization in this class of lectins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Renko, Miha, Tanja Zupan, David F. Plaza, Stefanie S. Schmieder, Milica Perišić Nanut, Janko Kos, Dušan Turk, Markus Künzler y Jerica Sabotič. "Cocaprins, β-trefoil Fold Inhibitors of Cysteine and Aspartic Proteases from Coprinopsis cinerea". International Journal of Molecular Sciences 23, n.º 9 (28 de abril de 2022): 4916. http://dx.doi.org/10.3390/ijms23094916.

Texto completo
Resumen
We introduce a new family of fungal protease inhibitors with β-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially expressed in fungal tissues. One is highly transcribed in vegetative mycelium and the other in the stipes of mature fruiting bodies. Cocaprins are small proteins (15 kDa) with acidic isoelectric points that form dimers. The three-dimensional structure of cocaprin 1 showed similarity to fungal β-trefoil lectins. Cocaprins inhibit plant C1 family cysteine proteases with Ki in the micromolar range, but do not inhibit the C13 family protease legumain, which distinguishes them from mycocypins. Cocaprins also inhibit the aspartic protease pepsin with Ki in the low micromolar range. Mutagenesis revealed that the β2-β3 loop is involved in the inhibition of cysteine proteases and that the inhibitory reactive sites for aspartic and cysteine proteases are located at different positions on the protein. Their biological function is thought to be the regulation of endogenous proteolytic activities or in defense against fungal antagonists. Cocaprins are the first characterized aspartic protease inhibitors with β-trefoil fold from fungi, and demonstrate the incredible plasticity of loop functionalization in fungal proteins with β-trefoil fold.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Renko, Miha, Jerica Sabotič y Dušan Turk. "β-Trefoil inhibitors – from the work of Kunitz onward". Biological Chemistry 393, n.º 10 (1 de octubre de 2012): 1043–54. http://dx.doi.org/10.1515/hsz-2012-0159.

Texto completo
Resumen
Abstract Protein protease inhibitors are the tools of nature in controlling proteolytic enzymes. They come in different shapes and sizes. The β-trefoil protease inhibitors that come from plants, first discovered by Kunitz, were later complemented with representatives from higher fungi. They inhibit serine (families S1 and S8) and cysteine proteases (families C1 and C13) as well as other hydrolases. Their versatility is the result of the plasticity of the loops coming out of the stable β-trefoil scaffold. For this reason, they display several different mechanisms of inhibition involving different positions of the loops and their combinations. Natural diversity, as well as the initial successes in de novo protein engineering, makes the β-trefoil proteins a promising starting point for the generation of strong, specific, multitarget inhibitors capable of inhibiting multiple types of hydrolytic enzymes and simultaneously interacting with different protein, carbohydrate, or DNA molecules. This pool of knowledge opens up new possibilities for the exploration of their naturally occurring as well as modified properties for applications in many fields of medicine, biotechnology, and agriculture.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Blaber, Michael. "Cooperative hydrophobic core interactions in the β‐trefoil architecture". Protein Science 30, n.º 5 (16 de marzo de 2021): 956–65. http://dx.doi.org/10.1002/pro.4059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fujii, Yuki. "Cell Function Research of β-Trefoil Lectins from Mytilidae". YAKUGAKU ZASSHI 141, n.º 4 (1 de abril de 2021): 481–88. http://dx.doi.org/10.1248/yakushi.20-00215.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Chengsong, Dwayne Chu, Rhonda D. Wideman, R. Scott Houliston, Hannah J. Wong y Elizabeth M. Meiering. "Thermodynamics of Denaturation of Hisactophilin, a β-Trefoil Protein†". Biochemistry 40, n.º 13 (abril de 2001): 3817–27. http://dx.doi.org/10.1021/bi002609i.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Blaber, Michael. "Conserved buried water molecules enable the β‐trefoil architecture". Protein Science 29, n.º 8 (8 de julio de 2020): 1794–802. http://dx.doi.org/10.1002/pro.3899.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Liu, Yang, Arthur J. Chirino, Ziva Misulovin, Christine Leteux, Ten Feizi, Michel C. Nussenzweig y Pamela J. Bjorkman. "Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand". Journal of Experimental Medicine 191, n.º 7 (27 de marzo de 2000): 1105–16. http://dx.doi.org/10.1084/jem.191.7.1105.

Texto completo
Resumen
The macrophage and epithelial cell mannose receptor (MR) binds carbohydrates on foreign and host molecules. Two portions of MR recognize carbohydrates: tandemly arranged C-type lectin domains facilitate carbohydrate-dependent macrophage uptake of infectious organisms, and the NH2-terminal cysteine-rich domain (Cys-MR) binds to sulfated glycoproteins including pituitary hormones. To elucidate the mechanism of sulfated carbohydrate recognition, we determined crystal structures of Cys-MR alone and complexed with 4-sulfated-N-acetylgalactosamine at 1.7 and 2.2 Å resolution, respectively. Cys-MR folds into an approximately three-fold symmetric β-trefoil shape resembling fibroblast growth factor. The sulfate portions of 4-sulfated-N-acetylgalactosamine and an unidentified ligand found in the native crystals bind in a neutral pocket in the third lobe. We use the structures to rationalize the carbohydrate binding specificities of Cys-MR and compare the recognition properties of Cys-MR with other β-trefoil proteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kato, Kimitoshi, Monica C. Chen, Minh Nguyen, Frank S. Lehmann, Daniel K. Podolsky y Andrew H. Soll. "Effects of growth factors and trefoil peptides on migration and replication in primary oxyntic cultures". American Journal of Physiology-Gastrointestinal and Liver Physiology 276, n.º 5 (1 de mayo de 1999): G1105—G1116. http://dx.doi.org/10.1152/ajpgi.1999.276.5.g1105.

Texto completo
Resumen
Restitution, the lateral migration of cells over an intact basement membrane, maintains mucosal integrity. We studied the regulation of migration and proliferation of enzyme-dispersed canine oxyntic mucosa cells in primary culture. Confluent monolayers were wounded and cultured in serum-free medium, and cells migrating into the wound were counted. [3H]thymidine incorporation into DNA was studied using subconfluent cultures. Considerable migration occurred in untreated monolayers; however, epidermal growth factor (EGF), transforming growth factor (TGF)-α, basic fibroblast growth factor (bFGF), insulin-like growth factor I (IGF-I), two trefoil peptides, and interleukin (IL)-1β further enhanced migration. The specific EGF receptor (EGFR) monoclonal antibody, MAb-528, inhibited both basal and TGF-α- or IL-1β-stimulated migration, but not the response to trefoil peptide, bFGF, or IGF-I. Exogenous TGF-β inhibited cell proliferation but did not alter migration. Immunoneutralization with anti-TGF-β blocked the response to exogenous TGF-β and produced a small enhancement of basal thymidine incorporation but did not attenuate basal or TGF-α-stimulated migration. In conclusion, endogenous EGFR ligands regulate proliferation and migration. TGF-β inhibits mitogenesis; it did not upregulate migration in these cultures. Although bFGF, IGF-I, and IL-1β enhance gastric epithelial migration, only IL-1β acted in a TGF-α-dependent fashion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Becker, Argentina, T. R. Kannan, Alexander B. Taylor, Olga N. Pakhomova, Yanfeng Zhang, Sudha R. Somarajan, Ahmad Galaleldeen, Stephen P. Holloway, Joel B. Baseman y P. John Hart. "Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin fromMycoplasma pneumoniae". Proceedings of the National Academy of Sciences 112, n.º 16 (6 de abril de 2015): 5165–70. http://dx.doi.org/10.1073/pnas.1420308112.

Texto completo
Resumen
Mycoplasma pneumoniae(Mp) infections cause tracheobronchitis and “walking” pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. Here we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem β-trefoil domains associate to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal β-trefoil domain. The results enhance our understanding ofMppathogenicity and suggest a novel avenue for the development of therapies to treatMp-associated asthma and other acute and chronic airway diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Lai, Xuelei, Montserrat Soler-Lopez, Wangsa T. Ismaya, Harry J. Wichers y Bauke W. Dijkstra. "Crystal structure of recombinant tyrosinase-binding protein MtaL at 1.35 Å resolution". Acta Crystallographica Section F Structural Biology Communications 72, n.º 3 (19 de febrero de 2016): 244–50. http://dx.doi.org/10.1107/s2053230x16002107.

Texto completo
Resumen
Mushroom tyrosinase-associated lectin-like protein (MtaL) binds to matureAgaricus bisporustyrosinasein vivo, but the exact physiological function of MtaL is unknown. In this study, the crystal structure of recombinant MtaL is reported at 1.35 Å resolution. Comparison of its structure with that of the truncated and cleaved MtaL present in the complex with tyrosinase directly isolated from mushroom shows that the general β-trefoil fold is conserved. However, differences are detected in the loop regions, particularly in the β2–β3 loop, which is intact and not cleaved in the recombinant MtaL. Furthermore, the N-terminal tail is rotated inwards, covering the tyrosinase-binding interface. Thus, MtaL must undergo conformational changes in order to bind mature mushroom tyrosinase. Very interestingly, the β-trefoil fold has been identified to be essential for carbohydrate interaction in other lectin-like proteins. Comparison of the structures of MtaL and a ricin-B-like lectin with a bound disaccharide shows that MtaL may have a similar carbohydrate-binding site that might be involved in glycoreceptor activity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

DʼOdorico, Anna, Mauro Cassaro, Sabina Grillo, Roberta Lazzari, Andrea Buda, Pietro Cardellini, Carlo Sturniolo Giacomo y Massimo Rugge. "Trefoil Peptides, E-cadherin, and β-catenin Expression in Sporadic Fundic Gland Polyps". Applied Immunohistochemistry & Molecular Morphology 17, n.º 5 (octubre de 2009): 431–37. http://dx.doi.org/10.1097/pai.0b013e3181a03188.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Žurga, Simon, Jure Pohleven, Miha Renko, Silvia Bleuler-Martinez, Piotr Sosnowski, Dušan Turk, Markus Künzler, Janko Kos y Jerica Sabotič. "A novel β-trefoil lectin from the parasol mushroom (Macrolepiota procera) is nematotoxic". FEBS Journal 281, n.º 15 (7 de julio de 2014): 3489–506. http://dx.doi.org/10.1111/febs.12875.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ismaya, Wangsa T., Raymond R. Tjandrawinata, Bauke W. Dijkstra, Jaap J. Beintema, Najwa Nabila y Heni Rachmawati. "Relationship of Agaricus bisporus mannose-binding protein to lectins with β-trefoil fold". Biochemical and Biophysical Research Communications 527, n.º 4 (julio de 2020): 1027–32. http://dx.doi.org/10.1016/j.bbrc.2020.05.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Tenorio, Connie A., Joseph B. Parker y Michael Blaber. "Oligomerization of a symmetric β‐trefoil protein in response to folding nucleus perturbation". Protein Science 29, n.º 7 (25 de mayo de 2020): 1629–40. http://dx.doi.org/10.1002/pro.3877.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Christine, Rivat, Rodrigues Sylvie, Bruyneel Erik, Piétu Geneviève, Robert Amélie, Redeuilh Gérard, Bracke Marc, Gespach Christian y Attoub Samir. "Implication of STAT3 Signaling in Human Colonic Cancer Cells during Intestinal Trefoil Factor 3 (TFF3) – and Vascular Endothelial Growth Factor–Mediated Cellular Invasion and Tumor Growth". Cancer Research 65, n.º 1 (1 de enero de 2005): 195–202. http://dx.doi.org/10.1158/0008-5472.195.65.1.

Texto completo
Resumen
Abstract Signal transducer and activator of transcription (STAT) 3 is overexpressed or activated in most types of human tumors and has been classified as an oncogene. In the present study, we investigated the contribution of the STAT3s to the proinvasive activity of trefoil factors (TFF) and vascular endothelial growth factor (VEGF) in human colorectal cancer cells HCT8/S11 expressing VEGF receptors. Both intestinal trefoil peptide (TFF3) and VEGF, but not pS2 (TFF1), activate STAT3 signaling through Tyr705 phosphorylation of both STAT3α and STAT3β isoforms. Blockade of STAT3 signaling by STAT3β, depletion of the STAT3α/β isoforms by RNA interference, and pharmacologic inhibition of STAT3α/β phosphorylation by cucurbitacin or STAT3 inhibitory peptide abrogates TFF- and VEGF-induced cellular invasion and reduces the growth of HCT8/S11 tumor xenografts in athymic mice. Differential gene expression analysis using DNA microarrays revealed that overexpression of STAT3β down-regulates the VEGF receptors Flt-1, neuropilins 1 and 2, and the inhibitor of DNA binding/differentiation (Id-2) gene product involved in the neoplastic transformation. Taken together, our data suggest that TFF3 and the essential tumor angiogenesis regulator VEGF165 exert potent proinvasive activity through STAT3 signaling in human colorectal cancer cells. We also validate new therapeutic strategies targeting STAT3 signaling by pharmacologic inhibitors and RNA interference for the treatment of colorectal cancer patients.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Lorenz, Virginia, Romina B. Cejas, Eric P. Bennett, Gustavo A. Nores y Fernando J. Irazoqui. "Functional control of polypeptide GalNAc-transferase 3 through an acetylation site in the C-terminal lectin domain". Biological Chemistry 398, n.º 11 (26 de octubre de 2017): 1237–46. http://dx.doi.org/10.1515/hsz-2017-0130.

Texto completo
Resumen
AbstractO-GalNAc glycans are important structures in cellular homeostasis. Their biosynthesis is initiated by members of the polypeptide GalNAc-transferase (ppGalNAc-T) enzyme family. Mutations in ppGalNAc-T3 isoform cause diseases (congenital disorders of glycosylation) in humans. The K626 residue located in the C-terminal β-trefoil fold of ppGalNAc-T3 was predicted to be a site with high likelihood of acetylation by CBP/p300 acetyltransferase. We used a site-directed mutagenesis approach to evaluate the role of this acetylation site in biological properties of the enzyme. Two K626 mutants of ppGalNAc-T3 (T3K626Qand T3K626A) had GalNAc-T activities lower than that of wild-type enzyme. Direct and competitive interaction assays revealed that GalNAc recognition by the lectin domain was altered in the mutants. The presence of GlcNAc glycosides affected the interaction of the three enzymes with mucin-derived peptides. In GalNAc-T activity assays, the presence of GlcNAc glycosides significantly inhibited activity of the mutant (T3K626Q) that mimicked acetylation. Our findings, taken together, reveal the crucial role of the K626 residue in the C-terminal β-trefoil fold in biological properties of human ppGalNAc-T3. We propose that acetylated residues on ppGalNAc-T3 function as control points for enzyme activity, and high level of GlcNAc glycosides promote a synergistic regulatory mechanism, leading to a metabolically disordered state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Clyne, Marguerite y Felicity E. B. May. "The Interaction of Helicobacter pylori with TFF1 and Its Role in Mediating the Tropism of the Bacteria Within the Stomach". International Journal of Molecular Sciences 20, n.º 18 (7 de septiembre de 2019): 4400. http://dx.doi.org/10.3390/ijms20184400.

Texto completo
Resumen
Helicobacter pylori colonises the human stomach and has tropism for the gastric mucin, MUC5AC. The majority of organisms live in the adherent mucus layer within their preferred location, close to the epithelial surface where the pH is near neutral. Trefoil factor 1 (TFF1) is a small trefoil protein co-expressed with the gastric mucin MUC5AC in surface foveolar cells and co-secreted with MUC5AC into gastric mucus. Helicobacter pylori binds with greater avidity to TFF1 dimer, which is present in gastric mucus, than to TFF1 monomer. Binding of H. pylori to TFF1 is mediated by the core oligosaccharide subunit of H. pylori lipopolysaccharide at pH 5.0–6.0. Treatment of H. pylori lipopolysaccharide with mannosidase or glucosidase inhibits its interaction with TFF1. Both TFF1 and H. pylori have a propensity for binding to mucins with terminal non-reducing α- or β-linked N-acetyl-d-glucosamine or α-(2,3) linked sialic acid or Gal-3-SO42−. These findings are strong evidence that TFF1 has carbohydrate-binding properties that may involve a conserved patch of aromatic hydrophobic residues on the surface of its trefoil domain. The pH-dependent lectin properties of TFF1 may serve to locate H. pylori deep in the gastric mucus layer close to the epithelium rather than at the epithelial surface. This restricted localisation could limit the interaction of H. pylori with epithelial cells and the subsequent host signalling events that promote inflammation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Barrera Roa, Jose, Gabiela Sanchez Tortolero y Emanuele Gonzalez. "Trefoil factor 3 (TFF3) expression is regulated by insulin and glucose". Journal of Health Sciences 3, n.º 1 (15 de abril de 2013): 1–12. http://dx.doi.org/10.17532/jhsci.2013.26.

Texto completo
Resumen
Introduction: Trefoil factors are effector molecules in gastrointestinal tract physiology. They are classified into three groups: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Previous studies have shown that trefoil factors are located and expressed in human endocrine pancreas suggesting that TFF3 play a role in: a) pancreatic cells migration, b) β-cell mitosis, and c) pancreatic cells regeneration. We speculated that the presence of TFF3 in pancreas, could be associated to a possible regulation mechanism by insulin and glucose. To date, there are not reports whether the unbalance in carbohydrate metabolism observed in diabetes could affect the production or expression of TFF3.Methods: We determined the TFF3 levels and expression by immunoassay (ELISA) and semi-quantitative RT-PCR technique respectively, of intestinal epithelial cells (HT-29) treated with glucose and insulin. Also,Real Time-PCR (RTq-PCR) was done.Results: Increasing concentrations of glucose improved TFF3 expression and these levels were further elevated after insulin treatment. Insulin treatment also led to the up-regulation of human sodium/glucose transporter 1 (hSGLT1), which further increases intracellular glucose levels. Finally, we investigated theTFF3 levels in serum of diabetes mellitus type 1 (T1DM) and healthy patients. Here we shown that serum TFF3 levels were down-regulated in T1DM and this levels were up-regulated after insulin treatment. Also, the TFF3 levels of healthy donors were up-regulated 2 h after breakfast.Conclusion: Our fi ndings suggest for the fi rst time that insulin signaling is important for TFF3 optimal expression in serum and intestinal epithelial cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Fujii, Yuki, Marco Gerdol, Imtiaj Hasan, Yasuhiro Koide, Risa Matsuzaki, Mayu Ikeda, Sultana Rajia, Yukiko Ogawa, S. M. Abe Kawsar y Yasuhiro Ozeki. "Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels". Trends in Glycoscience and Glycotechnology 30, n.º 177 (25 de noviembre de 2018): E195—E208. http://dx.doi.org/10.4052/tigg.1717.1e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Fujii, Yuki, Marco Gerdol, Imtiaj Hasan, Yasuhiro Koide, Risa Matsuzaki, Mayu Ikeda, Sultana Rajia, Yukiko Ogawa, S. M. Abe Kawsar y Yasuhiro Ozeki. "Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels". Trends in Glycoscience and Glycotechnology 30, n.º 177 (25 de noviembre de 2018): J155—J168. http://dx.doi.org/10.4052/tigg.1717.1j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Liu, Chengsong, Joe A. Gaspar, Hannah J. Wong y Elizabeth M. Meiering. "Conserved and nonconserved features of the folding pathway of hisactophilin, a β-trefoil protein". Protein Science 11, n.º 3 (13 de abril de 2009): 669–79. http://dx.doi.org/10.1110/ps.31702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Azarkan, Mohamed, Sergio Martinez-Rodriguez, Lieven Buts, Danielle Baeyens-Volant y Abel Garcia-Pino. "The Plasticity of the β-Trefoil Fold Constitutes an Evolutionary Platform for Protease Inhibition". Journal of Biological Chemistry 286, n.º 51 (25 de octubre de 2011): 43726–34. http://dx.doi.org/10.1074/jbc.m111.291310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Perduca, Massimiliano, Luca Dalle Carbonare, Michele Bovi, Giulio Innamorati, Samuele Cheri, Chiara Cavallini, Maria Teresa Scupoli, Antonio Mori y Maria Teresa Valenti. "Runx2 downregulation, migration and proliferation inhibition in melanoma cells treated with BEL β-trefoil". Oncology Reports 37, n.º 4 (marzo de 2017): 2209–14. http://dx.doi.org/10.3892/or.2017.5493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

IWAKIRI, MASAHIDE. "CALCULATION OF DIHEDRAL QUANDLE COCYCLE INVARIANTS OF TWIST SPUN 2-BRIDGE KNOTS". Journal of Knot Theory and Its Ramifications 14, n.º 02 (marzo de 2005): 217–29. http://dx.doi.org/10.1142/s0218216505003798.

Texto completo
Resumen
Carter, Jelsovsky, Kamada, Langford and Saito introduced the quandle cocycle invariants of 2-knots, and calculated the cocycle invariant of a 2-twist-spun trefoil knot associated with a 3-cocycle of the dihedral quandle of order 3. Asami and Satoh calculated the cocycle invariants of twist-spun torus knots τrT(m,n) associated with 3-cocycles of some dihedral quandles. They used tangle diagrams of the torus knots. In this paper, we calculate the cocycle invariants of twist-spun 2-bridge knots τrS(α,β) by a similar method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Orime, Kazuki, Jun Shirakawa, Yu Togashi, Kazuki Tajima, Hideaki Inoue, Yuzuru Ito, Koichiro Sato et al. "Trefoil Factor 2 Promotes Cell Proliferation in Pancreatic β-Cells through CXCR-4-Mediated ERK1/2 Phosphorylation". Endocrinology 154, n.º 1 (1 de enero de 2013): 54–64. http://dx.doi.org/10.1210/en.2012-1814.

Texto completo
Resumen
Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Žurga, Simon, Jure Pohleven, Janko Kos y Jerica Sabotič. "β-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions". Journal of Biochemistry 158, n.º 1 (4 de marzo de 2015): 83–90. http://dx.doi.org/10.1093/jb/mvv025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Mukherjee, Amarshi, Sreerupa Ganguly, Nabendu S. Chatterjee y Kalyan K. Banerjee. "Vibrio cholerae hemolysin: The β-trefoil domain is required for folding to the native conformation". Biochemistry and Biophysics Reports 8 (diciembre de 2016): 242–48. http://dx.doi.org/10.1016/j.bbrep.2016.09.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Lee, Jihun, Sachiko I. Blaber, Vikash K. Dubey y Michael Blaber. "A Polypeptide “Building Block” for the β-Trefoil Fold Identified by “Top-Down Symmetric Deconstruction”". Journal of Molecular Biology 407, n.º 5 (abril de 2011): 744–63. http://dx.doi.org/10.1016/j.jmb.2011.02.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ochiai, Yosuke, Junpei Yamaguchi, Toshio Kokuryo, Yukihiro Yokoyama, Tomoki Ebata y Masato Nagino. "Trefoil Factor Family 1 Inhibits the Development of Hepatocellular Carcinoma by Regulating β‐Catenin Activation". Hepatology 72, n.º 2 (22 de marzo de 2020): 503–17. http://dx.doi.org/10.1002/hep.31039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yu, Da-Zhong, Ya-Nan Yu, Zi-Bin Tian, Qing-Xi Zhao, Xin-Juan Kong, Cui-Ping Zhang y Liang-Zhou Wei. "Expression of trefoil factor family-3 and β-catenin in different types of colorectal mucosal lesions". World Chinese Journal of Digestology 19, n.º 15 (2011): 1579. http://dx.doi.org/10.11569/wcjd.v19.i15.1579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Bønsager, Birgit C., Peter K. Nielsen, Maher Abou Hachem, Kenji Fukuda, Mette Prætorius-Ibba y Birte Svensson. "Mutational Analysis of Target Enzyme Recognition of the β-Trefoil Fold Barley α-Amylase/Subtilisin Inhibitor". Journal of Biological Chemistry 280, n.º 15 (18 de enero de 2005): 14855–64. http://dx.doi.org/10.1074/jbc.m412222200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wlodawer, Alexander, Jacek Lubkowski, Alla Gustchina, Dongwen Zhou, Michal Jakob, Barry R. O'Keefe, Rodrigo da Silva Ferreira, Yara A. Lobo, Daiane Hansen y Maria L. V. Oliva. "Structural studies of medically-interesting protease inhibitors and lectins that belong to the β-trefoil family". Acta Crystallographica Section A Foundations and Advances 72, a1 (28 de agosto de 2016): s33. http://dx.doi.org/10.1107/s2053273316099484.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Fueger, Patrick T., Jonathan C. Schisler, Danhong Lu, Daniella A. Babu, Raghavendra G. Mirmira, Christopher B. Newgard y Hans E. Hohmeier. "Trefoil Factor 3 Stimulates Human and Rodent Pancreatic Islet β-Cell Replication with Retention of Function". Molecular Endocrinology 22, n.º 5 (1 de mayo de 2008): 1251–59. http://dx.doi.org/10.1210/me.2007-0500.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Houliston, R. Scott, Chengsong Liu, Laila M. R. Singh y Elizabeth M. Meiering. "pH and Urea Dependence of Amide Hydrogen−Deuterium Exchange Rates in the β-Trefoil Protein Hisactophilin†". Biochemistry 41, n.º 4 (enero de 2002): 1182–94. http://dx.doi.org/10.1021/bi0115838.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bai, Lu, Jonghoon Kim, Kwang-Hee Son, Dong-Ha Shin, Bon-Hwan Ku, Do Young Kim y Ho-Yong Park. "Novel Anti-Fungal d-Laminaripentaose-Releasing Endo-β-1,3-glucanase with a RICIN-like Domain from Cellulosimicrobium funkei HY-13". Biomolecules 11, n.º 8 (22 de julio de 2021): 1080. http://dx.doi.org/10.3390/biom11081080.

Texto completo
Resumen
Endo-β-1,3-glucanase plays an essential role in the deconstruction of β-1,3-d-glucan polysaccharides through hydrolysis. The gene (1650-bp) encoding a novel, bi-modular glycoside hydrolase family 64 (GH64) endo-β-1,3-glucanase (GluY) with a ricin-type β-trefoil lectin domain (RICIN)-like domain from Cellulosimicrobium funkei HY-13 was identified and biocatalytically characterized. The recombinant enzyme (rGluY: 57.5 kDa) displayed the highest degradation activity for laminarin at pH 4.5 and 40 °C, while the polysaccharide was maximally decomposed by its C-terminal truncated mutant enzyme (rGluYΔRICIN: 42.0 kDa) at pH 5.5 and 45 °C. The specific activity (26.0 U/mg) of rGluY for laminarin was 2.6-fold higher than that (9.8 U/mg) of rGluYΔRICIN for the same polysaccharide. Moreover, deleting the C-terminal RICIN domain in the intact enzyme caused a significant decrease (>60%) of its ability to degrade β-1,3-d-glucans such as pachyman and curdlan. Biocatalytic degradation of β-1,3-d-glucans by inverting rGluY yielded predominantly d-laminaripentaose. rGluY exhibited stronger growth inhibition against Candida albicans in a dose-dependent manner than rGluYΔRICIN. The degree of growth inhibition of C. albicans by rGluY (approximately 1.8 μM) was approximately 80% of the fungal growth. The superior anti-fungal activity of rGluY suggests that it can potentially be exploited as a supplementary agent in the food and pharmaceutical industries.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chikalovets, Irina, Alina Filshtein, Valentina Molchanova, Tatyana Mizgina, Pavel Lukyanov, Olga Nedashkovskaya, Kuo-Feng Hua y Oleg Chernikov. "Activity Dependence of a Novel Lectin Family on Structure and Carbohydrate-Binding Properties". Molecules 25, n.º 1 (30 de diciembre de 2019): 150. http://dx.doi.org/10.3390/molecules25010150.

Texto completo
Resumen
A GalNAc/Gal-specific lectins named CGL and MTL were isolated and characterized from the edible mussels Crenomytilus grayanus and Mytilus trossulus. Amino acid sequence analysis of these lectins showed that they, together with another lectin MytiLec-1, formed a novel lectin family, adopting β-trefoil fold. In this mini review we discuss the structure, oligomerization, and carbohydrate-binding properties of a novel lectin family. We describe also the antibacterial, antifungal, and antiproliferative activities of these lectins and report about dependence of activities on molecular properties. Summarizing, CGL, MTL, and MytiLec-1 could be involved in the immunity in mollusks and may become a basis for the elaboration of new diagnostic tools or treatments for a variety of cancers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Tenorio, Connie A., Liam M. Longo, Joseph B. Parker, Jihun Lee y Michael Blaber. "Ab initio folding of a trefoil‐fold motif reveals structural similarity with a β‐propeller blade motif". Protein Science 29, n.º 5 (25 de marzo de 2020): 1172–85. http://dx.doi.org/10.1002/pro.3850.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Best, Hannah L., Lainey J. Williamson, Magdalena Lipka-Lloyd, Helen Waller-Evans, Emyr Lloyd-Evans, Pierre J. Rizkallah y Colin Berry. "The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids". Toxins 14, n.º 12 (8 de diciembre de 2022): 863. http://dx.doi.org/10.3390/toxins14120863.

Texto completo
Resumen
Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal β-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Acebrón, Iván, Amalia G. Ruiz-Estrada, Yurena Luengo, María del Puerto Morales, José Manuel Guisán y José Miguel Mancheño. "Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β-Trefoil Lectin Domain". Bioconjugate Chemistry 27, n.º 11 (3 de noviembre de 2016): 2734–43. http://dx.doi.org/10.1021/acs.bioconjchem.6b00504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bønsager, Birgit C., Mette Prætorius-Ibba, Peter K. Nielsen y Birte Svensson. "Purification and characterization of the β-trefoil fold protein barley α-amylase/subtilisin inhibitor overexpressed in Escherichia coli". Protein Expression and Purification 30, n.º 2 (agosto de 2003): 185–93. http://dx.doi.org/10.1016/s1046-5928(03)00103-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Hatakeyama, Tomomitsu, Hideaki Unno, Yoshiaki Kouzuma, Tatsuya Uchida, Seiichiro Eto, Haruki Hidemura, Norihisa Kato, Masami Yonekura y Masami Kusunoki. "C-type Lectin-like Carbohydrate Recognition of the Hemolytic Lectin CEL-III Containing Ricin-type β-Trefoil Folds". Journal of Biological Chemistry 282, n.º 52 (31 de octubre de 2007): 37826–35. http://dx.doi.org/10.1074/jbc.m705604200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Acebrón, Iván, María Asunción Campanero-Rhodes, Dolores Solís, Margarita Menéndez, Carolina García, M. Pilar Lillo y José M. Mancheño. "Atomic crystal structure and sugar specificity of a β-trefoil lectin domain from the ectomycorrhizal basidiomycete Laccaria bicolor". International Journal of Biological Macromolecules 233 (abril de 2023): 123507. http://dx.doi.org/10.1016/j.ijbiomac.2023.123507.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Jakób, Michał, Jacek Lubkowski, Barry R. O'Keefe y Alexander Wlodawer. "Structure of a lectin from the sea musselCrenomytilus grayanus(CGL)". Acta Crystallographica Section F Structural Biology Communications 71, n.º 11 (24 de octubre de 2015): 1429–36. http://dx.doi.org/10.1107/s2053230x15019858.

Texto completo
Resumen
CGL is a 150 amino-acid residue lectin that was originally isolated from the sea musselCrenomytilus grayanus. It is specific for binding GalNAc/Gal-containing carbohydrate moieties and in general does not share sequence homology with other known galectins or lectins. Since CGL displays antibacterial, antifungal and antiviral activities, and interacts with high affinity with mucin-type receptors, which are abundant on some cancer cells, knowledge of its structure is of significant interest. Conditions have been established for the expression, purification and crystallization of a recombinant variant of CGL. The crystal structure of recombinant CGL was determined and refined at a resolution of 2.12 Å. The amino-acid sequence of CGL contains three homologous regions (73% similarity) and the folded protein has a β-trefoil topology. Structural comparison of CGL with the closely related lectin MytiLec allowed description of the glycan-binding pockets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ravichandran, S., U. Sen, C. Chakrabarti y J. K. Dattagupta. "Cryocrystallography of a Kunitz-type serine protease inhibitor: the 90 K structure of winged bean chymotrypsin inhibitor (WCI) at 2.13 Å resolution". Acta Crystallographica Section D Biological Crystallography 55, n.º 11 (1 de noviembre de 1999): 1814–21. http://dx.doi.org/10.1107/s0907444999009877.

Texto completo
Resumen
The crystal structure of a Kunitz-type double-headed α-chymotrypsin inhibitor from winged bean seeds has been refined at 2.13 Å resolution using data collected from cryo-cooled (90 K) crystals which belong to the hexagonal space group P6122 with unit-cell parameters a = b = 60.84, c = 207.91 Å. The volume of the unit cell is reduced by 5.3% on cooling. The refinement converged to an R value of 20.0% (R free = 25.8%) for 11100 unique reflections and the model shows good stereochemistry, with r.m.s. deviations from ideal values for bond lengths and bond angles of 0.011 Å and 1.4°, respectively. The structural architecture of the protein consists of 12 antiparallel β-strands joined in the form of a characteristic β-trefoil fold, with the two reactive-site regions, Asn38–Leu43 and Gln63–Phe68, situated on two external loops. Although the overall protein fold is the same as that of the room-temperature model, some conformational changes are observed in the loop regions and in the side chains of a few surface residues. A total of 176 ordered water molecules and five sulfate ions are included in the model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

FUJIMOTO, Zui. "Structure and Function of Carbohydrate-Binding Module Families 13 and 42 of Glycoside Hydrolases, Comprising a β-Trefoil Fold". Bioscience, Biotechnology, and Biochemistry 77, n.º 7 (23 de julio de 2013): 1363–71. http://dx.doi.org/10.1271/bbb.130183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía