Academic literature on the topic 'Лабораторний макет'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Лабораторний макет.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Лабораторний макет"

1

Ткачук, Андрій Геннадійович, Антон Валерійович Коваль, Анна Анатоліївна Гуменюк, Мартін Віталійович Богдановський, and Марія Степанівна Гриневич. "Інтелектуальна мехатронна система «робот-гексапод»." Технічна інженерія, no. 1(87) (June 16, 2021): 66–72. http://dx.doi.org/10.26642/ten-2021-1(87)-66-72.

Full text
Abstract:
У статті розглянуто особливості конструкції мобільних роботів-гексаподів. Встановлено, що така мобільна платформа є біонічною системою, яка використовує для пересування шість ніг та імітує своїм зовнішнім виглядом і способом пересування павука. Робот-гексапод має шість рухомих ланок, а для забезпечення його руху достатньо всього лише трьох робочих. Перевагами робота є його висока прохідність на нерівних поверхнях порівняно з колісними платформами. Розроблено лабораторний макет автоматизованої мехатронної системи «робота-гексапода». Було обрано класичну конструктивну реалізацію робота, що передбачає шість кінцівок із трьома ступенями рухомості, які розміщені симетрично по три рухомі ланки з двох сторін робота і приводяться в рух завдяки вісімнадцяти серводвигунам. Розроблено систему керування роботом, яка полягає у плануванні переміщення робота з врахуванням інформації, що надходить з датчиків, які в свою чергу забезпечують загальний зворотний зв’язок, надаючи інформацію про різні параметри зовнішнього середовища. Для здійснення рухів гексапода реалізовано відповідний алгоритм, яким передбачено розподіл на дві групи кінцівок робота та систему дистанційного керування ним. Проведено моделювання переміщення робота за допомогою ROS + Gazebo.
APA, Harvard, Vancouver, ISO, and other styles
2

Носов, В. Н., В. Д. Володин, and С. Г. Иванов. "Лазерный локатор для регистрации статистических характеристик зеркальных бликов на морской поверхности с веерной диаграммой направленности зондирующего пучка, "Фундаментальная и прикладная гидрофизика"." Фундаментальная и прикладная гидрофизика, no. 2 (2020): 88–95. http://dx.doi.org/10.7868/s2073667320020112.

Full text
Abstract:
Дано описание макета нового компактного лазерного локатора, предназначенного для дистанционной регистрации характеристик морского волнения с борта судна. Прибор регистрирует с помощью ПЗС-линейки отраженное от морской поверхности лазерное излучение, имеющее форму «веера». В макете использован лазерный диод Oclaro HL63193, работающий в непрерывном режиме в области длин волн 634-637 нм с выходной мощностью до 500 мВт. Освещаемый лазером участок на морской поверхности представляет собой полосу шириной 4-5 мм и длиной 2-3 м (при размещении макета на судне на высоте 6-9 м над уровнем моря). Приемный блок макета выполнен на базе кинопроекционного объектива ОП-55АР и ПЗС-линейки Sony ILX554A. Выполнена проверка работоспособности макета в лабораторных и морских условиях. Показано, что скорость сканирования морской поверхности может быть значительно выше (до 833 Гц), чем у ранее созданных макетов с узким пучком, когда используется механическое сканирование зеркала (7-15 Гц). Это позволяет увеличивать скорость накопления данных и тем самым уменьшать дисперсию измеряемых за заданное время величин, что в свою очередь делает возможным регистрацию более слабых воздействий гидродинамических процессов на морскую поверхность. При этом масса макета уменьшилась до 5 кг вместо 35 кг (у макета с узким пучком и механическим сканером).
APA, Harvard, Vancouver, ISO, and other styles
3

Murashko, D. N., D. N. Klypin, and D. A. Titov. "MICROPROCESSOR-BASED ULTRASONIC GENERATOR WITH FREQUENCY CONTROL OF POWER." Dynamics of Systems, Mechanisms and Machines 9, no. 3 (2021): 078–85. http://dx.doi.org/10.25206/2310-9793-9-3-78-85.

Full text
Abstract:
Ультразвуковые колебания широко используются в науке, а также в различных отраслях промышленности и в медицине. При использовании ультразвуковых генераторов на основе пьезокерамических преобразователей возникает задача поддержания мощности пьезокерамического преобразователя на заданном уровне. В данной статье разработан модифицированный алгоритм регулировки мощности пьезокерамического преобразователя на основе петли фазовой автоподстройки частоты. Отличие нового алгоритма заключается в том, что петля регулирования мощности включена в петлю фазовой автоподстройки частоты. На базе алгоритма синтезирована структурная схема и выполнена микропроцессорная реализация ультразвукового генератора (создан макет). Предварительные лабораторные испытания макета показали, что новый алгоритм позволяет компенсировать влияние возмущающих воздействий и эффективно управлять параметрами сигналов. Применение двухконтурной системы регулирования значительно расширяет диапазон перестройки резонансной частоты задающего генератора. По результатам испытаний разработанный алгоритм может быть рекомендован для использования в ультразвуковых аппаратах различного назначения.
APA, Harvard, Vancouver, ISO, and other styles
4

Конойко, Алексей, and Виталий Рябцев. "Определение величины и направления изгибов и деформаций с помощью датчиков на оптоволоконных интерферометрах." Journal of Civil Protection 2, no. 1 (February 15, 2018): 18–24. http://dx.doi.org/10.33408/2519-237x.2018.2-1.18.

Full text
Abstract:
Разработан лабораторный макет волоконно-оптического интерферометрического датчика на основе двух интерферометров Майкельсона с использованием излучения на двух длинах волн, позволяющего измерять как величину, так и направление в плоскости смещения изгибов и деформаций контролируемых объектов, проведены его экспериментальные исследования. Результаты исследований показали соответствие положения боковых пиков выходной интерференционной картины величине и направлению реального смещения измерительного волокна.
APA, Harvard, Vancouver, ISO, and other styles
5

Овчинников, Михаил Юрьевич, Mikhail Yur'evich Ovchinnikov, Дмитрий Сергеевич Ролдугин, Dmitry Sergeevich Roldugin, Р. А. Боргес, R. A. Borges, Ш. Каппелетти, C. Cappelletti, С. Баттистини, and S. Battistini. "Моделирование движения макета космического аппарата на аэродинамическом подвесе для отработки режима одноосной стабилизации магнитными катушками." Математическое моделирование 31, no. 11 (2019): 36–46. http://dx.doi.org/10.1134/s0234087919110030.

Full text
Abstract:
Проводится математическое моделирование управляемого углового движения макета системы ориентации космического аппарата на сферическом аэродинамическом подвесе. При этом ставится задача отработки алгоритма магнитной ориентации, обеспечивающего одноосную стабилизацию аппарата на Солнце. Подобраны режимы движения макета, позволяющие в наземных условиях провести отработку алгоритма управления. Среди них получена устойчивая прецессия макета и движение, близкое к плоскому. Проведено математическое моделирование движения макета в этих режимах, показывающее возможность его реализации на современном лабораторном оборудовании.
APA, Harvard, Vancouver, ISO, and other styles
6

Филатов, Д. О., М. Е. Шенина, Д. А. Антонов, А. В. Круглов, В. Г. Шенгуров, С. А. Денисов, В. Е. Котомина, О. Н. Горшков, and И. Н. Антонов. "МЕМРИСТОРЫ НА ОСНОВЕ ГЕТЕРОЭПИТАКСИАЛЬНЫХ СТРУКТУР SIGE." Nanoindustry Russia 14, no. 7s (October 3, 2021): 683–84. http://dx.doi.org/10.22184/1993-8578.2021.14.7s.683.684.

Full text
Abstract:
Получены лабораторные макеты мемристоров на основе структур Ag / Ge / Si(001) и Ag / Si / Ge / Si(001), принцип действия которых основан на электромиграции ионов Ag+ по дислокациям, прорастающим через слои структур. Исследованы особенности механизма резистивного переключения и процессы деградации мемристоров.
APA, Harvard, Vancouver, ISO, and other styles
7

ВАСИЛИК, Н. Я., and С. В. ФИНЯКОВ. "ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ГАЗОВЫХ ИНФРАКРАСНЫХ ИЗЛУЧАТЕЛЕЙ, РАБОТАЮЩИХ НА РЕЖИМАХ ВЫНУЖДЕННОГОПОВЕРХНОСТНОГО ГОРЕНИЯ." Gorenie i vzryv (Moskva) - Combustion and Explosion 14, no. 3 (August 31, 2021): 27–34. http://dx.doi.org/10.30826/ce21140304.

Full text
Abstract:
Проведены экспериментальные исследования процесса горения смесей природного газа с воздухом на лабораторных макетах газового инфракрасного излучателя (ГИИ), работающего на режимах вынужденного поверхностного горения (ВПГ). Процесс горения происходил вблизи поверхности системы пластин из жаростойкого металлического сплава ПХ25Ю6. Конструкции макетов ГИИ и режим ВПГ позволили реализовать устойчивые режимы поверхностного горения в области значений удельной мощности поверхностного горенияот 2,15 до 7,55 МВт/м2 на единицу площадипоперечного сечениягазового потока. Эксперименты проводились на двух макетах. Габариты системы излучающих пластин первого макета: ширина 78 мм; длина 92 мм; высота от 110 до 250 мм. Габариты излучающей поверхности второго макета: ширина 78 мм; длина 92 мм; высота 403 мм. Мощность горения в макетах ГИИ изменялась в интервале от 12 до 42 кВт. Концентрация окислов азота в продуктах сгорания не более 16 ppm, концентрация моноксида углерода не более 10 ppm при значениях коэффициента избытка воздуха 1,5. Максимальнаятемпература наружной поверхности излучающих пластин 1280 ◦С. Коэффициент преобразования энергии горения в энергию излучения на макетах ГИИ высотой 403 мм достигал значений более 40%.
APA, Harvard, Vancouver, ISO, and other styles
8

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
9

Лекомцев, Александр Викторович, Константин Алексеевич Дерендяев, Андрей Сергеевич Бурцев, Иван Борисович Степаненко, and Даниил Борисович Жигарев. "УТИЛИЗАЦИЯ БАЛЛАСТНОЙ ПОПУТНО ДОБЫВАЕМОЙ ВОДЫ С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ СКВАЖИННОЙ СЕПАРАЦИИ ВОДОНЕФТЯНЫХ ЭМУЛЬСИЙ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, no. 10 (October 26, 2020): 178–86. http://dx.doi.org/10.18799/24131830/2020/10/2870.

Full text
Abstract:
Актуальность. Одной из основных проблем нефтедобывающей промышленности в сфере добычи нефти и газа является добыча больших объемов балластной воды. Средняя кратность перекачиваемой воды к нефти может составлять 4:1 и более. На территории Пермского края данная проблема является особенно актуальной, так как многие месторождения находятся на 3 и 4 стадиях разработки и требуют внедрения новых технологий для более рентабельной добычи нефти. В связи с перекачкой больших объемов жидкости происходит более быстрый процесс износа оборудования и появляются дополнительные затраты электроэнергии для его использования. В связи с этим внедрение технологии скважинной и кустовой сепарации водонефтяной эмульсии является одним из наиболее эффективных способов решения производственной задачи путем децентрализации системы сбора и подготовки скважинной продукции. Цель:уменьшение затрат на сбор и подготовку скважинной продукции путем применения технологии кустовой сепарации водонефтяной эмульсии при децентрализованной системе подготовки. Объект: кусты скважин со средней обводненностью65–70% и более. Методы:обзор научной литературы, моделирование процесса кустовой сепарации в Aspen HYSYS; лабораторные исследования на созданном макете, имитирующем скважину. Результаты.Представлена технология кустового разделения продукции скважин на нефть и воду с дальнейшимиспользованием попутнодобываемой воды в системе поддержания пластового давления. Представлена принципиальная технологическая схема установки. Проведены лабораторные испытания, выявлены оптимальные параметры её работы.Приведена технико-экономическое оценка реализации технологии и обоснованные технические решения.
APA, Harvard, Vancouver, ISO, and other styles
10

Крапивин, В. Ф., V. F. Krapivin, Ф. А. Мкртчян, and F. A. Mkrtchyan. "О РЕШЕНИИ ОБРАТНОЙ ЗАДАЧИ СПЕКТРОФОТОМЕТРИИ И СПЕКТРОЭЛЛИПСОМЕТРИИ." Проблемы окружающей среды и природных ресурсов, no. 8 (2021): 19–29. http://dx.doi.org/10.36535/0235-5019-2021-08-2.

Full text
Abstract:
Изложены результаты исследований по оценке возможностей применения сенсоров оптического и микроволнового диапазонов для диагностики состояния гидрофизических и гидрохимических систем различного пространственного масштаба. Разработан макет информационно-моделирующей системы для гидрохимических исследований (ИМСГИ), включающей сенсоры оптического и микроволнового диапазонов и обладающей функциями диагностики и адаптивной идентификации жидкостей. Система основана на формировании базы спектральных эталонов жидких растворов, получаемых с помощью многоканального спектрофотометра или спектроэллипсометра, и используемых для адаптивного распознавания спектральных образов. Процесс обучения и последующее распознавание реализуются в соответствии с определенным набором методик, алгоритмов и процедур сбора, анализа, сортировки и обработки данных измерений. Совокупность всех этих средств составляет структуру информационномоделирующей системы, ориентированной на оперативную диагностику состояния водных объектов в условиях многоканальных потоков информации от датчиков контактного и дистанционного действия и с применением высокоэффективных информационных технологий для решения задач классификации и идентификации водных объектов. Решение задачи оперативного многопланового контроля качества воды и состояния гидрохимических систем при учете их пространственной неоднородности и наличием множества физических, химических и биологических факторов, влияющих на их состояние, обеспечивается набором компьютерных алгоритмов и моделей, составляющих систему автоматизации гидрохимического мониторинга. Этот набор обеспечивает параметризацию типового водного баланса ограниченной территории, которая отражает взаимодействие компонентов гидрологического цикла. При этом система обладает функцией адаптации к реальному гидрофизическому объекту или процессу. ИМСГИ может использоваться при контроле качества водной среды или других жидкостей в условиях экспедиций в отдаленные регионы, где невозможно использовать химическую лабораторию. Работа выполнена по программе госзадания №0030-2019-0008 «Космос».
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Лабораторний макет"

1

Борисенко, Євген Анатолійович, and Т. Р. Халімов. "Лабораторний макет для дослідження характеристик ультразвукового далекоміра." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Слюсаренко, О. А., and В. П. Карнаушенко. "Комплекс лабораторних робіт із застосування комплекту розробника ST Microelectronics." Thesis, ХНУРЕ, 2018. http://openarchive.nure.ua/handle/document/8933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Левченко, Е. В., and В. П. Карнаушенко. "Лабораторный макет на основе отладочной платы Arduino." Thesis, ХНУРЭ, 2018. http://openarchive.nure.ua/handle/document/8926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Криштафович, С. А., and А. В. Бородин. "Лабораторный макет для измерения электрофизических параметров тонких пленок." Thesis, ХНУРЕ, 2017. http://openarchive.nure.ua/handle/document/8391.

Full text
Abstract:
Thin films have different electro physical parameters: electro conductivity, thermal conductivity and electrical stability. This article is about device, which help analyze different temperature dependence. This device is built by microcontroller Atmega 256 and sensor Si7051.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Лабораторний макет"

1

Аналіз хімічних сполук. Івано-Франківськ: Голіней О.М., 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Аналіз хімічних сполук. Івано-Франківськ: Голіней О.М., 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography