Academic literature on the topic 'Потенціал тепловий'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Потенціал тепловий.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Потенціал тепловий"

1

Sokolovskyi, I. A. "Енергетична характеристика режимів сушіння букових пиломатеріалів." Scientific Bulletin of UNFU 29, no. 1 (February 28, 2019): 106–9. http://dx.doi.org/10.15421/40290123.

Full text
Abstract:
Розглянуто актуальний науково-прикладний аспект аналізу режимів за тепловим потенціалом сушильного середовища – тепловмістом вологого повітря. Наведено розрахункові формули для визначення тепловмісту і вологовмісту повітря, як агента сушіння. Обрано для дослідження низькотемпературні режими сушіння букових пиломатеріалів: за редакцією професора І. В. Кречетова, професора П. В. Соколова та європейської фірми Brunner-Hildebrand. Проаналізовано режими сушіння за величиною зміни ентальпії повітря для різних ступенів режимів сушіння та різних товщин букових пиломатеріалів (товщина від S1 = 19 мм до S1 = 70 мм). Наведено в підсумку таблиць інтегральне значення ентальпії для обраних режимів і товщин пиломатеріалів. Застосовано для апроксимації зміни ентальпії повітря залежно від вологості деревини рівняння параболи третього порядку. Наведено інтегральний вигляд формули зміни ентальпії повітря залежно від вологості деревини. Апроксимаційні залежності мають адекватне наближення до розрахункових, що видно з наведених у роботі графіків. Визначено, що для всіх наведених у роботі режимів сушіння інтегральне значення ентальпії зменшується із збільшенням товщини пиломатеріалів, що підтверджує той факт, що для сушіння більших товщин пиломатеріалів тепловий потенціал має бути нижчим, через менші витрати теплоти на процес сушіння. Визначено, що найбільших витрат теплової енергії потребує період зміни вологості від W = 40 % до W = 20 % через найбільший градієнт вологості по товщині матеріалу. Доведено, що відповідно до витрат теплової енергії на процес сушіння потрібно регулювати роботу агрегатів теплової енергії.
APA, Harvard, Vancouver, ISO, and other styles
2

Морозов, Ю. П., and А. А. Барило. "ОБҐРУНТУВАННЯ МЕТОДИКИ ВИЗНАЧЕННЯ ТЕПЛОВОГО ПОТЕНЦІАЛУ ГЕОТЕРМІЧНИХ ПЛАСТОВИХ ПОКЛАДІВ." Vidnovluvana energetika, no. 1(64) (March 30, 2021): 81–86. http://dx.doi.org/10.36296/1819-8058.2021.1(64).81-86.

Full text
Abstract:
Проведено аналіз геотермальних ресурсів на території України, які утворюють чотири великі артезіанські басейни, де можливо здійснити видобування геотермальних вод для їх використання в енергетиці, сільському господарстві, промисловості і житлово-комунальному господарстві. На основі аналізу фактичних даних існуючого фонду свердловин встановлено, що водоносні горизонти розташовані на глибинах від 400 до 7000 м. Пластові температури продуктивних термоводоносних горизонтів на території України змінюються у діапазоні від 50 до 90 °С. Для більшості пластових водоносних горизонтів України, які містять термальні води, з певним ступенем вірогідності можна прийняти таку фільтраційну схему: продуктивний проникний пласт є нескінченним за простяганням, однорідний, анізотропний з усередненими фільтраційними і теплофізичними параметрами, напірний і ізольований зверху і знизу водонепроникними пластами. Для розрахунків теплового потенціалу в межах геотермального родовища, що експлуатується в режимі відсутності зворотного закачування відпрацьованого природного теплоносія, достатньо вирішити тільки гідродинамічну задачу фільтрації теплоносія, оскільки притоки теплоти або холоду в пласті відсутні. Найбільш екологічно безпечним способом видобування геотермальних ресурсів є геотермальні циркуляційні системи (ГЦС), що забезпечують закачування відпрацьованого геотермального теплоносія в проникний підземний колектор термальної води. Тепловий потенціал гідрогеотермальних родовищ розраховується об’ємним способом, який складається з теплоти, яка міститься в пластовій геотермальній воді, у твердому скелеті продуктивного горизонту, а також теплоти, яка поступає з оточуючого проникний пласт гірського масиву. Величина теплопритоку з гірського масиву становить найбільші труднощі під час врахування теплового потенціалу геотермального родовища. На підставі відомого аналітичного розв’язку задачі теплообміну при русі рідини в підземних проникних шарах отримано рівняння, яке визначає час роботи ГЦС в постійному температурному режимі. На підставі цього рівняння показано, що вплив гірського масиву на час роботи ГЦС до моменту зниження температури на виході з ГЦС становить для типових параметрів ГЦС не менше 5 %. На підставі цих розрахунків доведено, що впливом теплопритоків від гірського масиву при розрахунках теплового потенціалу водовмісних пластів можна нехтувати. Бібл. 8.
APA, Harvard, Vancouver, ISO, and other styles
3

Морозов, Ю. П., Д. М. Чалаєв, Н. В. Ніколаєвська, and М. П. Добровольський. "ОЦІНКА ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ ТЕПЛОВОГО ПОТЕНЦІАЛУ ДОВКІЛЛЯ ТА ВЕРХНІХ ШАРІВ ЗЕМЛІ УКРАЇНИ." Vidnovluvana energetika, no. 4(63) (December 28, 2020): 80–88. http://dx.doi.org/10.36296/1819-8058.2020.4(63).80-88.

Full text
Abstract:
Проведено оцінку ефективності комбінованого використання низькопотенційної теплоти ґрунту та атмосферного повітря для роботи установки теплонасосного теплопостачання. Проведено аналіз основних положень нормативних документів ЄС та законодавчих актів України в частині віднесення теплових насосів до обладнання, яке використовує відновлювані джерела енергії та вибору критерію такого віднесення. Розглянуто мінімально допустиме значення середнього розрахункового сезонного коефіцієнту корисної дії. Проаналізовано вплив тривалості температур повітря різних градацій на теплопродуктивність теплового насосу та визначено часові інтервали ефективної роботи кожного з низькопотенційних джерел. Для підвищення ефективності роботи двоконтурної теплонасосної системи запропоновано схему вилучення низькопотенційної теплоти з використанням ґрунтової теплової труби і повітряного теплообмінника на базі двофазного гравітаційного термосифону. Розглянуто вихідні дані та припущення для оцінки теплового потенціалу верхніх шарів Землі, який може використовуватись для геотермального теплопостачання з застосуванням теплових насосів. Виконано порівняння енергетичних характеристик геотермального і повітряного теплового насосу при їх автономної і комбінованої роботи протягом року в кліматичних умовах міста Києва і показано, що комбіноване використання низькопотенційної теплоти атмосферного повітря і ґрунту дозволяє в 1,2 рази збільшити річну теплопродуктивність теплонасосної системи. На підставі проведених досліджень встановлено, що перевагою повітря, як теплоносія, є те, що повітряні теплові насоси можуть працювати практично повсюди і не вимагають облаштування низькотемпературного контуру. Перспективним способом підвищення ефективності теплового насоса при річному циклі його роботи є комбіноване використання низькопотенційної теплоти ґрунту та повітря. Теплонасосна система з двома джерелами енергії забезпечує високу теплопродуктивність теплового насоса протягом всього року і має більш високий показник енергетичної ефективності у порівнянні з традиційними рішеннями. Бібл.11, табл.2, рис.4.
APA, Harvard, Vancouver, ISO, and other styles
4

Матях, С. В., Т. В. Суржик, В. Ф. Рєзцов, and В. Ю. Іванчук. "НАПРЯМИ ТА ПЕРСПЕКТИВИ РОЗВИТКУ СОНЯЧНОЇ ТЕПЛОЕНЕРГЕТИКИ." Vidnovluvana energetika, no. 3(66) (September 30, 2021): 33–44. http://dx.doi.org/10.36296/1819-8058.2021.3(66).33-44.

Full text
Abstract:
У роботі представлено результати аналітичних досліджень щодо стану та перспектив розвитку сонячної теплової енергетики у світі та в Україні. Завдяки екологічним перевагам сонячних теплових технологій їх широке застосування є одним із перспективних напрямів декарбонізації світової енергетики. Розвитку сонячної теплоенергетики у світовій енергетиці приділяється серйозна увага і підтримка. Детальний огляд загальних світових тенденцій із документуванням сонячної теплової потужності, визначенням внеску сонячних теплових систем у постачання енергії та обсягів зменшення викидів вуглекислого газу за рахунок їх застосування показує постійно зростаючий попит на такі системи. У країнах з високим рівнем впровадження сонячного теплового обладнання створено повний комплекс нормативно-правового забезпечення даного процесу, на основі нормативно-методичного забезпечення і пакету засобів економічної підтримки діють ефективні державні програми. Завдяки наявності значного енергетичного потенціалу сонячного випромінювання широке впровадження теплоенергетичного обладнання в Україні є ефективним практично на всій території. Сонячне теплове обладнання має широкий діапазон використання в різних галузях господарювання України, його встановлення не потребує спеціальних дозволів, що значно скорочує терміни впровадження. Теплові процеси, які використовують енергію сонячного випромінювання, досліджені та опрацьовані майже для всіх напрямів теплових технологій, на ринку сонячного енергетичного обладнання є широка гама необхідних пристроїв та обладнання, однак в Україні практично відсутні моніторинг та заходи стимулювання їх впровадження. Для забезпечення масштабного впровадження сонячних теплових технологій в Україні необхідно створити комплекс нормативно-правового забезпечення даного процесу і розробити заходи щодо економічної підтримки як виробників енергетичного обладнання, так і споживачів теплової енергії. Відповідним державним органам необхідно підвищити рівень моніторингу даних щодо ефективності їх встановлення та експлуатації на території України. Важливим напрямом роботи є створення розгалуженої інфраструктури теплової сонячної енергетики з підрозділами на рівні місцевих територіальних громад. Бібл. 7, рис. 1.
APA, Harvard, Vancouver, ISO, and other styles
5

Chernetchenko, D. V., M. P. Motsnyj, N. P. Botsva, О. V. Elina, and M. M. Milykh. "Автоматизована система реєстрації біоелектричних потенціалів." Biosystems Diversity 21, no. 2 (November 12, 2013): 70–75. http://dx.doi.org/10.15421/011312.

Full text
Abstract:
Розроблено апаратно-програмний комплекс автоматизованої системи реєстрації біоелектричних потенціалів на базі USB-пристрою з подальшою обробкою оцифрованих сигналів на ПК. Запропоновано універсальну схему реєстрації біопотенціалів, яка дозволяє проводити експериментальні дослідження як в умовах окремого впливу на досліджуваний об’єкт холодової, теплової, фото- та електростимуляції, так і в умовах різноманітних комбінацій вказаних впливів. Клієнтська частина програми забезпечує візуалізацію, кількісний аналіз і збереження отриманих результатів у базі даних. Засобами комплексної автоматизованої системи зафіксовано біоелектричні потенціали листя кукурудзи у відповідь на теплові стимули. Охарактеризовано динаміку вказаних потенціалів, кількісно оцінено рівень потенціалів стабілізації. На базі отриманих експериментальних даних визначено параметри математичної моделі процесів генерації електричних імпульсів у клітині.
APA, Harvard, Vancouver, ISO, and other styles
6

Martsenyuk, V. P., I. V. Zhulkevych, A. S. Sverstiuk, N. A. Melnyk, N. V. Kozodii, and I. B. Berezovska. "ВИКОРИСТАННЯ БІОСЕНСОРІВ ДЛЯ МОНІТОРИНГУ НАВКОЛИШНЬОГО СЕРЕДОВИЩА." Вісник соціальної гігієни та організації охорони здоров'я України, no. 2 (October 18, 2019): 107–14. http://dx.doi.org/10.11603/1681-2786.2019.2.10491.

Full text
Abstract:
Мета: розглянути класифікацію біосенсорів (за типом перетворювача), принцип їх роботи, галузі застосування біосенсорів залежно від виду забруднювачів навколишнього середовища та основні напрямки подальшого розвитку біосенсорних технологій. Матеріали і методи. У дослідженні застосовано бібліосемантичний та аналітичний методи. Результати. Біосенсор є портативним аналітичним пристроєм, що складається з чутливого елемента біологічного походження та фізико-хімічного перетворювача. Його устаткування має такі компоненти: біорецептор, перетворювач, процесор сигналу на виході. Біосенсори класифікуються відповідно до біорецептора (ферменти, імуноафінність, ДНК і цілі мікробні клітини) чи перетворювача (електрохімічний, оптичний, п’єзоелектричний, електрохімічний та тепловий біосенсори). Як біосенсори, так і біологічні прилади можна використовувати як інструменти контролю параметрів навколишнього середовища – для оцінки фізичного, хімічного та біологічного моніторингу забруднювальних речовин у довкіллі. Основні програми біосенсорів призначено для виявлення та контролю різних забруднювальних речовин, включно солі важких металів, органічні та неорганічні забруднювачі, токсини, антибіотики і мікроорганізми. Висновки. Застосування сучасних нанотехнологічних біосенсорів має великий потенціал для екологічного моніторингу та для виявлення забруднювальних речовин, оскільки дані біологічні пристрої є портативними і дають змогу проводити вимірювання в режимі реального часу. Принцип роботи біосенсора ґрунтується на здатності фіксування біологічного матеріалу, відбувається за допомогою фізичного або мембранного захоплення, нековалентних або ковалентних зв’язків.
APA, Harvard, Vancouver, ISO, and other styles
7

Хілько, В. А., and В. Ю. Іванчук. "ОСОБЛИВОСТІ ВПРОВАДЖЕННЯ ЕКОЛОГІЧНО ЧИСТИХ ТЕХНОЛОГІЙ В ЕНЕРГЕТИЦІ УКРАЇНИ." Vidnovluvana energetika, no. 3(62) (September 28, 2020): 8–15. http://dx.doi.org/10.36296/1819-8058.2020.3(62).8-15.

Full text
Abstract:
Мета статті – визначення шляхів зменшення викидів парникових газів, які суттєво вливають на тепловий баланс землі. Доповідь 2019 року про розрив в рівнях викидів, яка підготовлена Програмою ООН з навколишнього середовища, свідчить, що заходи по поточній політиці скорочення шкідливих викидів, явно недостатні. В світі спостерігається постійний зростаючий інтерес до відновлюваних джерел енергії, викликаний екологічними міркуваннями: зміна клімату і збільшення вмісту в атмосфері парникових газів. В Україні стрімким темпом розвивається використання відновлюваних джерел енергії, зокрема вітряної та сонячної енергії. Разом з тим при вводі нових потужностей об’єктів на базі ВДЕ існують проблеми мережевого та системного характеру. Тому збільшення потужностей ВДЕ потребує створення в Україні більш гнучкої енергосистеми, в тому числі вирішення питання з резервними і балансуючими потужностями. В статті обґрунтовано використання електричних станцій на базі відновлюваних джерел енергії, які оснащені системами акумулювання електроенергії на основі водню, в якості балансуючих потужностей оператора системи накопичення енергії. Зазначена система накопичення електричної енергії дозволяє перенесення енергії з періоду її «профіциту» в період її «дефіциту». Особливість водневої технології полягає в тому, що забезпечується найбільш економічний варіант зберігання електроенергії і подальше використання цієї запасеної енергії при тривалості розряду до кількох діб. Надано відомості про реальний пілотний проект впровадження накопичення енергії з ВДЕ за водневою технологією, який впроваджується в Європейському Союзі за програмою «Horizon 2020». Гібридні станції на ВДЕ, які оснащені водневими технологіями, можуть забезпечити балансування електроенергії в реальному часі. Технічно-досяжний потенціал ВДЕ в країні перевищує поточне річне споживання електроенергії України. Використання «зеленого» водню, виробленого без викидів в атмосферу CO2, сприяє вирішуванню екологічної проблеми з глобального потепління. Бібл. 9, табл. 1, рис. 3.
APA, Harvard, Vancouver, ISO, and other styles
8

Билека, Борис Дмитриевич, and Леонид Кириллович Гаркуша. "Повышение экономичности процессов генерации теплоты в коммунальной теплоэнергетике и теплотехнологиях на основе комбинированных когенерационно-теплонасосных технологий." Scientific Works 83, no. 1 (September 1, 2019): 10–17. http://dx.doi.org/10.15673/swonaft.v83i1.1410.

Full text
Abstract:
Наиболее эффективной технологией генерации электрической и тепловой энергии для нужд коммунальной теплоэнергетики и теплотехнологий является комбинированная выработка энергии с использованием современных когенерационных установок на основе газопоршневых двигателей и газотурбинных установок, работающих на природном газе или биогазе. Комбинированная выработка энергии на такой базе существенно снижает затраты топлива в сравнении с традиционной раздельной выработкой электроэнергии на тепловых конденсационных электростанциях или на теплоэлектроцентралях и тепловой на котельных установках. Дальнейшее заметное повышение энергоэффективности процессов генерации теплоты для рассматриваемых нужд может быть достигнуто путем включения в процесс теплонасосных установок, т.е. создание комбинированных когенерационно-теплонасосных установок. Они будут иметь наивысшую топливную экономичность в сравнении со всеми существующими в традиционной теплоэнергетике. Это обусловлено целым рядом факторов. Современные когенерационные установки (КГУ) на базе газопоршневых двигателей (ГПД) и газотурбинных установок (ГТУ) имеют электрический к.п.д. выше, чем тепловая электростанция (ТЭС) или теплоэлектроцентраль (ТЭЦ) – 30…45 % и 28…35 %, соответственно. В котлах-утилизаторах более эффективно используется высокотемпературная сбросная теплота двигателей, в результате чего суммарный к.п.д. установок достигает 85…88 %. Такие установки обеспечивают децентрализацию производства электрической и тепловой энергии, поэтому на автономных КГУ существенно ниже, а иногда практически отсутствуют потери в электрических и тепловых сетях, достигающие в централизованных системах 8…12 % и 15…30%, соответственно. Немаловажным является и то, что они повышают надежность работы всего объекта, делая его независимым от внешних сетей. Включение в процесс генерации теплоты теплонасосной установки (ТНУ) вызывает заметное повышение энергоэффективности, увеличивая топливную экономичность, благодаря использованию практически даровой низкопотенциальной теплоты природного, промышленного или бытового происхождения, а также высокой эффективности преобразования в ТНУ этой теплоты в теплоту более высокого потенциала с использованием электрической энергии КГУ. Целью работы является оценка перспектив применения комбинированных когенерационно-теплонасосных установок на базе ГПД и ГТУ для повышения энергоэффективности и энергосбережения при генерации теплоты в коммунальной теплоэнергетике и теплотехнологиях, в частности, в процессах сушки.
APA, Harvard, Vancouver, ISO, and other styles
9

Ощипок, Ігор Миколайович. "Математичне моделювання дії теплового випромінювання на термічну обробку ковбасних батонів." Scientific Works 84, no. 1 (December 14, 2020): 42–47. http://dx.doi.org/10.15673/swonaft.v84i1.1867.

Full text
Abstract:
У статті досліджено використання теплоти інфрачервоного випромінювання яке є одним з ефективних шляхів інтенсифікації теплової обробки ковбасних батонів і дозволяє значно скоротити тривалість її обробки і підвищити якість готових виробів. На основі сучасного підходу вирішене завдання пов'язане з тепловою обробкою, яке полягає в дослідженні тих способів і режимів, забезпечуючих необхідну інактивацію мікрофлори, максимальне збереження харчової цінності продукту. На основі визначених передумов розглянута математична модель спільного тепломасопереносу і теплової обробки ковбасних батонів циліндричної форми в обсмажувальній установці з інфрачервоним (ІЧ) -нагріванням. досліджені такі способи і режими, які забезпечували б, разом з необхідною інактивацією шкідливої мікрофлори, максимальне збереження харчової цінності продукту. досліджено комплекс параметрів, які мають безпосередній вплив на хід процесу теплової дії на ковбасні батони. Враховане загасання променистого потоку, що проникає в продукт, яке описане параболічним законом. Реалізовані ефективні шляхи інтенсифікації теплової обробки ковбасних батонів з використання енергії і підвищення якості готових виробів на основі математичної моделі дії теплового електромагнітного поля ІЧ діапазону. Поставлена і аналітично вирішена задача спільного тепло- і масопереносу при інфрачервоному нагріванні ковбасного батона циліндричної форми. Отримані результати дозволять розрахувати поля температури і вмісту вологи, усереднені значення відповідних потенціалів перенесення, температури нагрівання, витрати тепла в процесі теплообміну, а також одержати формули, зручні для інженерних розрахунків. Запропоновані аналітичні конструкції дають можливість визначати час, необхідний для досягнення продуктом певної температури і вмісту вологи, забезпечуючи втрати маси при підсушуванні в діапазоні 0,5-1,8 % при тривалості процесу від 3 до 30 хвилин.
APA, Harvard, Vancouver, ISO, and other styles
10

Geletukha, G. G., and T. A. Zheliezna. "СТАН ТА ПЕРСПЕКТИВИ РОЗВИТКУ БІОЕНЕРГЕТИКИ В УКРАЇНІ." Industrial Heat Engineering 39, no. 2 (April 20, 2017): 60–64. http://dx.doi.org/10.31472/ihe.2.2017.09.

Full text
Abstract:
Проаналізовано місце біомаси в енергетичному балансі України та роль біоенергетики у досягненні цілей Національного плану дій з відновлюваної енергетики. Представлено результати оцінки енергетичного потенціалу біомаси в Україні. Розглянуто проблеми встановлення тарифів на теплову енергію та основні проблеми ринку паливної біомаси. Запропоновано шляхи створення конкурентних ринків теплової енергії та біопалива в Україні.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Потенціал тепловий"

1

Кошельнік, Олександр Вадимович, and Ю. О. Недосекіна. "Перспективи використання водневих утилізаційних систем в енерготехнологічних комплексах скловарного виробництва." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/38442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ульєв, Леонід Михайлович, and Олександр Олександрович Ковальчук. "Визначення потенціалу енергозбереження процесу виробництва та очищення двоокису титану." Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/8041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Громов, Р. Ю. "Проектування сонячного повітряного колектора для опалення приміщень." Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/81729.

Full text
Abstract:
Вступ. Вихідні дані. Особливості використання сонячних колекторів та їх характеристики. Методика розрахунку характеристик повітряного сонячного колектору (швидкісний напор, об’ємна витрата через трубопровід, зв’язок масового та об’ємного расходів, кількість теплоти підведеної до повітря) Розрахунок характеристик повітряного сонячного колектору. Дослідження роботи сонячного повітряного колектору. Розділ охорони праці. Висновки.
Введение. Исходные данные. Особенности использования солнечных коллекторов и их характеристики. Методика расчета характеристик воздушного солнечного коллектора (скоростной напор, объемный расход через трубопровод, связь массового и объемного расхода, количество теплоты подведенной к воздуху) Расчет характеристик воздушного солнечного коллектора. Исследование работы солнечного воздушного коллектора. Раздел охраны труда. Выводы.
Introduction . Initial data. Features of the use of solar collectors and their characteristics. The method of calculating the characteristics of the air solar collector (velocity head, volume flow through the pipeline, the relationship of mass and volume flow, the amount of heat supplied to the air) Calculation of the characteristics of the air solar collector. Study of the solar air collector. Section of labor protection. Findings.
APA, Harvard, Vancouver, ISO, and other styles
4

Мадай, Іван Володимирович. "Антикризова стратегія комунального підприємства: фінансовий потенціал досягнення ефективності реалізації (на прикладі Комунального підприємства теплових мереж «Тернопільміськтеплокомуненерго» Тернопільської міської ради)ТЕРНОПІЛЬСЬКОЇ МІСЬКОЇ РАДИ)." Master's thesis, 2018. http://elartu.tntu.edu.ua/handle/lib/26787.

Full text
Abstract:
Об’єктом дослідження є фінансовий потенціал реалізації антикризової стратегії КП ТМ «Тернопільміськтеплокомуненерго» ТМР. Предметом дослідження є теоретико-методологічні підходи до формування антикризових стратегій та обґрунтування фінансових джерел її реалізації у сучасних умовах. Метою дипломної роботи є аналіз, систематизація та узагальнення теоретико-методологічних підходів і практичних рекомендацій щодо вибору та обґрунтування антикризових стратегій для енергетичних підприємств комунальної власності. Досліджено економічну сутність кризи на підприємстві та причини її виникнення. Встановлено сутність взаємозалежностей антикризового управління та антикризової стратегії. Виявлено особливості фінансів підприємств комунального господарства. Здійснено оцінку фінансового стану КП ТМ «Тернопільміськтеплокомуненерго» ТМР. Оцінено ймовірність настання банкрутства КП ТМ «Тернопільміськтеплокомуненерго» ТМР. Обґрунтовано формування антикризової політики на підприємствах з виробництва теплової енергії. Розроблено механізм управління дебіторською заборгованістю як інструмент антикризової стратегії КП ТМ «Тернопільміськтеплокомуненерго» ТМР. Проаналізовано ринок теплозабезпечення в Україні. Оцінено економічну ефективність впровадження механізму управління дебіторською заборгованістю із залученням банківських установ.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Потенціал тепловий"

1

Andrenko, T. I., S. V. Kiseleva, and Yu Yu Rafikova. "TECHNICAL POTENTIAL OF CROP WASTE AS AN ENERGY RESOURCE FOR AGRICULTURAL AREAS OF DAGESTAN." In RENEWABLE ENERGY: CHALLENGES AND PROSPECTS. ALEF, 2020. http://dx.doi.org/10.33580/2313-5743-2020-8-1-498-503.

Full text
Abstract:
Использование древесной биомассы, полученной от обрезков и удаления многолетних сельскохозяйственных насаждений для нужд энергетики, является относительно новым направлением, которое сейчас активно исследуется и развивается в Европе. Опыт европейских стран показывает, что использование отходов выращивания многолетних насаждений для получения энергии может носить коммерческий, экономически выгодный характер. В России садоводство и виноградарство также является традиционным направлением сельского хозяйства в южных регионах, в частности, в Республике Дагестан. Дагестан энергозависимый регион с целым рядом проблем топливно-энергетического комплекса. Решение этих проблем может заключаться в использовании возобновляемых энергоресурсов региона. Дагестан характеризуется развитым сельским хозяйством. Основные направления земледелия в нём – возделывание зерновых культур и плодоводство. Отходы этих производств рассматриваются в этой работе как ресурс для получения тепловой энергии. С этой целью для всех районов республики выполнен расчёт технического теплового потенциала отходов этого типа растениеводства. В программе QGIS проведён анализ пространственного распределения полученных значений потенциала. Сделан вывод, что на севере республики наиболее эффективно использование в качестве энергоресурса отходов зерновых (соломы). Ряд горных, прибрежных и южных районов обладают значительным техническим тепловым потенциалом обрезков древесины плодовых и винограда. Подобный анализ ресурсов различных видов растениеводства, их распределения по территории, а также технологической базы для их переработки в энергетических целях целесообразен и в других сельскохозяйственных регионах с преобладанием сельского населения и наличием экономических и энергетических проблем.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography