Academic literature on the topic 'Система рівнянь Максвелла'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Система рівнянь Максвелла.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Система рівнянь Максвелла"

1

Сіжук, А. С., and С. М. Єжов. "Динамічний та макроскопічний описи газу взаємодіючих атомів у сильному електромагнітному полі поблизу резонансу." Ukrainian Journal of Physics 57, no. 8 (August 30, 2012): 864. http://dx.doi.org/10.15407/ujpe57.8.864.

Full text
Abstract:
Робота присвячена побудові мікроскопічної та макроскопічної теорій системи N взаємодіючих дворівневих атомів у сильному та слабкому електромагнітних полях. Побудовані мікроскопічні кінетичні рівняння для матричних елементів густини станів атомів та атомного руху N-атомної системи, які враховують взаємодію між атомами та атомів із полем. Відповідна макроскопічна кінетика побудована для одно- та двочастинкової функцій розподілів матриці густини атомних станів. Самоузгоджена система макроскопічних одночастинкових рівнянь для усереднених елементів матриці густини атомних станів разом із рівняннями Максвелла дозволяє описувати випромінювальні та поглинальні властивості системи і пояснити залежність оптичних властивостей від густини частинок у термінах далекодійної диполь-дипольної взаємодії між атомами.
APA, Harvard, Vancouver, ISO, and other styles
2

Лишук, В., Й. Селепина, М. Євсюк, A. Денисюк, and Д. Трофимчук. "Математична модель електричної довгої лінії з розподіленими параметрами в системах зв'язку." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, no. 36 (November 22, 2019): 47–52. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-9.

Full text
Abstract:
У статті запропоновано математичну модель довгої лінії з розподіленими параметрами. Використано рівняння Максвелла, тобто рівняння електромагнітного поля з частинними похідними, що найповніше відтворюють картину фізичних процесів у елементах передачі енергії. Розв'язок диференціальних рівнянь з частинними похідними реалізується застосуванням числових методів з допомогою комп'ютерної техніки.
APA, Harvard, Vancouver, ISO, and other styles
3

Крохмаль, Тетяна Миколаївна, and Олександр Миколайович Нікітенко. "Використання системи комп’ютерної математики Maple в курсі «Технічна електродинаміка»." Theory and methods of e-learning 3 (February 10, 2014): 148–52. http://dx.doi.org/10.55056/e-learn.v3i1.332.

Full text
Abstract:
Інтенсивне впровадження електротехніки, радіотехніки й електроніки майже у всі галузі народного господарства, науку, техніку, медицину, побут поставило перед широким колом фахівців (радіоінженери, інженери з прискорювальних установок, з ядерної техніки, електроніки, автоматики тощо) завдання активного освоєння методів розрахунків електродинамічних задач. Створення та експлуатація новітніх радіоелектронних пристроїв та приладів визначають зростаючу потребу у добре підготованих фахівцях радіотехнічного напряму.У сучасній радіотехніці й зв’язку широке застосування знаходять електромагнітні хвильові процеси і різноманітні пристрої, у яких ці процеси відіграють суттєву роль: передавальні лінії й хвилеводи, випромінювачі й приймальні антени, об’ємні резонатори й фільтри, невзаємні пристрої з феритами, елементи обчислювальних машин і комутаційних пристроїв, що працюють у сантиметровому або оптичному діапазоні.Курс «Технічна електродинаміка» та подібні до нього є обов’язковими для вивчення під час підготовки фахівців. Крім того, електродинаміка є важливою частиною теоретичної фізики, тому курси з електродинаміки читаються у переважній більшості університетів, й, у тій або іншій формі, і в ряді вищих технічних навчальних закладів.За програмою цього курсу найчастіше розглядаються наступні теми:1. Елементи векторного аналізу та математичної теорії поля2. Рівняння Максвелла3. Пласкі електромагнітні хвилі4. Відбиття та переломлення пласких електромагнітних хвиль5. Стале електричне поле6. Стале магнітне поле7. Поширення електромагнітних хвиль8. Хвилеводи9. Об’ємні резонаториВивчення вище перелічених тем вимагає використовувати такі операції з математичної теорії поля, як градієнт, ротор, дивергенція, скалярний та векторний добуток векторів тощо, розв’язувати рівняння у частинних похідних за методами Д’Аламбера (поширення хвиль), відокремлення змінних (рівняння Лапласа, Пуассона, Гельмгольця), визначати структури полів (типи хвиль) у хвилевідних лініях та об’ємних резонаторахЗ іншого боку, чільне місце у підготовці майбутнього фахівця посідає місце вміння використовування систем комп’ютерної математики (СКМ). Підготовка майбутнього фахівця до використання інформаційно-комунікаційних технологій має відбуватися не тільки на заняттях з дисциплін природничо-наукового циклу, а насамперед під час вивчення фундаментальних дисциплін.До простих і відносно нескладних систем комп’ютерної математики, щоправда з дещо обмеженими можливостями, відносять системи Derive та різні версії системи Mathcad. Система Derive вважається навчальною СКМ початкового рівня. Вона функціонує на основі мови штучного інтелекту (MuLisp) і є найменш вимогливою до апаратних можливостей персональних комп’ютерів: це єдина система, яка здатна працювати навіть на комп’ютерах раритетного класу IBM PC ХТ без жорсткого диску. Проте за можливостями вона не може конкурувати з системами більш високого класу ані у чисельних розрахунках, ані у символьних перетвореннях, ані у графічній візуалізації результатів обчислень.До середнього рівня СКМ відносять системи класу Mathcad. Ця СКМ має висококласну систему чисельних обчислень, проте дещо обмежену систему символьних перетворень, що реалізовано системою MuPAD (достатньо сказати, що лише 300 функцій ядра MuPAD доступні у Mathcad). Втім, графічні можливості різних версій Mathcad мало чим поступаються графіці більш складних СКМ.Більшість перших CKM призначалася для чисельних розрахунків. Їх результат завжди конкретний – це або число, або набір чисел, що зображується у вигляді таблиці, матриці або точок графіків. Однак вони не надавали можливості одержати загальні формули, що описують розв’язок задач. Як правило, з результатів чисельних обчислень неможливо було зробити загальні теоретичні, а часом і практичні висновки. Символьні (чи, інакше, аналітичні) операції – це якраз те, що кардинально відрізняє системи класу Maple та Mathematica (і подібні їм символьні математичні системи) від систем для виконання чисельних розрахунків. Під час виконання символьних операцій завдання на обчислення складаються у вигляді символьних (формульних) виразів, і результати обчислень також подаються у символьному вигляді. Числові результати при цьому є окремими, частковими випадками символьних.Вирази, що зображено у символьному вигляді, відрізняються високим ступенем загальності.Maple та Mathematica мають приблизно однакові можливості як в галузі символьних обчислень, так і в галузі числових розрахунків. Варто відзначити, що інтерфейс Maple є більш інтуїтивно зрозумілим, ніж у більш строгої системи Mathematica. Обидві системи в останніх реалізаціях зробили якісний стрибок у напрямі ефективності розв’язання задач в числовому вигляді, зокрема через підвищення швидкості виконання матричних операцій або застосування СКМ Matlab.Як ілюстрацію застосування СКМ Maple до курсу технічної електродинаміки розглянемо кілька прикладів розв’язання типових задач.1. Визначити дивергенцію і ротор векторного поля , яке має в декартовій системі координат єдину складову .with(VectorCalculus):F := VectorField(<20*sin(x/Pi),0,0>, ’cartesian’[x,y,z]); div := Divergence(F); rot := Curl(F); 2. Визначити дивергенцію і ротор векторного поля , яке характеризується такими складовими в циліндричній системі координат: , Аφ = 0, Аz = 0.F := VectorField(<10/r^2,0,0>, ’cylindrical’[r,phi,z]); div := Divergence(F); rot := Curl(F); 3. Визначити дивергенцію і ротор векторного поля , яке має в сферичній системі координат єдину складову Аθ = 8r ехр (– 10r).F := VectorField( <0,0,8*r*exp(-10*r)>, ’spherical’[r,phi,theta] ); div := Divergence(F); rot := Curl(F); 4. Побудувати структуру поля для хвилі типу Н12 у прямокутному хвилеводіcontourplot(H0*cos(m1*Pi*x/a)*cos(n1*Pi*y/b), x=0..a, y=0..b, contours=30, numpoints=2000, coloring=[white,white], filled=true, labels=["a","b"], title="Структура поля класу H (TE)"); 5. Побудувати структуру поля для хвилі типу Е21 у прямокутному хвилеводіcontourplot(E0*sin(m*Pi*x/a)*sin(n*Pi*y/b), x=0..a, y=0..b, contours=30, numpoints=2000, coloring=[white,white], filled=true, labels=["a","b"], title="Структура поля класу Е (TM)"); 6. Побудувати структуру поля для хвилі типу Е21 у круглому хвилеводіcontourplot([r,phi,E0*(epsilonmn/R)^2*BesselJ(m,r*epsilonmn/R)* sin(m*phi)], r=0..R, phi=0..2*Pi, coords=cylindrical, contours=30, numpoints=2000, coloring=[white,white], filled=true, title="Структура поля класу Е (TM)"): З вище викладеного та проілюстрованого випливає, що систему комп’ютерної математики Maple доцільно використовувати під час викладання курсу «Технічна електродинаміка» або подібні до нього, особливо на практичних заняттях або під час самостійної підготовки студентів, щоб суттєво зменшити час на непродуктивні дії обчислень чи графічних побудов.
APA, Harvard, Vancouver, ISO, and other styles
4

І. Ситар, Володимир, Іван М. Кузяєв, Костянтин М. Сухий, and Олег С. Кабат. "ЕКСПЕРИМЕНТАЛЬНІ ТА ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ ПРОЦЕСІВ ПОРОУТВОРЕННЯ ПРИ ОДЕРЖАННІ ГАЗОНАПОВНЕНИХ ПОЛІМЕРНИХ МАТЕРІАЛІВ." Journal of Chemistry and Technologies 29, no. 2 (July 21, 2021): 279–300. http://dx.doi.org/10.15421/jchemtech.v29i2.222917.

Full text
Abstract:
Проведено огляд експериментальних та теоретичних досліджень процесів пороутворення в процесі одержання газонаповнених полімерних матеріалів. Експериментальні дослідження багатьох авторів показали залежності динаміки зростаня, морфології та структури пухирів у розплавах полімерів, з яких утворюються пори в процесі створення газонаповнених матеріалів. Встановлено, що їх зростання у розплаві полімерів за постійної температури може тривати практично необмежено, що дозволяє ругулювати розміри пор за рахунок зміни часу їх створення. Визначено, що розміри пухирів у розплавах полімерів збільшуються за підвищення температури розплаву і форми, концентрації порофору та зменщується із збільшенням тиску й в’язкості розплаву. У теоретичних дослідженнях розглянуто основні теорії, що дозволяють моделювати й оптимізувати процеси утворення пор і структуру газонаповнених полімерних матеріалів, а також їх властивості, у тому числі, коефіцієнт теплопровідності й густину. Для аналізу поведінки газових пухирів, а саме, зміну радіусу пор і тиску всередині пухиря в якості оптимальної системи координат вибрали циліндричну, при цьому зв'язок між компонентами тензора напружень і компонентами тензора швидкостей деформацій (реологічні рівняння стану), залежно від реологічних властивостей матеріалів, описувався різними моделями (Де Вітта, Максвелла). Побудовано математичну модель динамічного поводження газового пухиря в полімерній матриці для двошарової схеми з метою досягнення необхідних розмірів газових пухирів.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Система рівнянь Максвелла"

1

Заверуха, О. І. "Математичне моделювання деяких задач магнітостатики методом R-функцій." Thesis, ХНУРЕ, 2018. http://openarchive.nure.ua/handle/document/5811.

Full text
Abstract:
Магнітні системи широко поширені у природі і техніці - магніти прискорювальних установок, системи стабілізації космічних супутників тощо. Через високу вартість повномасштабного вивчення таких систем протягом останніх десятиліть на перший план вийшло математичне моделювання та комп’ютерний чисельний аналіз. Математичне моделювання дозволяє зменшити час аналізу і витрати ресурсів обчислювальних машин, а так само дозволяє досліджувати ще і ті частини конструкції магніту, вимірювання в яких досить складні, але розподіл поля в даних конструкціях позначається на характеристиках їх роботи. Метод R-функцій дозволяє будувати структуру розв’язку крайової задачі, яка точно задовольняє всім крайовим умовам задачі і містить невідомі компоненти, вибір яких, наприклад, варіаційними методами, дозволяє задовольнити у тому чи іншому сенсі рівняння задачі.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography