Artículos de revistas sobre el tema "Β-amyloid structures"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Β-amyloid structures".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Taguchi, Yuzuru, Hiroki Otaki y Noriyuki Nishida. "Mechanisms of Strain Diversity of Disease-Associated in-Register Parallel β-Sheet Amyloids and Implications About Prion Strains". Viruses 11, n.º 2 (28 de enero de 2019): 110. http://dx.doi.org/10.3390/v11020110.
Texto completoChatani, Eri, Keisuke Yuzu, Yumiko Ohhashi y Yuji Goto. "Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils". International Journal of Molecular Sciences 22, n.º 9 (21 de abril de 2021): 4349. http://dx.doi.org/10.3390/ijms22094349.
Texto completoPaulus, Agnes, Anders Engdahl, Yiyi Yang, Antonio Boza-Serrano, Sara Bachiller, Laura Torres-Garcia, Alexander Svanbergsson et al. "Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer’s Disease". International Journal of Molecular Sciences 22, n.º 7 (26 de marzo de 2021): 3430. http://dx.doi.org/10.3390/ijms22073430.
Texto completoSulatskaya, Anna I., Anastasiia O. Kosolapova, Alexander G. Bobylev, Mikhail V. Belousov, Kirill S. Antonets, Maksim I. Sulatsky, Irina M. Kuznetsova, Konstantin K. Turoverov, Olesya V. Stepanenko y Anton A. Nizhnikov. "β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis". International Journal of Molecular Sciences 22, n.º 21 (20 de octubre de 2021): 11316. http://dx.doi.org/10.3390/ijms222111316.
Texto completoAlperstein, Ariel M., Joshua S. Ostrander, Tianqi O. Zhang y Martin T. Zanni. "Amyloid found in human cataracts with two-dimensional infrared spectroscopy". Proceedings of the National Academy of Sciences 116, n.º 14 (20 de marzo de 2019): 6602–7. http://dx.doi.org/10.1073/pnas.1821534116.
Texto completoFreitas, Raul O., Adrian Cernescu, Anders Engdahl, Agnes Paulus, João E. Levandoski, Isak Martinsson, Elke Hebisch et al. "Nano-Infrared Imaging of Primary Neurons". Cells 10, n.º 10 (27 de septiembre de 2021): 2559. http://dx.doi.org/10.3390/cells10102559.
Texto completoYu, Xiang y Jie Zheng. "Polymorphic Structures of Alzheimer's β-Amyloid Globulomers". PLoS ONE 6, n.º 6 (7 de junio de 2011): e20575. http://dx.doi.org/10.1371/journal.pone.0020575.
Texto completoYakupova, Elmira I., Liya G. Bobyleva, Sergey A. Shumeyko, Ivan M. Vikhlyantsev y Alexander G. Bobylev. "Amyloids: The History of Toxicity and Functionality". Biology 10, n.º 5 (1 de mayo de 2021): 394. http://dx.doi.org/10.3390/biology10050394.
Texto completoTycko, Robert. "Molecular structure of amyloid fibrils: insights from solid-state NMR". Quarterly Reviews of Biophysics 39, n.º 1 (febrero de 2006): 1–55. http://dx.doi.org/10.1017/s0033583506004173.
Texto completoFlynn, Jessica D. y Jennifer C. Lee. "Raman fingerprints of amyloid structures". Chemical Communications 54, n.º 51 (2018): 6983–86. http://dx.doi.org/10.1039/c8cc03217c.
Texto completoMakshakova, Olga N., Liliya R. Bogdanova, Dzhigangir A. Faizullin, Elena A. Ermakova y Yuriy F. Zuev. "Sulfated Polysaccharides as a Fighter with Protein Non-Physiological Aggregation: The Role of Polysaccharide Flexibility and Charge Density". International Journal of Molecular Sciences 24, n.º 22 (12 de noviembre de 2023): 16223. http://dx.doi.org/10.3390/ijms242216223.
Texto completoHewetson, Aveline, Nazmul H. Khan, Matthew J. Dominguez, Hoa Quynh Do, R. E. Kusko, Collin G. Borcik, Daniel J. Rigden et al. "Maturation of the functional mouse CRES amyloid from globular form". Proceedings of the National Academy of Sciences 117, n.º 28 (29 de junio de 2020): 16363–72. http://dx.doi.org/10.1073/pnas.2006887117.
Texto completoBalobanov, Vitalii, Rita Chertkova, Anna Egorova, Dmitry Dolgikh, Valentina Bychkova y Mikhail Kirpichnikov. "The Kinetics of Amyloid Fibril Formation by de Novo Protein Albebetin and Its Mutant Variants". Biomolecules 10, n.º 2 (5 de febrero de 2020): 241. http://dx.doi.org/10.3390/biom10020241.
Texto completoLeVine, Harry. "Thioflavine T interaction with amyloid β-sheet structures". Amyloid 2, n.º 1 (enero de 1995): 1–6. http://dx.doi.org/10.3109/13506129509031881.
Texto completoFändrich, Marcus, Matthias Schmidt y Nikolaus Grigorieff. "Recent progress in understanding Alzheimer's β-amyloid structures". Trends in Biochemical Sciences 36, n.º 6 (junio de 2011): 338–45. http://dx.doi.org/10.1016/j.tibs.2011.02.002.
Texto completoWickner, Reed B., Herman K. Edskes, David A. Bateman, Amy C. Kelly, Anton Gorkovskiy, Yaron Dayani y Albert Zhou. "Amyloid diseases of yeast: prions are proteins acting as genes". Essays in Biochemistry 56 (18 de agosto de 2014): 193–205. http://dx.doi.org/10.1042/bse0560193.
Texto completoOkumura, Hisashi y Satoru G. Itoh. "Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation". Molecules 27, n.º 8 (12 de abril de 2022): 2483. http://dx.doi.org/10.3390/molecules27082483.
Texto completoGorman, Paul M. y Avijit Chakrabartty. "Alzheimer β-amyloid peptides: Structures of amyloid fibrils and alternate aggregation products". Biopolymers 60, n.º 5 (2001): 381. http://dx.doi.org/10.1002/1097-0282(2001)60:5<381::aid-bip10173>3.0.co;2-u.
Texto completoChimon, Sandra, Medhat A. Shaibat, Christopher R. Jones, Diana C. Calero, Buzulagu Aizezi y Yoshitaka Ishii. "Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid". Nature Structural & Molecular Biology 14, n.º 12 (diciembre de 2007): 1157–64. http://dx.doi.org/10.1038/nsmb1345.
Texto completoWillem, Michael y Marcus Fändrich. "A molecular view of human amyloid-β folds". Science 375, n.º 6577 (14 de enero de 2022): 147–48. http://dx.doi.org/10.1126/science.abn5428.
Texto completoDaskalov, Asen, Denis Martinez, Virginie Coustou, Nadia El Mammeri, Mélanie Berbon, Loren B. Andreas, Benjamin Bardiaux et al. "Structural and molecular basis of cross-seeding barriers in amyloids". Proceedings of the National Academy of Sciences 118, n.º 1 (21 de diciembre de 2020): e2014085118. http://dx.doi.org/10.1073/pnas.2014085118.
Texto completoRoterman, Irena, Katarzyna Stapor y Leszek Konieczny. "Secondary Structure in Amyloids in Relation to Their Wild Type Forms". International Journal of Molecular Sciences 24, n.º 1 (21 de diciembre de 2022): 154. http://dx.doi.org/10.3390/ijms24010154.
Texto completoSerpell, Louise. "Amyloid structure". Essays in Biochemistry 56 (18 de agosto de 2014): 1–10. http://dx.doi.org/10.1042/bse0560001.
Texto completoUrban, Jennifer M., Janson Ho, Gavin Piester, Riqiang Fu y Bradley L. Nilsson. "Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly". Molecules 24, n.º 10 (23 de mayo de 2019): 1983. http://dx.doi.org/10.3390/molecules24101983.
Texto completoTJERNBERG, Lars O., Agneta TJERNBERG, Niklas BARK, Yuan SHI, Bela P. RUZSICSKA, Zimei BU, Johan THYBERG y David J. E. CALLAWAY. "Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment". Biochemical Journal 366, n.º 1 (15 de agosto de 2002): 343–51. http://dx.doi.org/10.1042/bj20020229.
Texto completoJara-Moreno, Daniela, Ana L. Riveros, Andrés Barriga, Marcelo J. Kogan y Carla Delporte. "Inhibition of β-amyloid Aggregation of Ugni molinae Extracts". Current Pharmaceutical Design 26, n.º 12 (6 de mayo de 2020): 1365–76. http://dx.doi.org/10.2174/1381612826666200113160840.
Texto completoTavanti, Francesco, Alfonso Pedone y Maria Cristina Menziani. "Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange Molecular Dynamics Simulations". International Journal of Molecular Sciences 22, n.º 1 (22 de diciembre de 2020): 26. http://dx.doi.org/10.3390/ijms22010026.
Texto completoPellegrino, S., N. Tonali, E. Erba, J. Kaffy, M. Taverna, A. Contini, M. Taylor, D. Allsop, M. L. Gelmi y S. Ongeri. "β-Hairpin mimics containing a piperidine–pyrrolidine scaffold modulate the β-amyloid aggregation process preserving the monomer species". Chemical Science 8, n.º 2 (2017): 1295–302. http://dx.doi.org/10.1039/c6sc03176e.
Texto completoWestlind-Danielsson, Anita y Gunnel Arnerup. "Spontaneous in Vitro Formation of Supramolecular β-Amyloid Structures, “βamy Balls”, by β-Amyloid 1−40 Peptide†". Biochemistry 40, n.º 49 (diciembre de 2001): 14736–43. http://dx.doi.org/10.1021/bi010375c.
Texto completoMurakoshi, Yuko, Tsuyoshi Takahashi y Hisakazu Mihara. "Modification of a Small β-Barrel Protein, To Give Pseudo-Amyloid Structures, Inhibits Amyloid β-Peptide Aggregation". Chemistry - A European Journal 19, n.º 14 (1 de febrero de 2013): 4525–31. http://dx.doi.org/10.1002/chem.201202762.
Texto completoAlmeida, Zaida L. y Rui M. M. Brito. "Amyloid Disassembly: What Can We Learn from Chaperones?" Biomedicines 10, n.º 12 (17 de diciembre de 2022): 3276. http://dx.doi.org/10.3390/biomedicines10123276.
Texto completoTycko, Robert, Kimberly L. Sciarretta, Joseph P. R. O. Orgel y Stephen C. Meredith. "Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils". Biochemistry 48, n.º 26 (7 de julio de 2009): 6072–84. http://dx.doi.org/10.1021/bi9002666.
Texto completoZhizhin, Gennadiy Vladimirovich. "On the Possible Spatial Structures of the β-Amyloid". International Journal of Applied Research on Public Health Management 7, n.º 1 (enero de 2022): 1–8. http://dx.doi.org/10.4018/ijarphm.290380.
Texto completoPham, Johnny D., Nicholas Chim, Celia W. Goulding y James S. Nowick. "Structures of Oligomers of a Peptide from β-Amyloid". Journal of the American Chemical Society 135, n.º 33 (8 de agosto de 2013): 12460–67. http://dx.doi.org/10.1021/ja4068854.
Texto completoMuvva, Charuvaka, Natarajan Arul Murugan y Venkatesan Subramanian. "Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations". International Journal of Molecular Sciences 22, n.º 6 (23 de marzo de 2021): 3244. http://dx.doi.org/10.3390/ijms22063244.
Texto completoFolmert, Kristin, Malgorzata Broncel, Hans v. Berlepsch, Christopher Hans Ullrich, Mary-Ann Siegert y Beate Koksch. "Inhibition of peptide aggregation by means of enzymatic phosphorylation". Beilstein Journal of Organic Chemistry 12 (18 de noviembre de 2016): 2462–70. http://dx.doi.org/10.3762/bjoc.12.240.
Texto completoÁbrahám, Ágnes, Flavio Massignan, Gergő Gyulai, Miklós Katona, Nóra Taricska y Éva Kiss. "Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms". International Journal of Molecular Sciences 23, n.º 21 (30 de octubre de 2022): 13219. http://dx.doi.org/10.3390/ijms232113219.
Texto completoPusara, Srdjan. "Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides". International Journal of Molecular Sciences 25, n.º 9 (25 de abril de 2024): 4660. http://dx.doi.org/10.3390/ijms25094660.
Texto completoSønderby, Thorbjørn Vincent, Zahra Najarzadeh y Daniel Erik Otzen. "Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies". Molecules 27, n.º 13 (24 de junio de 2022): 4080. http://dx.doi.org/10.3390/molecules27134080.
Texto completoMorris, Kyle L., Alison Rodger, Matthew R. Hicks, Maya Debulpaep, Joost Schymkowitz, Frederic Rousseau y Louise C. Serpell. "Exploring the sequence–structure relationship for amyloid peptides". Biochemical Journal 450, n.º 2 (15 de febrero de 2013): 275–83. http://dx.doi.org/10.1042/bj20121773.
Texto completoLee, Myungwoon, Tuo Wang, Olga V. Makhlynets, Yibing Wu, Nicholas F. Polizzi, Haifan Wu, Pallavi M. Gosavi et al. "Zinc-binding structure of a catalytic amyloid from solid-state NMR". Proceedings of the National Academy of Sciences 114, n.º 24 (31 de mayo de 2017): 6191–96. http://dx.doi.org/10.1073/pnas.1706179114.
Texto completoLipke, Peter N., Marion Mathelié-Guinlet, Albertus Viljoen y Yves F. Dufrêne. "A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds". Pathogens 10, n.º 8 (11 de agosto de 2021): 1013. http://dx.doi.org/10.3390/pathogens10081013.
Texto completoDiaferia, Carlo, Nicole Balasco, Davide Altamura, Teresa Sibillano, Enrico Gallo, Valentina Roviello, Cinzia Giannini, Giancarlo Morelli, Luigi Vitagliano y Antonella Accardo. "Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends". Soft Matter 14, n.º 40 (2018): 8219–30. http://dx.doi.org/10.1039/c8sm01441h.
Texto completoFlores-Fernández, José, Vineet Rathod y Holger Wille. "Comparing the Folds of Prions and Other Pathogenic Amyloids". Pathogens 7, n.º 2 (4 de mayo de 2018): 50. http://dx.doi.org/10.3390/pathogens7020050.
Texto completoLomarat, Pattamapan, Sirirat Chancharunee, Natthinee Anantachoke, Worawan Kitphati, Kittisak Sripha y Nuntavan Bunyapraphatsara. "Bioactivity-guided Separation of the Active Compounds in Acacia Pennata Responsible for the Prevention of Alzheimer's Disease". Natural Product Communications 10, n.º 8 (agosto de 2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000830.
Texto completoCohen, Mark L., Chae Kim, Tracy Haldiman, Mohamed ElHag, Prachi Mehndiratta, Termsarasab Pichet, Frances Lissemore et al. "Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β". Brain 138, n.º 4 (13 de febrero de 2015): 1009–22. http://dx.doi.org/10.1093/brain/awv006.
Texto completoDarling, April L. y James Shorter. "Atomic Structures of Amyloid-β Oligomers Illuminate a Neurotoxic Mechanism". Trends in Neurosciences 43, n.º 10 (octubre de 2020): 740–43. http://dx.doi.org/10.1016/j.tins.2020.07.006.
Texto completoKim, S. T. y D. F. Weaver. "Theoretical studies on Alzheimer's disease: structures of β-amyloid aggregates". Journal of Molecular Structure: THEOCHEM 527, n.º 1-3 (agosto de 2000): 127–38. http://dx.doi.org/10.1016/s0166-1280(00)00485-1.
Texto completoGallardo, Rodrigo, Neil A. Ranson y Sheena E. Radford. "Amyloid structures: much more than just a cross-β fold". Current Opinion in Structural Biology 60 (febrero de 2020): 7–16. http://dx.doi.org/10.1016/j.sbi.2019.09.001.
Texto completoYagi-Utsumi, Maho y Koichi Kato. "Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates". Molecules 27, n.º 15 (26 de julio de 2022): 4787. http://dx.doi.org/10.3390/molecules27154787.
Texto completo