Academic literature on the topic 'Штучні нейроні мережі'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Штучні нейроні мережі.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Штучні нейроні мережі"

1

Бажинов, О., Р. Заверуха та Т. Бажинов. "Інформаційна комплексна система діагностики гібридних і електромобілів". Науковий журнал «Інженерія природокористування», № 2(16) (1 грудня 2020): 12–18. http://dx.doi.org/10.37700/enm.2020.2(16).12-18.

Full text
Abstract:
Розглянуто штучні нейроні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. Отримано метод діагностики технічного стану силової установки, який використовує штучні нейронні мережі та системи нечіткого висновку для визначення технічного стану ДВЗ та тягової акумуляторної батареї.Метою роботи є підвищення ефективності діагностики функціональних систем гібридного та електромобіля шляхом оперативного синтезу управляючих впливів за енергетичними і якісними критеріями з урахуванням зовнішніх умов експлуатації. Обґрунтування методу діагностики технічного стану силової установки гібридного та електромобіля з використанням штучної нейронної мережі та системи нечіткого висновку. Дати наукове обґрунтування діагностичних параметрів силової установки гібридного автомобіля. В роботі використано штучні нейронні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. За допомогою симулятора навчається нейромережева модель автомобіля, яка використовує off-line навчання нейроконтролера. Якість навчання нейроконтролера визначається симулятором. При подальшому функціонуванні системи управління параметри нейронних мереж не змінюються. Відсутність адаптації вагових коефіцієнтів при функціюванні системи управління обґрунтовано тим, що це веде до втрати довго часовоїпам’яті системи управління при виникненні кратко часової несправності, а також можливості виникнення біфуркації при адаптації в нелінійних системах наведено на рисунку 1.Цільова функція оптимізації управління має на увазі мінімізацію витрати енергії при збереженні ступеню заряду тягової акумуляторної батареї при обмеженому діапазоні руху транспортного засобу в заданих умовах експлуатації.За результатами випробувань метода нейроуправління отримано, що нейроконтролер забезпечує зменшення витрати палива на 17 % і скорочує діапазон зміни ступеня зарядженості тягової акумуляторної батареї на 35 %, а також забезпечує мінімізацію викидів токсичних речовин.
APA, Harvard, Vancouver, ISO, and other styles
2

Pogrebnyak, S. V., та O. O. Vodka. "Моделювання механічної поведінки еластомірних матеріалів за допомогою штучної нейронної мережі". Scientific Bulletin of UNFU 28, № 11 (2018): 130–34. http://dx.doi.org/10.15421/40281123.

Full text
Abstract:
У ХХІ ст. нейронні мережі широко використовують у різних сферах, зокрема в комп'ютерному моделюванні та механіці. Така популярність через те, що вони дають високу точність, швидко працюють та мають дуже широкий спектр налаштувань. Створено програмний продукт із використанням елементів штучного інтелекту для інтерполяції та апроксимації експериментальних даних. Програмне забезпечення повинно коректно працювати та давати результати з мінімальною похибкою. Інструментом розв'язання задачі було використання елементів штучного інтелекту, а точніше – нейронних мереж прямого поширення. Збудовано нейронну мережу прямого поширення. Її навчив вчитель із використанням методу зворотного розповсюдження похибки на основі навчаючої вибірки попередньо проведеного експерименту. Для тестування було побудовано декілька мереж різної структури, що отримували на вхід однаковий набір даних, якого не використовували під час навчання, але він був відомий з експерименту. Отже, було знайдено похибку мережі за кількістю виділеної енергії та середньоквадратичним відхиленням. Докладно описано тип мережі та її топологію. Метод навчання і підготовки навчаючої вибірки також описано математично. Внаслідок проведеної роботи збудовано та протестовано програмне забезпечення з використанням штучної нейронної мережі та визначено її похибку.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhuk, М. М., H. V. Pivtorak та І. І. Hits. "ЗАСТОСУВАННЯ НЕЙРОМЕРЕЖЕВОГО МОДЕЛЮВАННЯ ДЛЯ ПРОГНОЗУВАННЯ ТРИВАЛОСТІ ПЕРЕБУВАННЯ ТРАНСПОРТНОГО ЗАСОБУ НА ЗУПИНЦІ ГРОМАДСЬКОГО ТРАНСПОРТУ". Transport development, № 1(12) (3 травня 2022): 156–67. http://dx.doi.org/10.33082/td.2022.1-12.13.

Full text
Abstract:
Вступ. Підвищення попиту на громадський транспорт серед міського населення можна досягнути комплексом різних заходів, одним з яких є вдосконалення системи перевезень та підвищення якості обслуговування пасажирів на різних ланках перевізного процесу. Сучасні методи опрацювання та аналізу параметрів функціонування транспортних систем дозволяють оцінити вплив різноманітних чинників на транспортні процеси та спрогнозувати результати такого впливу. Більшість транспортних процесів мають стохастичну, нелінійну структуру. У таких випадках доцільно використовувати методи штучного інтелекту, зокрема штучні нейронні мережі. Мета. Метою статті є визначення тривалості перебування транспортного засобу на зупинці громадського транспорту з використанням нейромережевого моделювання. Результати. У роботі розкрито основні принципи функціонування штучних нейронних мереж та правила їх використання. Проаналізовано доцільність застосування нейромережевого моделювання для прогнозування тривалості перебування транспортного засобу на зупинках громадського транспорту. Зокрема, проаналізовано вплив таких чинників, як: довжина маршруту, відстань від початку маршруту до досліджуваної зупинки, інтервал між транспортними засобами певного маршруту та пасажирообмін на зупинці. На основі зібраної під час натурних спостережень інформації в програмному середовищі Deductor створено нейронну мережу та проведено прогнозування тривалості перебування транспортного засобу на зупинці. Проведено оцінку якості отриманої моделі. Висновки. Нейромережеве моделювання є ефективним інструментом для дослідження транспортних процесів. Отримані результати свідчать про достатню точність отриманої моделі (середня тривалість перебування транспортного засобу на зупинці становить 24 с у ранковий період та 21 с – в обідній, відхилення в межах від 5 до 9,6 %). Подальші дослідження спрямовуватимуться на підвищення точності моделі шляхом, зокрема, розширення переліку вхідних параметрів.
APA, Harvard, Vancouver, ISO, and other styles
4

Nazirova, T. O., та O. B. Kostenko. "Нейрономережева інформаційна технологія опрацювання медичних даних". Scientific Bulletin of UNFU 28, № 8 (2018): 141–45. http://dx.doi.org/10.15421/40280828.

Full text
Abstract:
Швидкий розвиток комп'ютерної техніки формує передумови для розробок нейрокомп'ютерів (тобто комп'ютерів 6-го покоління), які, за прогнозами в галузі штучного інтелекту, активно будуть використані для перероблення будь-якої інформації, за тими ж принципами, що й біологічні нейронні мережі – такі як людський мозок. Тому попит на використання нейромережеві технології поступово охоплює дедалі ширший коло користувачів зокрема й у галузі охорони здоров'я. Досліджено можливості застосування штучних нейронних мереж для оброблення даних регіональної охорони здоров'я. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень управління пацієнтопотоком у медичних закладах. Запропоновано інформаційну технологію оброблення медичних даних за допомогою штучних нейронних мереж, що дасть змогу підвищити ефективність надання медичної допомоги під час профілактичних медоглядів, ніж відомі інформаційні технології класифікації. Розглянуті такі положення: принципи дії штучних нейронних мереж, переваги і недоліки їх використання та основні функції. Також наведено перспективи використання штучних нейронних мереж щодо класифікації пацієнтів для проходження профілактичного медичного огляду.
APA, Harvard, Vancouver, ISO, and other styles
5

Пчелянський, Д. П., та С. А. Воінова. "ШТУЧНИЙ ІНТЕЛЕКТ: ПЕРСПЕКТИВИ ТА ТЕНДЕНЦІЇ РОЗВИТКУ". Automation of technological and business processes 11, № 3 (2019): 59–64. http://dx.doi.org/10.15673/atbp.v11i3.1500.

Full text
Abstract:
У статті подано основні дослідження в галузі штучного інтелекту як науки, що займається створенням автоматизованих інтелектуальних систем. Досліджено технологічні аспекти створення систем штучного інтелекту, розкрито різні підходи до їх конструювання. Показано місце експертних систем і нейромережевих технологій у цьому процесі. У статті розкрито сутність та уявлення про штучний інтелект, який постійно змінюється, трансформується бачення шляхів його розвитку, підходи до вивчення та функціонування в цілому. Найбільш перспективними напрямками в пізнанні штучного інтелекту, є нейронні мережі, еволюційні обчислення, експертні системи. Нейронні мережі здатні вирішувати такі прикладні задачі, як: фінансове прогнозування, контроль за діяльністю мереж, шифрування даних, діагностика систем. Розробка інтелектуальних експертних систем і нейронних мереж - це лише перші кроки на шляху до створення сильного штучного інтелекту. В межах цього змінюються вимоги до сучасних інформаційних інтелектуальних систем. 
 У статті подано загальну картину розвитку різних напрямків штучного інтелекту шляхом аналізу європейських і американських конференцій по штучному інтелекту за останні кілька років. Проаналізовано та надано статистичну інформацію за даними Німецької дослідницької компанії IPlytics про компанії, які лідирують в галузі штучного інтелекту. В статті наведено інформацію про стан розвитку штучного інтелекту в Україні.
APA, Harvard, Vancouver, ISO, and other styles
6

Nazirova, T. A., та A. B. Kostenko. "Застосування технології Neural Network для управління пацієнтопотоком у медичній установі". Scientific Bulletin of UNFU 28, № 6 (2018): 136–39. http://dx.doi.org/10.15421/40280627.

Full text
Abstract:
На сьогодні на основі технології Neural Network розроблено безліч програмних комплексів для прогнозування різних явищ, статистичного оброблення даних, методів класифікації даних, розпізнавання образів, оптимізації деяких процесів тощо. Здатність до самонавчання та вилучення знань з даних є одним з найкорисніших та вражаючих властивостей штучних нейронних мереж, успадкованих ними від мозку, як від свого прототипу. Світова практика використання штучного інтелекту свідчить про можливості отримувати нові, невідомі раніше закономірності, які не відразу знаходять пояснення, а іноді і не вкладаються в рамки офіційної науки. У багатьох параметрах технології нейронних мереж перевершують наявні традиційні алгоритми, тому по праву вважаються актуальними для активного застосування на цей час. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень в управлінні пацієнтопотоком у медичних установах. У цьому дослідженні розглянуто сутність нейронних мереж, їх особливості здатності до навчання (налаштування архітектури і синаптичних зв'язків). Також виявлено і перспективи розвитку застосування і використання штучних нейронних мереж для застосування розподілу пацієнтів для здійснення профілактичного медичного огляду.
APA, Harvard, Vancouver, ISO, and other styles
7

Teslyuk, V. M., та A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку". Scientific Bulletin of UNFU 30, № 5 (2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі. Вибір штучної нейронної мережі використовують для автоматизації обчислення значень оптимальних температурних режимів у кімнатах будинку, налаштувань параметрів освітлювальних приладів та режимів роботи системи безпеки "розумного" будинку. Наведено результати дослідження взаємозв'язку між різними типами нейронних мереж, кількістю внутрішніх шарів штучної нейронної мережі і кількістю нейронів на кожному внутрішньому шарі та зміни похибки обчислень параметрів налаштувань відносно очікуваних результатів роботи. Вирішення кожної окремої поставленої задачі за допомогою систем "розумного" будинку потребує використання різних алгоритмів машинного навчання. Великі обсяги даних, що генеруються у системах "розумного" будинку, та різноманітність типів і форматів цих даних не дає змоги створити універсальний автоматизований механізм з використанням алгоритмів штучного інтелекту, який вирішував би проблеми безпеки, енергоефективності та підтримки комфортних умов проживання користувачів. Тому використання запропонованого методу вибору оптимального типу нейронної мережі, що найкраще підходить для вирішення кожної окремої задачі, забезпечує високі показники ефективності роботи систем "розумного" будинку з мінімальними значеннями похибки отриманих автоматизованих рішень порівняно з рішеннями, що прийняла людина.
APA, Harvard, Vancouver, ISO, and other styles
8

Savka, N. Ya. "Artificial Neural Networks for Modeling of Crisis Management of National Economy." Èlektronnoe modelirovanie 42, no. 2 (2020): 109–20. http://dx.doi.org/10.15407/emodel.42.02.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tomashevskyi, Yurii, Oleksander Burykin, Volodymyr Kulyk, Juliya Malogulko та Vladyslav Hrynyk. "ІНФОРМАЦІЙНА СИСТЕМА РОЗПОДІЛЬНОЇ ЕЛЕКТРИЧНОЇ МЕРЕЖІ НА БАЗІ КОНЦЕПЦІЇ SMART METERING ІЗ ЗАСТОСУВАННЯМ ТИПОВИХ ГРАФІКІВ НАВАНТАЖЕННЯ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 3(21) (2020): 229–41. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-229-241.

Full text
Abstract:
Актуальність теми дослідження. Використання інформаційних систем та баз даних стає невід’ємною складовою діяльності енергетичних компаній. Інформація про виробництво та споживання електроенергії зберігається в агрегованому вигляді. Це не дає змоги визначати складові балансових витрат електроенергії методом поелементних розрахунків та аналізувати їх структуру. Таким чином, вдосконалення математичного та програмного забезпечення інформаційних систем обліку електроенергії з метою підвищення адекватності визначення втрат електроенергії у розподільних мережах є актуальним завданням. Постановка проблеми. Оснащення розподільних електричних мереж засобами моніторингу їхніх параметрів часто виявляється недостатнім для розв’язування задач планування та ведення режимів. Тому метою дослідження є аналіз можливості застосування системного підходу до створення інформаційних систем РЕМ з використанням даних автоматизованих систем комерційного обліку електроенергії та інших наявних джерел інформації для підвищення точності моделювання характерних режимів мереж та складових балансу електроенергії. Аналіз останніх досліджень і публікацій. Нині використовуються декілька підходів для перевірки та відновлення даних щодо електричних навантажень у системах АСКОЕ та Smart Metering: 1) технологія великих даних (Big Data Technology – data management); 2) глобальне обчислення на основі не втрачених даних; 3) статистичні методи; 4) штучні нейронні мережі; 5) кластерний аналіз; 6) застосування методів оцінювання стану; 7) використання типових графіків електричних навантажень. Наведені підходи можуть комбінуватися для отримання додаткових переваг. Виділення недосліджених частин загальної проблеми. Необхідною умовою для використання наявних підходів є наявність невтрачених даних. Це робить принципово неможливим застосування відомих підходів для дослідження режимних параметрів РЕМ з прийнятною точністю. Постановка завдання. Отже, основним завданням є дослідження можливості використання системного підходу до побудови інформаційних систем РЕМ із застосуванням технології Smart Metering, а також методів та алгоритмів, які використовуючи наявну інформацію, агреговану за часовими періодами, дадуть змогу визначати режимні параметри РЕМ з необхідною точністю.Виклад основного матеріалу. Для розгортання агрегованих даних у графіки навантаження та генерування, у роботі запропоновано використовувати типові графіки енергообміну споживачів та місцевих джерел енергії. Для узгодження виміряних параметрів режиму та псевдовимірювань, розрахованих за типовими графіками, запропоновано використовувати алгоритм на основі методу найменших квадратів. Оцінювання точності проводилося шляхом зіставлення втрат електроенергії для цілком спостережної мережі з результатами імітаційних розрахунків. Висновки відповідно до статті. Встановлено, що застосування типових графіків навантаження та генерування дає змогу відновлювати графіки енергообміну споживачів та місцевих джерел енергії з прийнятною точністю. Використання типових графіків навантаження та генерування (псевдовимірювань) дає змогу зменшити вартість систем моніторингу розподільних мереж.
APA, Harvard, Vancouver, ISO, and other styles
10

Артеменко, С. В., та В. О. Мазур. "EN Машинне навчання для властивостей холодоагентів". Refrigeration Engineering and Technology 57, № 3 (2021): 138–46. http://dx.doi.org/10.15673/ret.v57i3.2164.

Full text
Abstract:
Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної проблеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивостей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В роботі представлено застосування машинного навчання в інженерній термодинаміці для прогнозування азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності (COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який розроблено та представлено. Цей підхід використовує синергію нейронних мереж та методології глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоагентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними атрибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів у просторі конкурентних економічних, екологічних та технологічних критеріїв
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!