Academic literature on the topic 'Система цифрової ідентифікації'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Система цифрової ідентифікації.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Система цифрової ідентифікації"

1

Bessarabov, Volodymyr I. "ОРГАНІЗАЦІЯ ІНТУЇТИВНО ЗРОЗУМІЛОГО ВХОДУ В ЕЛЕКТРОННІ НАВЧАЛЬНО-МЕТОДИЧНІ КОМПЛЕКСИ ПІДВИЩЕННЯ КВАЛІФІКАЦІЇ ПРАЦІВНИКІВ ОСВІТИ НА БАЗІ ХМАРО ОРІЄНТОВАНОЇ СИСТЕМИ УПРАВЛІННЯ НАВЧАЛЬНИМИ РЕСУРСАМИ." Information Technologies and Learning Tools 43, no. 5 (September 18, 2014): 140–49. http://dx.doi.org/10.33407/itlt.v43i5.1109.

Full text
Abstract:
Статтю присвячено актуальним проблемам досвіду використання універсальної системи управління навчальними ресурсами «Хмара» для розробки і впровадження в навчальний процес інтуїтивно зрозумілої системи входу в електронні навчально-методичні комплекси (ЕНМК) на новій хмаро орієнтованій платформі. Показано, що вперше розроблена система інтуїтивно зрозумілого входу в ЕНМК підвищення кваліфікації є ефективною з точки зору ергономічності входу до ЕНМК (швидке освоєння і наступний вхід). Встановлено, що використання потрійної кольорової, літеро-цифрової та піктографічної ідентифікації «свого» ЕНМК користувачем порталу є зручним з точки зору зниження помилок входу, а використання інтуїтивно зрозумілого входу в ЕНМК підвищує рівень прихильності користувачів до подальшого використання електронних навчальних ресурсів. Зроблено висновок, що основною проблемою, пов’язаною з входом в ЕНМК проекту «Хмара», є недостатній рівень ІКТ-компетентності користувачів, що може бути розв’язано за рахунок певних організаційних і методичних заходів.
APA, Harvard, Vancouver, ISO, and other styles
2

Бойко, Олена. "ЕЛЕКТРОННЕ ГОЛОСУВАННЯ: ПЕРСПЕКТИВИ ДЛЯ УКРАЇНИ." Public management 23, no. 3 (March 20, 2020): 24–34. http://dx.doi.org/10.32689/2617-2224-2020-3(23)-24-34.

Full text
Abstract:
Визначено, що питання уніфікації та цифрової трансформації виборчих процесів останнім часом набувають в Україні широкої дискусії. Основною метою, яку ідеологи впровадження електронного голосування ставлять перед собою, є спрощення виборчих процедур, дебюрократиза- ція виборчих процесів, доступність для виборців до системи голосування, пришвидшення процесу підрахунку голосів, мінімізація можливості впли- ву на підрахунок голосів виборців та встановлення результатів голосуван- ня. Досліджено основні види процедур та типи електронного голосування. Також наголошується на важливості дотримання Рекомендацій CM/Rec (2017)5 Комітету Міністрів Ради Європи державам-членам щодо стандар- тів електронного голосування (прийнято Комітетом Міністрів 14 червня 2017 року). Досліджуючи історію впровадження у світовій практиці електронного голосування та визначаючи причини відмови від такої практики в окремих країнах, проаналізовано та узагальнено позитивні й негативні аспекти впровадження електронного голосування для окремих процедур виборчого процесу. Зауважено, що система “електронних виборів” добре відома у світовій практиці, проте питання її застосування є доволі диску- сійним з огляду на недовіру до самої системи; неможливості забезпечення таємниці голосування за умови ідентифікації виборця під час, наприклад, інтернет-голосування; неможливості незалежного спостереження та вери- фікації даних при підрахунку голосів виборців. Упровадження електрон- ного голосування є питанням окремого ретельного дослідження з огляду на різну історію як успіху, так й історію невдалого застосування у світовій практиці системи електронного голосування.
APA, Harvard, Vancouver, ISO, and other styles
3

Колодіна, А. С., and Т. С. Федорова. "ЦИФРОВА КРИМІНАЛІСТИКА: ПРОБЛЕМИ ТЕОРІЇ І ПРАКТИКИ." Kyiv Law Journal, no. 1 (May 11, 2022): 176–80. http://dx.doi.org/10.32782/klj/2022.1.27.

Full text
Abstract:
Анотація. З кожним роком інноваційні технології все більше впроваджуються в різні сфери суспільного життя. Не винятком є i криміналістична експертиза, яку сучасні інформаційні технології вивели на новий етап розвитку. Зокрема, завдяки новітнім технологіям з’явилася нова галузь криміналістики – цифрова криміналістика. У статті досліджується новітня галузь криміналістики – цифрова криміналістика, яка є прикладною наукою про розкриття злочинів, пов’язаних з комп’ютерною інформацією, про дослідження цифрових доказів, методи пошуку, отримання і закріплення таких доказів. Цифрова криміналістична експертиза — це «одна із галузей криміналістичної експертизи, яка зосереджується на кримінально-процесуальному праві та доказах щодо комп’ютерів та пов’язаних із ними пристроїв», таких як мобільні пристрої (телефони, смартфони тощо), ігрові консолі та інші пристрої, які функціонують через Інтернет (охорона здоров’я і фітнес-пристрої та медичні прилади тощо). Цифрова криміналістична експертиза, зокрема, відноситься до процесу збору, отримання, зберігання, аналізу та подання електронних доказів (також відомих як цифрові докази) з метою отримання слідчої інформації та розслідування та переслідування різних видів злочинів, у тому числі кіберзлочинів. Автори статті проаналізували складові частини цифрової криміналістики, оцінили тенденції розвитку цієї науки на сучасному етапі та спрогнозували подальший розвиток цифрової криміналістик в Україні і в іноземних країнах. Цифрова криміналістична експертиза включає процеси ідентифікації, отримання, зберігання, аналізу та представлення цифрових доказів. Криміналістичні артефакти та криміналістичні методи (наприклад, збір статичних даних або даних у реальному часі) залежать від пристрою, його операційної системи та функцій безпеки. Запатентовані операційні системи (з якими дослідники можуть бути незнайомі) і функції безпеки (наприклад, шифрування) є перешкодами для цифрової криміналістичної експертизи. Наприклад, шифрування, яке блокує доступ третіх сторін до інформації та повідомлень користувачів, може перешкодити правоохоронним органам отримати доступ до даних, що містяться на цифрових пристроях, таких як смартфони. В Національній поліції було створено спецпідрозділ по боротьбі з кіберзлочинністю. Але для того, щоб вітчизняні правоохоронні органи дійсно змогли використовувати весь спектр можливостей, які надають сучасні технології, необхідно якомога швидше завершити процес інтеграції вітчизняних правоохоронних структур у європейський простір.
APA, Harvard, Vancouver, ISO, and other styles
4

Костенко, О. В. "ІДЕНТИФІКАЦІЯ ІОТ." Знання європейського права, no. 1 (April 27, 2021): 77–83. http://dx.doi.org/10.32837/chern.v0i1.177.

Full text
Abstract:
УПРАВЛІННЯ ІДЕНТИФІКАЦІЙНИМИ ДАНИМИУ роботі досліджується питання розробки механізмів правового забезпечення управління ідентифікаційними даними пристроїв ІоТ. Аналізуються сучасні технічні та юридичні механізми і процедури ідентифікації суб’єк¬тів та об’єктів. Запропоновано застосувати як приклад мережеву модель OSI для класифікації елементів мережі пристроїв ІоТ за функціональними ознаками. Також здійснено огляд різновидів сучасних технологій, що вико¬ристовуються для забезпечення функціонування екосистем пристроїв ІоТ, а саме: радіотехнології, різних універ¬сальних ідентифікаційних систем, технічних стандартів, рішень, що забезпечують безпеку даних, та платформи сумісності пристроїв ІоТ, а також напрями розвитку технологій ідентифікації та управління ідентифікаційними даними відомих розробників.Проаналізовано стан національного законодавства, що регулює правовідносини у сфері управління іденти¬фікаційними даними. Підкреслено, що Україна має певний позитивний досвід в напрямі технічної організації та розвитку процесів електронної ідентифікації та правову основу з метою формування сучасного законодавства у сфері управління ідентифікаційними даними. Водночас вказано на низку характерних недоліків, пов’язаних із ситуативною, малосистемною і неструктурованою модернізацією національного законодавства, насиченням його незбалансованою в юридичному та нормопроєктувальному сенсі термінологією.Автором запропоновано сучасне рішення, яке полягає у створенні системи технічних стандартів, юридичних правил та норм, порядків і процедур перевірки ідентифікаційних даних. Дане рішення, як багаторівнева соціотех- ніча система, забезпечить тотожність ідентифікаційних даних з фізичною або юридичною особою, пристроєм або цифровим об’єктом для взаємодії із цифровою екосистемою. Модернізація нормативно-правової бази, яка здійс¬нює регулювання суспільних відносин у сфері управління ідентифікаційними даними, спрямована на визначення та формування суб’єктів та об’єктів цієї сфери, їх прав та обов’язків, а також формування видів правопорушень та відповідальності за їх скоєння. Відповідно, не омине осучаснення і діючих правових норм чинного законодав¬ства України.
APA, Harvard, Vancouver, ISO, and other styles
5

Хома, Ю. В., В. В. Хома, Су Юн, and О. В. Кочан. "Аналіз ефективності методів коригування промахів у системах біометричної ідентифікації на підставі електрокардіограми." Scientific Bulletin of UNFU 30, no. 3 (June 4, 2020): 99–105. http://dx.doi.org/10.36930/40300317.

Full text
Abstract:
Здійснено порівняння ефективності різних методів коригування промахів у біометричних системах ідентифікації. Основна ідея – виявити сегменти ЕКГ-сигналу із промахами, і замість їх вилучення з процесу ідентифікації, застосувати процедуру їх коригування. Це дасть змогу отримати більший обсяг даних і кращу статистичну базу для навчання та калібрування системи. У роботі порівнювали три різні методи усунення промахів. Перший метод базується на оцінюванні статистичного відхилення вибірок від певного номінального значення на деякий поріг. При цьому аналізується не весь сигнал одразу, а тільки його частина в межах ковзного вікна. В основі двох інших методів знаходиться ідея застосування штучних нейронних мереж, зокрема одного із їх різновидів – автоенкодерів. Відмінність між методами із використанням автоенкодерів полягає у такому: в одному випадку теж використовується ковзне вікно, що дає змогу безпосередньо задавати критерії, за якими відбувається коригування, водночас як за іншим методом виконується коригування за критеріями, які система підбирає автоматично на етапі навчання. Окрім цього, в роботі описано структуру системи біометричної ідентифікації на підставі сигналу електрокардіограми. До ключових структурних компонентів системи належать: аналоговий вимірювальний блок, АЦП та низка цифрових функціональних блоків для перетворення та аналізу сигналів. Ці блоки можуть бути імплементовані на різних обчислювальних платформах, таких як мікроконтролери, ПК, хмарні сервіси). Ці цифрові блоки виконують такі перетворення, як: низькочастотна та високочастотна фільтрація, виявлення R–піків у сигналі електрокардіограми, сегментація серцевих циклів, нормалізація за амплітудою, усунення аномалій, зменшення розмірності та класифікація. Експерименти проводили на самостійно зібраному наборі даних LBDS (Lviv Biometric Dataset). Ця база даних на момент написання статті містила понад 1400 записів для 95 різних осіб. Базова похибка ідентифікації без коригування промахів становить близько 14 %. Після застосування процедури коригування промахів похибка ідентифікації зменшилась до 2,0 % для алгоритмів на підставі автоенкодерів та до 2,9 % для алгоритмів на підставі статистичних методів. При цьому найкращі результати було досягнуто за використання LDA класифікатора у поєднанні з PCA–компресією (1,7 %), а також для KNN класифікатора без PCA–компресії (2,3 %). Проте додавання процедури коригування промахів у процес біометричної ідентифікації призводить до певного збільшення часу на опрацювання сигналу (до 20 %), що однак не критично для більшості прикладних застосувань.
APA, Harvard, Vancouver, ISO, and other styles
6

Смокович, М. І. "Адміністративна юстиція та електронне судочинство в Україні." Прикарпатський юридичний вісник, no. 4(33) (November 24, 2020): 77–81. http://dx.doi.org/10.32837/pyuv.v0i4.627.

Full text
Abstract:
У статті розглянуто питання впровадження електронного судочинства в Україні. Вказано, що забезпечення дієвих інформаційних ресурсів адміністративного судочинства гарантує дотримання принципів гласності, відкритості й транспарентності розгляду й розв'язання публічно-правових спорів. Зроблено висновок, що окремі кроки на цьому шляху вже зроблено. І саме пандемія стала, можна сказати, «поштовхом» для швидшого розвитку в цьому напрямі, оскільки парламент, ухваливши «антикоро-навірусний» закон, надав сторонам більше можливостей брати участь у процесах дистанційно. Раніше ця можливість також була, але учасник процесу мав з'являтися до найближчої судової установи, де ідентифікували його особу й забезпечували його віддалену участь у процесі, що відбувся в іншому суді. Зараз процедуру спростили. І за допомогою різних програм відеоконфе-ренцзв'язку сторони отримали більше можливостей на проведення дистанційних засідань, а суди - більше інструментів для ідентифікації сторін. Констатовано, що європейські експерти неодноразово наголошували, що чотири рівні електронної взаємодії між громадянами й владою, що розроблені в Європейському Союзі, є запорукою ефективності будь-якої системи, в тому числі й судової. Це такі рівні: перший -онлайнова інформація про загальнодоступні послуги; другий - одностороння взаємодія: завантаження форм із сайтів; третій - двостороння взаємодія: обробка форм (у тому числі аутентифікація), процесуальні дії в цифровій формі; четвертий - транзакція: робота зі справою, прийняття та оголошення рішення, оплата тощо. Підсумовано, що незважаючи на те, що криза, викликана пандемією, виявила проблеми, пов'язані з недосконалістю правового регулювання, технічною неготовністю судів переходити до електронного судочинства, що є нагальною потребою часу, держава потужно підтримує та розвиває цей напрям. Зокрема створено Міністерство й Комітет цифрової трансформації, а також у Комітеті Верховної Ради України з питань правової політики створено робочу групу із цифровізації судочинства, де обговорюються питання інновацій для запуску Єдиної судової інформаційно-телекомунікаційної системи.
APA, Harvard, Vancouver, ISO, and other styles
7

Kovalevsky, S. V., and N. D. Sidyuk. "Ідентифікація об'єктів дослідження з використанням сигнатур." Обробка матеріалів тиском, no. 1(50) (March 31, 2020): 210–16. http://dx.doi.org/10.37142/2076-2151/2020-1(50)210.

Full text
Abstract:
Ковалевський С. В., Сидюк Д. М. Ідентифікація об'єктів дослідження з використанням сигнатур. Oбробка матеріалів тиском. 2020. № 1 (50). C. 210-216. В роботі запропонований спосіб обробки зображення для подальшого розпізнавання об'єктів різних структур штампованок на основі зображень (фотографії). Цей метод дозволяє зробити інваріантними невраховані фактори, які можуть вплинути на якість фотографії. Як об'єкт дослідження виступають зразки шліфів сталей після термічної обробки. Час витримки і умови охолодження ідентичні для всіх випадків. Обробка зображень передбачає їх попереднє поліпшення, а саме видалення шумів і виставляння авторівней, подальше перетворення в цифровий масив даних, отримання гістограми зображення з подальшим виділенням більш інформативною частини сигнатури. Перетворення безперервного сигналу (зображення) в сигнатуру за допомогою дискретизації і квантування виконано в системі MatLab 6.1 і дозволило виключити суб'єктивні фактори візуального аналізу і класичних методів розрахунку співвідношення структур в металі. Кількість інтервалів приймається рівним 10. Тестове і навчальне безлічі формуються в програмі Microsoft Access на основі даних про зображення, термічної обробки, склад і співвідношенні структур. У програмі NeuroPro 0.25определяется значимість входів і встановлюється взаємозв'язок між температурним режимом, фазами в структурі і сигнатурою зображення. Підтверджено можливість прогнозу структури і зображення фаз на основі температурного режиму, типу і часу охолодження. Додатково вирішена зворотна задача можливості прогнозу технологічних параметрів термічної обробки на основі раніше існуючих прикладів. Метод застосуємо до будь-якої кількості інтервалів, від 2 до 255. Збільшення кількості інтервалів може дати можливість відтворити прогнозовану структуру в якості зображення.
APA, Harvard, Vancouver, ISO, and other styles
8

Спірін, Олег Михайлович, Світлана Миколаївна Іванова, Лілія Анатоліївна Лупаренко, Анна Федорівна Дудко, Василь Петрович Олексюк, and Тетяна Леонідівна Новицька. "ЕКСПЕРИМЕНТ З РОЗВИТКУ ІНФОРМАЦІЙНО-ДОСЛІДНИЦЬКОЇ КОМПЕТЕНТНОСТІ НАУКОВЦІВ І ВИКЛАДАЧІВ НА ОСНОВІ ВІДКРИТИХ ЕЛЕКТРОННИХ СИСТЕМ." Information Technologies and Learning Tools 80, no. 6 (December 22, 2020): 281–308. http://dx.doi.org/10.33407/itlt.v80i6.4201.

Full text
Abstract:
Стаття присвячена організації, основним етапам та аналізу результатів педагогічного експерименту з верифікації моделі розвитку інформаційно-дослідницької компетентності наукових і науково-педагогічних працівників та перевірки ефективності відповідної методики. В основу такої моделі покладено відкриті електронні науково-освітні системи (ВЕНОС), призначені для ефективної організації та підтримки наукових досліджень у галузі освіти, педагогіки, соціальних і поведінкових наук. На основі аналізу вітчизняних та зарубіжних досліджень, власного досвіду авторів уточнено поняття ВЕНОС. Обґрунтовано, що до його структури доцільно додати наукові електронні бібліотеки, електронні відкриті журнальні системи (ЕВЖС), наукометричні бази даних, електронні соціальні мережі, системи оцінювання якості педагогічних тестів, системи цифрової ідентифікації вчених та їх наукових публікацій, програмні засоби перевірки унікальності текстів. Нині ці засоби є затребуваними та широко застосовуються для організації наукової та навчальної діяльності в закладах освіти та наукових установах усього світу. Експеримент з перевірки ефективності методики використання ВЕНОС для розвитку інформаційно-дослідницької компетентності дослідників у їх професійній діяльності проводився в наукових установах НАПН України (констатувальний етап) та в науково-дослідних підрозділах трьох ЗВО України (формувальний етап) упродовж 3 років. На констатувальному етапі було визначено засоби ІКТ, які доцільно використовувати для оприлюднення та розповсюдження результатів досліджень, а також вивчено ставлення науковців до їх використання. На формувальному етапі підтверджена основна гіпотеза дослідження про підвищення рівня розвитку інформаційно-дослідницької компетентності наукових і науково-педагогічних працівників за умов цілеспрямованого та методично-обґрунтованого застосування ВЕНОС. Встановлено, що розроблена експериментальна методика забезпечує позитивний розвиток ціннісно-мотиваційного, когнітивного, операційно-діяльнісного і дослідницького компонентів інформаційно-дослідницької компетентності. Для перевірки статистичної значущості отриманих результатів було використане кутове перетворення Фішера.
APA, Harvard, Vancouver, ISO, and other styles
9

МОЙСЕЄНКО, В. І., and В. В. ГАЄВСЬКИЙ. "Оперативна ідентифікація та локалізація небезпек у процесі технічної експлуатації цифрових систем керування рухом поїздів на основі концепції ризик-менеджменту." Інформаційно-керуючі системи на залізничному транспорті 25, no. 4 (December 21, 2020): 28–35. http://dx.doi.org/10.18664/ikszt.v25i4.219535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ГАВРИЛЕНКО, Катерина. "ЛІНГВІСТИЧНІ ДОСЛІДЖЕННЯ МОВИ ІНТЕРНЕТУ." Проблеми гуманітарних наук Серія Філологія, no. 48 (March 10, 2022): 26–31. http://dx.doi.org/10.24919/2522-4565.2021.48.3.

Full text
Abstract:
Мова інтернету є новим різновидом лінгвістичного дискурсу, який виник разом із глобальною системою інтернет-комунікації, найпопулярнішої та найдоступнішої мережі, позаяк у спілкуванні беруть участь люди будь-якого віку, освіти, релігії, політичних поглядів, країни проживання тощо. Метою сучасної лінгвістики є вивчення інтернет-дискурсу як динамічного соціального явища, а також систематизація отриманих у процесі цього вивчення результатів. До того ж зросла кількість міждисциплінарних досліджень, присвячених мові інтернету. У статті окреслено властивості інтернет-дискурсу та основні ознаки письмових і усних цифрових текстів. Характеристики розміщеного в мережі друкованого тексту можна змінити за рахунок різних гіпертекстових посилань. Його можна включити в інше повідомлення, ідентифіковане пошуковими системами за певними ключовими словами й термінологією. Отже, текст може стати частиною іншого тексту або бути доповненим аудіовізуальною інформацією. Ключові детермінанти та специфічну класифікацію індивідуалізованих лінгвістичних параметрів інтернет-тексту визнають життєво важливою характеристикою мовного портрета особистості й можуть бути використані для ідентифікації користувача інтернету. У статті звернено увагу на те, що різні аспекти аналізу стилю письмового та усного повідомлення, організації тексту відображають особистісні якості людини. Характеристики мовної рефлексивності чатів та соціальних мереж, їхні емоційні реакції, що передають традиційні значення, є визначальними рисами інтернет-комунікації. Мова інтернету – це складне поєднання різних дискурсів, а розроблення схеми аналізу інтернет-текстів є найважливішим завданням сучасної лінгвістики. Розвиток практичних методів аналізу інтернет-дискурсу значною мірою сприяє успішній ідентифікації індивідуального користувача.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Система цифрової ідентифікації"

1

Власов, А. В., О. В. Сєвєрінов, and О. В. Слиш. "Впровадження децентралізованої системи ідентифікації." Thesis, НТУ «ХПІ», 2020. http://openarchive.nure.ua/handle/document/14299.

Full text
Abstract:
Метою доповіді є аналіз сучасних систем цифрової ідентифікації та існуючих протоколів, які впроваджені для підвищення безпеки процедур цифрової ідентифікації. Пропонується впровадити децентралізовані системи, які побудовано за технологією блокчейн, для створення розподіленої бази даних з мітками часу для кожної процедури ідентифікації з використанням користувачем свого власного ідентифікатору.
APA, Harvard, Vancouver, ISO, and other styles
2

Москаленко, В`ячеслав Васильович, Вячеслав Васильевич Москаленко, Viacheslav Vasylovych Moskalenko, and А. Г. Коробов. "Інтелектуальна система ідентифікації мережевого трафіка." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40653.

Full text
Abstract:
Швидкий розвиток цифрових мультисервісних мереж сприяє зростан- ню кількості інтерактивних і мультимедійних додатків, що обумовлює необхідність пріоритезації трафіка відповідно до вимог рівня обслугову- вання користувачів та якості мережевих сервісів.
APA, Harvard, Vancouver, ISO, and other styles
3

Литвиненко, Ярослав Володимирович, Я. В. Литвиненко, and I. V. Lytvynenko. "Методи ідентифікації сегментної та ритмічної структур циклічних сигналів в системах цифрової обробки даних." Diss., Тернопільський національний технічний університет ім. Івана Пулюя, 2019. http://elartu.tntu.edu.ua/handle/lib/29099.

Full text
Abstract:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 01.05.02 – «Математичне моделювання та обчислювальні методи». – Тернопільський національний технічний університет імені Івана Пулюя, Тернопіль, 2019. Дисертація присвячена вирішенню проблеми ідентифікації сегментних і ритмічних структур циклічних сигналів, що підвищують точність їх опрацювання та комп’ютерного моделювання в автоматизованих системах цифрової обробки даних. Створено методологію побудови методів сегментації різних циклічних сигналів, моделями яких є циклічні функції. Розроблена на основі створеної методології система методів сегментації циклічних сигналів дозволяє проводити ідентифікацію їх сегментних і дискретних ритмічних структур з підвищеною точністю при їх автоматизованому опрацюванні. Удосконалено метод ідентифікації ритмічної структури за рахунок використання методів інтерполяції квадратичним чи кубічним сплайном у порівнянні з відомим методом ідентифікації ритмічної структури на основі кусково-лінійної інтерполяції. Розроблено метод адаптивної ідентифікації ритмічної структури циклічних сигналів, який містить як складові метод визначення додаткових елементів ритмічної структури та метод визначення оптимального полінома на відповідному сегменті. Розроблено метод верифікації моделей на основі перевірки гіпотези про належність досліджуваного сигналу до класу циклічних. Розроблено математичні засоби ідентифікації сегментних та оцінювання ритмічних структур, які в цілому підвищують точність методів дискретизації, статистичного опрацювання та комп’ютерного моделювання циклічних сигналів, придатні для використання в програмно-апаратних системах цифрової обробки (діагностики чи прогнозування) різних циклічних сигналів.
Диссертация на соискание ученой степени доктора технических наук по специальности 01.05.02 – «Математическое моделирование и вычислительные методы». – Тернопольский национальный технический университет имени Ивана Пулюя, Тернополь, 2019. Диссертация посвящена решению проблемы идентификации сегментных и ритмических структур циклических сигналов, повышающие точность их обработки, а также компьютерного моделирования в автоматизированных системах цифровой обработки данных. Создано методологию построения методов сегментации разных циклических сигналов, моделями которых есть циклические функции. Разработанная на основании созданной методологии система методов сегментации циклических сигналов позволяет проводить идентификацию их сегментных и дискретных ритмических структур с повышенной точностью при их автоматизированной обработке. Усовершенствован метод идентификации ритмической структуры за счет использования методов интерполяции квадратичным или кубическим сплайном по сравнению с известным методом идентификации ритмической структуры на основании кусочно-линейной интерполяции. Разработанный метод адаптивной идентификации ритмической структуры циклических сигналов, который включает в себя как свои составляющие метод определения дополнительных элементов ритмической структуры и метод определения оптимального полинома на соответствующем сегменте. Разработан метод верификации моделей на основании проверки гипотезы о принадлежности исследуемого сигнала к классу циклических. Разработанные математические средства идентификации сегментных и оценки ритмических структур, которые, в целом, повышают точность методов дискретизации, статистической обработки и компьютерного моделирования циклических сигналов, пригодные для использования в программно-аппаратных системах цифровой обработки (диагностики или прогнозирования) разных циклических сигналов.
The dissertation for a scientific degree of Doctor of Technical Sciences on specialty 01.05.02 – «Mathematical modeling and computation methods». – Ternopil Ivan Puluj National Technical University, Ternopil, 2019. The dissertation is dedicated to the solution of the scientific problem which consists in the creation of new methods for identification of segment and rhythm structures of cyclic signals, which provide improved accuracy of cyclic signals processing and computer modeling in automated digital data processing systems. Considering the fact that there is a repetitive structure of cyclic signals, which is due to phase expansion in time or space of cyclic occurrences and processes - a methodology for constructing methods of segmentation (mathematical models of which are cyclic functions with segment structure) of different cyclic signals is created. The system of new methods of segmentation of cyclic signals was developed on the basis of the created methodology. It allows identifying their segment and discrete rhythm structures with increased accuracy at their automated processing within the framework of deterministic and stochastic mathematical models of cyclic functions with a variable or constant rhythm. There were improvements made in the method for identifying the rhythm structure of cyclic signals through the use of methods of interpolation by the means of a quadratic or cubic spline in comparison with the known method of identification of the rhythm structure on the basis of piecewise linear interpolation. The method of adaptive identification of the rhythm structure of cyclic signals was developed, which includes, as its components, the developed method of determining additional elements of the rhythm structure and the developed method of determining the optimal polynomial in the corresponding segment. Considering the greater number of elements of the rhythm structure, this allowed evaluating the type of optimal polynomial among the linear, quadratic and cubic ones in the investigated segment. This also allowed choosing a method of evaluating the rhythm structure in the investigated segment among the known method (based on piecewise linear interpolation) and the developed one in the process of work (based on quadratic and cubic splines). The achieved results gave a possibility to adaptively evaluate the investigated segment and improved accuracy of identifying the rhythm structure of cyclic signals. There was developed a method of verifying the models of the investigated signals which is based on testing the hypothesis of the relation of the investigated signal to the class of cyclic signals for the suitable, correct application of the methods developed in the process of this study (during the processing of cyclic signals). The mathematical model and methods of statistical development of the surface formation process on the metal’s outer layer, caused by the effect of mechanical or laser shock-wave force on it, in a form of a cyclic random process with a segment structure, was delineated. Mathematical tools were developed of identifying the segment and evaluating rhythm structures that increase the overall accuracy of methods of processing of cyclic signals, in particular, sampling methods, statistical processing and computer simulation of cyclic signals. These tools are suitable for use as components of specialized programs in both software and hardware digital processing systems (diagnostics or forecasting) of different cyclic signals: in cardiac diagnostics systems, in systems of technical diagnostics of the state of the surface of metals and in systems of analysis and forecasting of economic cyclic process.
Перелік основних умовних позначень, символів і скорочень...33 Вступ (актуальність теми)...39 Розділ 1. Математичні моделі та методи опрацювання циклічних сигналів у системах їх цифрової обробки (огляд літературних джерел)...49 1.1. Циклічні сигнали в системах цифрової обробки даних та процес ідентифікації їх сегментних структур (об’єкт дослідження)...49 1.1.1. Циклічні кардіосигнали. Комп’ютерні системи діагностики функціонального стану серцево-судинної системи людини...51 1.1.1.1 Електрокардіосигнал. Автоматизовані комп’ютерні електрокардіо-діагностичні системи, існуючі методи дослідження електрокардіосигналів та діагностичні ознаки...51 1.1.1.2 Математичні моделі, які використовуються в автоматизованих, комп’ютерних системах цифрової обробки кардіосигналів…66 1.1.2. Циклічні процеси рельєфних утворень на поверхні металів викликані механічним чи лазерних ударно-хвильовим впливом на неї, їх математичні моделі. Комп’ютерні системи дослідження й технічного діагностування стану поверхні металів...60 1.1.3. Циклічні економічні процеси, їх математичні моделі. Комп’ютерні системи автоматизованого аналізу та прогнозу циклічних економічних процесів...62 1.1.4. Циклічні сигнали електро-, газо-, нафто-, водоспоживання, їх математичні моделі. Комп’ютерні системи аналізу та прогнозу електро-, газо-, нафто-, водоспоживання…65 1.1.5. Узагальнена структурна схема автоматизованих комп’ютерних, систем діагностики та прогнозування за циклічними сигналами...68 1.2. Недоліки (науково-технічні проблеми) в автоматизованих, комп’ютерних, системах цифрової обробки та комп’ютерного моделювання циклічних сигналів...73 1.3. Вимоги висунуті до математичної моделі циклічних сигналів…74 1.4. Відомі математичні моделі циклічних сигналів та можливості їх використання для вирішення проблеми ідентифікації їх сегментної структури…76 1.4.1. Детерміновані математичні моделі циклічних сигналів…77 1.4.2. Стохастичні математичні моделі циклічних сигналів…79 1.5. Постановка проблеми ідентифікації сегментної структури з урахуванням вибраної математичної моделі циклічних сигналів…88 1.6. Вимоги до розробляємих методів сегментації циклічних сигналів…93 1.7. Відомі методи сегментації циклічних сигналів…94 1.7.1. Методи сегментації циклічних сигналів (детермінований підхід)…94 1.7.2. Методи сегментації циклічних сигналів (стохастичний підхід)…102 1.7.3. Методи, які використовуються для розпізнавання (ідентифікації, класифікацїї,) виділених сегментів сегментів циклічного сигналу та методи аналізу його ритму…102 1.8. Висновки до першого розділу...108 Розділ 2. Сегментні структури циклічних сигналів. Постановка завдання сегментації циклічних сигналів...111 2.1. Концептуальна модель циклічних сигналів із сегментною структурою…111 2.2. Узагальнена сегментна структура циклічних сигналів. Основні математичні співвідношення для сегментних структур циклічних сигналів…116 2.2.1. Сегментна циклічна структура циклічних сигналів…118 2.2.2. Сегментна зонна структура циклічних сигналів…120 2.3. Узагальнена ритмічна структура циклічних сигналів. Основні математичні співвідношення для ритмічних структур циклічних сигналів…125 2.4. Таксономія класів моделей циклічних функцій із сегментною структурою…141 2.5. Постановка завдання сегментації циклічних сигналів із сегментною структурою…144 2.6. Висновки до другого розділу...147 Розділ 3. Методологія сегментації циклічних сигналів. Методи ідентифікації сегментних структур циклічних сигналів. Оцінювання точності розроблених методів сегментації...150 3.1. Методологія сегментації циклічних сигналів…150 3.2. Метод сегментації циклічного сигналу, моделлю якого є абстрактна циклічна функція із сегментною структурою…156 3.3. Метод сегментації циклічного сигналу, моделлю якого є детермінована циклічна числова функція дискретного аргументу із відомою (ідентифікованою) сегментною структурою…158 3.3.1. Метод сегментації циклічного сигналу з урахуванням відомої (ідентифікованої) сегментної циклічної структури…159 3.3.2. Метод сегментації циклічного сигналу з урахуванням відомої (ідентифікованої) сегментної зонної структури...163 3.4. Метод сегментації циклічного сигналу, моделлю якого є детермінована циклічна числова функція дискретного аргументу та детермінована циклічна інтервальна функція дискретного аргументу із сегментною структурою...171 3.4.1. Результати застосування методу сегментації циклічних сигналів, моделями якого є детермінована циклічна числова функція дискретного аргументу та детермінована циклічна інтервальна функція дискретного аргументу із сегментною структурою, оцінювання точності методу їх сегментації…180 3.5. Метод сегментації циклічного сигналу, моделлю якого є циклічний випадковий процес дискретного аргументу з сегментною структурою…185 3.5.1. Результати застосування методу сегментації циклічних сигналів, моделями яких є циклічні випадкові процеси із сегментною структурою, оцінювання точності методу їх сегментації…194 3.6. Модифікація блоку оцінювання сегментної структури циклічних сигналів, моделями яких є циклічні випадкові процеси із сегментною структурою, оцінювання похибок методу їх сегментації...199 3.7. Підхід до розпізнавання сегментів-зон, отриманих на основі методів сегментації циклічних сигналів…208 3.8. Приклади результатів застосування розроблених методів сегментації циклічних сигналів у різних галузях…209 3.8.1. Результати сегментації циклічних кардіосигналів (у медицині)…209 3.8.2. Результати сегментації циклічних процесів рельєфних утворень на поверхні металів (у механіці)…211 3.8.3. Результати сегментації циклічних економічних процесів (у економіці)...211 3.9. Висновки до третього розділу…213 Розділ 4. Методи оцінювання ритмічної структури циклічних сигналів. Аналіз точності розроблених методів оцінювання ритмічних структур…215 4.1. Постановка задачі оцінювання ритмічної структури циклічного сигналу….215 4.2. Метод оцінювання ритмічної структури за допомогою змішаної інтерполяції: кусково-квадратичної та кусково-лінійної…217 4.2.1. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній циклічній структурі…219 4.2.2. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній зонній структурі …223 4.3. Метод оцінювання ритмічної структури за допомогою змішаної інтерполяції квадратичним сплайном та кусково-лінійної…230 4.3.1. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній циклічній структурі…230 4.3.2. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній зонній структурі…233 4.4. Метод оцінювання ритмічної структури за допомогою змішаної інтерполяції кубічним сплайном та кусково-лінійної…236 4.4.1. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній циклічній структурі…236 4.4.2. Оцінювання дискретної ритмічної структури, що відповідає ідентифікованій сегментній зонній структурі…240 4.5. Методом оцінювання ритмічної структури шляхом визначення її додаткових елементів (відліків)…244 4.5.1. Оцінювання ритмічної структури, що відповідає ідентифікованій сегментній циклічній структурі...248 4.5.2. Оцінювання ритмічної структури, що відповідає ідентифікованій сегментній зонній структурі…249 4.6. Метод оцінювання оптимального полінома на сегменті в межах відліків сегментної структури…256 4.6.1. Оцінювання оптимального полінома, що описує ритмічну структуру в межах відліків ідентифікованої сегментної циклічної структури…257 4.6.2. Оцінювання оптимального полінома, що описує ритмічну структуру в межах відліків ідентифікованої сегментної зонної структури…259 4.7. Метод оцінювання ритмічної структури шляхом адаптивної її ідентифікації…265 4.8. Порівняльний аналіз точності відомого та розроблених методів оцінювання ритмічної структури циклічних сигналів…268 4.9. Висновки до четвертого розділу…278 Розділ 5. Методи статистичного опрацювання та комп’ютерного моделювання циклічних сигналів із урахуванням оціненої ритмічної структури...281 5.1. Дискретизація циклічних сигналів у системах цифрового опрацювання з урахуванням їх оціненої ритмічної структури…281 5.1.1. Похибки передискретизації циклічних сигналів з урахуванням оцінених їх ритмічних структур…285 5.2. Методи статистичного опрацювання циклічних сигналів із урахуванням оцінених їх ритмічних структур…289 5.2.1. Оцінки імовірнісних характеристик циклічних сигналів із урахуванням різних ритмічних структур…291 5.3. Методи статистичного опрацювання сумісних ймовірнісних характеристик вектора циклічних ритмічно пов’язаних випадкових процесів із урахуванням різних ритмічних структур…293 5.4. Результати застосування методів статистичного опрацювання циклічних сигналів з урахуванням оцінених ритмічних структур у різних галузях…295 5.4.1. Результати статистичного опрацювання циклічних кардіосигналів (у медицині)...295 5.4.2. Результати статистичного опрацювання циклічних процесів рельєфних утворень на поверхні металів (у механіці)…297 5.4.3. Результати статистичного опрацювання циклічних економічних процесів (в економіці)…300 5.5. Комп’ютерне моделювання циклічних сигналів із урахуванням їх оцінених ритмічних структур…302 5.5.1. Результати комп’ютерного моделювання циклічних кардіосигналів (у медицині)…306 5.5.2. Результати комп’ютерного моделювання циклічних процесів рельєфних утворень на поверхні металів (у механіці)…307 5.5.3. Результати комп’ютерного моделювання циклічних економічних процесів (в економіці)…309 5.5.4. Оцінювання точності методу комп’ютерного моделювання циклічних сигналів із урахуванням різних ритмічних структур. Похибки комп’ютерного моделювання циклічних сигналів…310 5.6. Метод перевірки статистичної гіпотези про належність досліджуваного сигналу до класу циклічних (метод верифікації циклічності)…312 5.7. Висновки до п’ятого розділу…324 Розділ 6. Діагностичні та прогностичні ознаки в системах цифрової обробки даних. Комплекс комп’ютерних програм для опрацювання й комп’ютерного моделювання циклічних сигналів…326 6.1. Інформативні ознаки в системах обробки циклічних сигналів...326 6.1.1. Діагностичні ознаки в системах цифрової діагностики стану серця людини за електрокардіосигналами (у медицині)…332 6.1.1.1. Діагностичні ознаки у вигляді перших двох коефіцієнтів розкладу оцінки математичного сподівання електрокардіосигналу у ряд Чебишева…333 6.1.1.2. Діагностичні ознаки у вигляді перших п’ятидесяти коефіцієнтів розкладу сумісних імовірнісних характеристик кореляційної функції та коваріаційної функції електрокардіосигналу у тригонометричні ряди...337 6.1.2. Діагностичні ознаки в системах цифрової діагностики стану поверхні металу за процесами рельєфних утворень, що виникають під силовим чи енергетичним впливом на неї (у механіці)…340 6.1.3. Прогностичні ознаки в системах опрацювання циклічних економічних процесів (в економіці)...344 6.2. Комплекс комп’ютерних програм для опрацювання та комп’ютерного моделювання циклічних сигналів…354 6.3. Висновки до шостого розділу...362 Висновки...365 Список використаних джерел...368 Додаток А. Системи відбору (системи відведень) та діагностичні зони електрокардіосигналу. Фрагменти електрокардіосигналів, які відповідають певним патологіям. Відомості про циклічні кардіосигнали, зокрема, магнітокардіосигнал, реокардіосигнал, фонокардіосигнал, синхронно зареєстровані кардіосигнали (полікардіосигнали) в автоматизованих комп’ютерних магнітокардіодіагностичних системах, існуючі методи їх дослідження та діагностичні ознаки…416 Додаток Б. Технологія дослідження стану поверхні металів…431 Додаток В. Відомі математичні моделі циклічних сигналів та явищ. Таблиця порівняння властивостей математичних моделей циклічних сигналів…438 Додаток Д. Відомі методи сегментації циклічних сигналів. Таблиця порівняння методів сегментації в системах цифрового опрацювання циклічних сигналів…479 Додаток Е. Аналіз науково-технічної області моделювання та опрацювання циклічних сигналів з позиції вживаних термінів та понять...532 Додаток Ж. Абстрактні циклічні функції з сегментною структурою як моделі циклічних сигналів…540 Додаток З. Деякі відомі підкласи випадкових процесів із циклічними ймовірнісними характеристиками…562 Додаток И. Приклади результатів сегментації різних циклічних сигналів розробленими методами…567 Додаток К. Аналітичні залежності для визначення коефіцієнтів у методі квадратичної інтерполяції на сегментах…571 Додаток Л. Основні відомості про передискретизацію циклічних сигналів…574 Додаток М. Основні відомості про статистичне опрацювання циклічних сигналів…580 Додаток Н. Застосування коефіцієнтів розкладу в різних базисах, як діагностичних ознак. Відомості про поліноми дискретного аргументу Чебишева, Кравчука та Лагера ...590 Додаток П. Розклади одновимірних та двовимірних оцінок статистичних характеристик циклічних сигналів…596 Додаток Р. Фрагмент програми для сегментації детермінованих циклічних сигналів…613 Додаток С. Фрагмент програми для сегментації стохастичних циклічних сигналів…618 Додаток Т. Фрагмент програми для оцінювання ритмічної структури циклічного сигналу...624 Додаток У. Фрагмент програми для статистичного опрацювання та комп’ютерного моделювання циклічних сигналів…630 Додаток Ф. Список публікацій здобувача за темою дисертації…635 Додаток Х. Свідоцтва про реєстрацію авторського права на комп’ютерні програми...650 Додаток Ц. Акти впроваджень…657
APA, Harvard, Vancouver, ISO, and other styles
4

Хома, Юрій Володимирович. "Теорія і методи комп’ютерного опрацювання біосигналів на основі машинного навчання." Diss., Національний університет "Львівська політехніка", 2020. https://ena.lpnu.ua/handle/ntb/56149.

Full text
Abstract:
У дисертаційній роботі вирішено актуальну науково-прикладну проблему у галузі інструментального забезпечення біоінформатики – розвиток теоретичних засад і нових підходів до удосконалення комп’ютерних систем опрацювання біосигналів на основі широкого використання штучних нейромереж і технологій глибинного навчання. Представлено концепцію трьох системних рівнів комп’ютерного опрацювання біосигналів, що базується на чіткому розмежуванні функцій системних рівнів від методів і засобів, що їх реалізують. Таке розділення сприяє структуризації знань, уможливлює оцінювання ефективності різних методів і вибір кращих проектних рішень із урахуванням специфіки завдань, умов і сценаріїв. Автоматизовано пошук оптимальних значень гіперпараметрів багатошарового нейрокласифікатора шляхом використання простої прогностичної моделі машинного навчання. Це дає змогу на 4 порядки скоротити час пошуку порівняно із повним перебором в просторі можливих значень. Розроблено і апробовано підхід до виявлення і коригування залишкових аномалій в біосигналах, який базується на застосуванні нейромережевих автоенкодерів для нелінійної фільтрації завад, зосереджених в тій самій частині спектру, що й корисний сигнал. Застосування підходу у 5-7 разів зменшує похибку ідентифікації. Результати роботи можуть бути застосовані до різних прикладних задач, у таких сферах як кібербезпека та системи доступу (біометрична ідентифікація), робототехніка (нейромережеві інтерфейси управління) і афективна інформатика (аналіз психоемоційного стану), а також у медицині (діагностика, клінічні дослідження тощо). В диссертационной работе решена актуальная научно-прикладная проблема в области инструментального обеспечения биоинформатики - развитие теоретических основ и новых подходов к совершенствованию компьютерных систем обработки биосигналов на основе широкого использования искусственных нейронных сетей и технологий глубинного обучения. Представлена концепция трех системных уровней компьютерной обработки биосигналов, основанная на четком разграничении функций системных уровней от методов и средств, которые используются для их реализации. Такое разделение способствует структуризации знаний, позволяет оценить эффективность различных методов и выбрать лучшие проектные решения с учетом специфики задач, условий и сценариев. Автоматизирован поиск оптимальных значений гиперпараметров многослойного нейроклассификатора путем использования простой прогностической модели машинного обучения. Это позволяет на 4 порядка сократить время поиска по сравнению с полным перебором в пространстве всех возможных значений. Разработан и апробирован подход к выявлению и коррекции остаточных аномалий в биосигналах, основанный на применении нейросетевых автоэнкодеров для нелинейной фильтрации помех, сосредоточенных в той же части спектра, и полезный сигнал. Применение коррекции аномалий в 5-7 раз уменьшает погрешность идентификации. Результаты работы могут быть применены в различных направлениях, таких как компьютерная безопасность и системы доступа (биометрическая идентификация), робототехника (нейросетевые интерфейсы управления) и аффективная информатика (анализ психоэмоционального состояния), а также в медицине (диагностика, клинические исследования и т.п.). The thesis solves a scientific problem in the field of instrumental support of bioinformatics - the development of theoretical foundations, improvement of methodological, algorithmic, software, and technical basis of the computer systems for processing of biosignals and data based on the extensive use of artificial neural networks and deep learning technologies. Current state and future perspectives of machine learning usage in the computer bioinformatics systems are analyzed in the thesis. It is shown that the heterogeneousness of data and a wide range of bioinformatics tasks influenced the development of specialized solutions for each separate domain or application. This complicates the possibility to compare the effectiveness of certain methods as well as the usage of the best system design variants for the new tasks. A novel framework related to the development of principles for the design of the biosignals computer processing systems involving a combination of machine learning techniques and digital signal processing is presented in the thesis. The expediency of separation of the system levels within the process of biosignals processing is reasoned, and their functions are outlined. Innovativeness of the suggested approach lies in the separation of functions of the lower, middle, and upper levels from methods with the help of which they are realized, as well as from the implementation variants for these methods based on the hardware and software components. The middle system level is significantly invariable both in regards to the task to be solved and to the biosignal type. At the same time, the upper level is specific as to the final application, and the lower level is specific as to the type of biosignal. Distinct outlining of functions for each system level and the inter-level interfaces opens perspectives for information structuring during the analysis of the known decisions, which simplifies the analysis and comparison of the effectiveness of these solutions. The design process of the computer system for the specific tasks gets simplified and potentially quickens due to the possibility of transferring the best results among the related tasks. On the basis of the developed three system levels concept the range of tasks related to machine learning application and biosignals processing on all the system levels was studied and analyzed. A novel method of optimal hyperparameters selection for a multilayer neural network classifier based on the Monte Carlo method and predictive modeling was developed and introduced in the thesis, new algorithms for detection and correction of anomalies in ECG-signals were presented as well. This resulted in reduction of hyperparameters optimization time by 4 orders compared to a grid search approach in the entire hyperspace of possible values. A new approach to the detection and correction of residual anomalies in biosignals was developed and tested. This approach is based on the use of neural network autoencoders for nonlinear filtering of distortions that are located in the same spectral band as the useful signal and its application reduces identification error by 5-7 times. A method of software conditioning of biosignals was developed, which enabled parameters unification of digital records of biosignals from open databases by resampling, rescaling, time normalization, etc. and its application improves the issue of low data volume while deep neural networks training. A comprehensive study of the influence of the variability of ECG signal acquisition systems (different data sets, sampling frequency, recording duration, data volume) on the accuracy of biometric identification was performed. The obtained results proved sufficient stability and reliability of the electrocardiogram as a biometric marker and confirmed the possibility of its real-world application in biometric identification systems. Neural network equalizer was designed for dynamical error correction of bioimpedance sensors, which resulted in expanding the operating frequency band up to 100 times. Functionality was expanded, metrological characteristics were improved and the speed of the digital rheograph was doubled by improving the Howland current pump by compensating the basic bioimpedance with a coded potentiometer (trimmer) and using a direct digital synthesis of orthogonal probing signals. Intelligent processing of vibroarthrography signals based on a combination of machine learning algorithms and wavelet decomposition was developed, which allowed to achieve better accuracy in terms of knee joint disorders analysis. The results of the work can be used in various applications, such as cybersecurity and access systems (biometric identification), robotics (bio-machine control interfaces), and affective informatics (psycho-emotional state analysis), as well as a medical domain (diagnostics, clinical trials).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography