Academic literature on the topic 'Штучні нейроні мережі'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Штучні нейроні мережі.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Штучні нейроні мережі"

1

Бажинов, О., Р. Заверуха та Т. Бажинов. "Інформаційна комплексна система діагностики гібридних і електромобілів". Науковий журнал «Інженерія природокористування», № 2(16) (1 грудня 2020): 12–18. http://dx.doi.org/10.37700/enm.2020.2(16).12-18.

Full text
Abstract:
Розглянуто штучні нейроні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. Отримано метод діагностики технічного стану силової установки, який використовує штучні нейронні мережі та системи нечіткого висновку для визначення технічного стану ДВЗ та тягової акумуляторної батареї.Метою роботи є підвищення ефективності діагностики функціональних систем гібридного та електромобіля шляхом оперативного синтезу управляючих впливів за енергетичними і якісними критеріями з урахува
APA, Harvard, Vancouver, ISO, and other styles
2

Pogrebnyak, S. V., та O. O. Vodka. "Моделювання механічної поведінки еластомірних матеріалів за допомогою штучної нейронної мережі". Scientific Bulletin of UNFU 28, № 11 (2018): 130–34. http://dx.doi.org/10.15421/40281123.

Full text
Abstract:
У ХХІ ст. нейронні мережі широко використовують у різних сферах, зокрема в комп'ютерному моделюванні та механіці. Така популярність через те, що вони дають високу точність, швидко працюють та мають дуже широкий спектр налаштувань. Створено програмний продукт із використанням елементів штучного інтелекту для інтерполяції та апроксимації експериментальних даних. Програмне забезпечення повинно коректно працювати та давати результати з мінімальною похибкою. Інструментом розв'язання задачі було використання елементів штучного інтелекту, а точніше – нейронних мереж прямого поширення. Збудовано нейро
APA, Harvard, Vancouver, ISO, and other styles
3

Zhuk, М. М., H. V. Pivtorak та І. І. Hits. "ЗАСТОСУВАННЯ НЕЙРОМЕРЕЖЕВОГО МОДЕЛЮВАННЯ ДЛЯ ПРОГНОЗУВАННЯ ТРИВАЛОСТІ ПЕРЕБУВАННЯ ТРАНСПОРТНОГО ЗАСОБУ НА ЗУПИНЦІ ГРОМАДСЬКОГО ТРАНСПОРТУ". Transport development, № 1(12) (3 травня 2022): 156–67. http://dx.doi.org/10.33082/td.2022.1-12.13.

Full text
Abstract:
Вступ. Підвищення попиту на громадський транспорт серед міського населення можна досягнути комплексом різних заходів, одним з яких є вдосконалення системи перевезень та підвищення якості обслуговування пасажирів на різних ланках перевізного процесу. Сучасні методи опрацювання та аналізу параметрів функціонування транспортних систем дозволяють оцінити вплив різноманітних чинників на транспортні процеси та спрогнозувати результати такого впливу. Більшість транспортних процесів мають стохастичну, нелінійну структуру. У таких випадках доцільно використовувати методи штучного інтелекту, зокрема шту
APA, Harvard, Vancouver, ISO, and other styles
4

Nazirova, T. O., та O. B. Kostenko. "Нейрономережева інформаційна технологія опрацювання медичних даних". Scientific Bulletin of UNFU 28, № 8 (2018): 141–45. http://dx.doi.org/10.15421/40280828.

Full text
Abstract:
Швидкий розвиток комп'ютерної техніки формує передумови для розробок нейрокомп'ютерів (тобто комп'ютерів 6-го покоління), які, за прогнозами в галузі штучного інтелекту, активно будуть використані для перероблення будь-якої інформації, за тими ж принципами, що й біологічні нейронні мережі – такі як людський мозок. Тому попит на використання нейромережеві технології поступово охоплює дедалі ширший коло користувачів зокрема й у галузі охорони здоров'я. Досліджено можливості застосування штучних нейронних мереж для оброблення даних регіональної охорони здоров'я. Нейронні мережі – потужний метод м
APA, Harvard, Vancouver, ISO, and other styles
5

Пчелянський, Д. П., та С. А. Воінова. "ШТУЧНИЙ ІНТЕЛЕКТ: ПЕРСПЕКТИВИ ТА ТЕНДЕНЦІЇ РОЗВИТКУ". Automation of technological and business processes 11, № 3 (2019): 59–64. http://dx.doi.org/10.15673/atbp.v11i3.1500.

Full text
Abstract:
У статті подано основні дослідження в галузі штучного інтелекту як науки, що займається створенням автоматизованих інтелектуальних систем. Досліджено технологічні аспекти створення систем штучного інтелекту, розкрито різні підходи до їх конструювання. Показано місце експертних систем і нейромережевих технологій у цьому процесі. У статті розкрито сутність та уявлення про штучний інтелект, який постійно змінюється, трансформується бачення шляхів його розвитку, підходи до вивчення та функціонування в цілому. Найбільш перспективними напрямками в пізнанні штучного інтелекту, є нейронні мережі, евол
APA, Harvard, Vancouver, ISO, and other styles
6

Nazirova, T. A., та A. B. Kostenko. "Застосування технології Neural Network для управління пацієнтопотоком у медичній установі". Scientific Bulletin of UNFU 28, № 6 (2018): 136–39. http://dx.doi.org/10.15421/40280627.

Full text
Abstract:
На сьогодні на основі технології Neural Network розроблено безліч програмних комплексів для прогнозування різних явищ, статистичного оброблення даних, методів класифікації даних, розпізнавання образів, оптимізації деяких процесів тощо. Здатність до самонавчання та вилучення знань з даних є одним з найкорисніших та вражаючих властивостей штучних нейронних мереж, успадкованих ними від мозку, як від свого прототипу. Світова практика використання штучного інтелекту свідчить про можливості отримувати нові, невідомі раніше закономірності, які не відразу знаходять пояснення, а іноді і не вкладаються
APA, Harvard, Vancouver, ISO, and other styles
7

Teslyuk, V. M., та A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку". Scientific Bulletin of UNFU 30, № 5 (2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронно
APA, Harvard, Vancouver, ISO, and other styles
8

Savka, N. Ya. "Artificial Neural Networks for Modeling of Crisis Management of National Economy." Èlektronnoe modelirovanie 42, no. 2 (2020): 109–20. http://dx.doi.org/10.15407/emodel.42.02.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tomashevskyi, Yurii, Oleksander Burykin, Volodymyr Kulyk, Juliya Malogulko та Vladyslav Hrynyk. "ІНФОРМАЦІЙНА СИСТЕМА РОЗПОДІЛЬНОЇ ЕЛЕКТРИЧНОЇ МЕРЕЖІ НА БАЗІ КОНЦЕПЦІЇ SMART METERING ІЗ ЗАСТОСУВАННЯМ ТИПОВИХ ГРАФІКІВ НАВАНТАЖЕННЯ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 3(21) (2020): 229–41. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-229-241.

Full text
Abstract:
Актуальність теми дослідження. Використання інформаційних систем та баз даних стає невід’ємною складовою діяльності енергетичних компаній. Інформація про виробництво та споживання електроенергії зберігається в агрегованому вигляді. Це не дає змоги визначати складові балансових витрат електроенергії методом поелементних розрахунків та аналізувати їх структуру. Таким чином, вдосконалення математичного та програмного забезпечення інформаційних систем обліку електроенергії з метою підвищення адекватності визначення втрат електроенергії у розподільних мережах є актуальним завданням. Постановка проб
APA, Harvard, Vancouver, ISO, and other styles
10

Артеменко, С. В., та В. О. Мазур. "EN Машинне навчання для властивостей холодоагентів". Refrigeration Engineering and Technology 57, № 3 (2021): 138–46. http://dx.doi.org/10.15673/ret.v57i3.2164.

Full text
Abstract:
Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були за
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!