Academic literature on the topic 'Коефіцієнти тепловіддачі'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Коефіцієнти тепловіддачі.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Коефіцієнти тепловіддачі"

1

Бордаков, М. М. "ВИЗНАЧЕННЯ КОЕФІЦІЄНТІВ ТЕПЛОВІДДАЧІ UC ТА UV ДЛЯ МОДЕЛЮВАННЯ ФЕС В ПРОГРАМІ PVSYST." Vidnovluvana energetika, no. 2(65) (June 28, 2021): 47–52. http://dx.doi.org/10.36296/1819-8058.2021.2(65).47-52.

Full text
Abstract:
У наш час розповсюдженим програмним продуктом для розрахунку планової роботи сонячних станцій є PVsyst. Цей програмний продукт використовує для розрахунків такі погодні дані: рівень сонячної радіації; температура навколишнього середовища; середня швидкість вітру. Погодні дані програма отримує з баз даних метеостанцій. Історичні метеодані накопичуються в базах протягом багатьох років; для виконання розрахунків програма використовує середньозважені дані для одного року (середньозважений рік). Також програма враховує особливості конкретного обладнання, що планується встановити на майбутній фотоелектричній станції (ФЕС). Погодні дані програма обирає відповідно до географічних координат об’єкта. Для отримання даних в конкретній точці програма використовує алгоритми апроксимації даних. Відомо, що в процесі роботи сонячна панель нагрівається. Даний нагрів призводить до того, що потужність панелі падає з ростом температури при сталій сонячній радіації. Рівень зменшення потужності залежно від температури характеризується коефіцієнтом gPmax, що відповідає зменшенню потужності при підвищенні температури на 1 ºС (Температурний коефіцієнт потужності). Наприклад, для панелей із полікристалічного кремнію (Si-poly) він дорівнює 0,4 %/ ºC. Але температурний коефіцієнт зменшення потужності характеризує зменшення потужності ФЕМ від температури робочої поверхні модуля, далі Cell Temperature або Tcell (ºC). Для розрахунку Tcell використовується температура навколишнього середовища (TAmb), швидкість вітру (VWind). Ці величини пов’язуються між собою через сонячну радіацію, що потрапляє на модуль (IPoa, Вт/м2), та коефіцієнти тепловіддачі Uc та Uv [1]. Величина цих коефіцієнтів суттєво впливає на розрахунок температури сонячного модуля. Програма рекомендує обирати стандартні значення, але не завжди такі значення правильно описують процес теплообміну. Тому, ця стаття присвячена визначенню даних параметрів на ФЕС, яка вже працює, і переоцінки планових показників її роботи. Бібл. 8, рис. 2.
APA, Harvard, Vancouver, ISO, and other styles
2

Горін, В. В. "Теплообмін при конденсації всередині мініканалів." Refrigeration Engineering and Technology 53, no. 5 (October 30, 2017): 14–22. http://dx.doi.org/10.15673/ret.v53i5.848.

Full text
Abstract:
У роботі проведено аналіз експериментальних досліджень конденсації робочих речовин всередині мініканалів із літературних джерел. Наведено залежності коефіцієнтів тепловіддачі від масового паровмісту за різними масовими швидкостями та тепловими потоками. Показано вплив на тепловіддачу геометричних форм та розмірів мініканалів.
APA, Harvard, Vancouver, ISO, and other styles
3

Нагурський, О. А., І. С. Тимчук, М. С. Мальований, С. Д. Синельніков, and Г. В. Крилова. "Технологічні особливості капсулювання гранульованих добрив плівкою на основі модифікованого ПЕТФ." Scientific Bulletin of UNFU 30, no. 2 (June 4, 2020): 77–82. http://dx.doi.org/10.36930/40300214.

Full text
Abstract:
Проаналізовано взаємодію твердої дисперсної фази, рідкого плівкоутворювача та повітря під час капсулювання гранульованих мінеральних добрив. Показано, що на поверхні частинки відбувається передача тепла від повітря до розчину плівкоутворювача і видалення розчинника у середовище газової фази. Оцінено вплив гідродинаміки, тепло- та масообміну на процес капсулювання амонійної селітри та нітроамофоски в апараті псевдозрідженого стану плівками, які складаються з модифікованого поліетилентерефталату, гідролізного лігніну та цеоліту. Встановлено, що визначальним технологічним параметром процесу капсулювання є швидкість повітря, за якої шар твердого матеріалу буде перебувати у стані стійкого псевдозрідження. Теоретичним методом розраховано швидкість повітря в апараті для капсулювання аміачної селітри 5,6 м/с та нітроамофоски 6,1 м/с. Проведено аналітично-експериментальні дослідження тепломасообміну під час капсулювання гранульованих добрив у апараті псевдозрідженого стану циліндричного типу періодичної дії за встановлених гідродинамічних режимів. Отримано експериментальні залежності температури повітря від висоти шару досліджуваних мінеральних добрив за витрати плівкоутворювача 1∙10-4 кг/с, 3∙10-4 кг/с і 5∙10-4 кг/с з використанням 7-канального інтелектуального перетворювача, який дав змогу одночасно фіксувати температуру в семи точках з виводом інформації на ПК. Графічним методом за кутом нахилу температурних кривих встановлено значення коефіцієнтів тепловіддачі α під час капсулювання аміачної селітри 135,7 Вт/(м2К) і нітроамофоски 118,3 Вт/(м2К). Для плівкоутворювального розчину, який складався із етилацетату 87 % (мас), модифікованого ПЕТФ 10 % (мас), гідролізного лігніну 3 % (мас) визначено коефіцієнти масовіддачі β під час капсулювання аміачної селітри 0,251 м/с і нітроамофоски 0,198 м/с. На підставі отриманих коефіцієнтів масовіддачі встановлено максимальну витрату плівкоутворювача Pmax (104кг/с∙кг добрив): аміачна селітра – 20,512, нітроамофоски – 22,857. За отриманими технологічними параметрами здійснено капсулювання досліджуваних добрив. За характером кінетичних кривих вивільнення компонентів із капсульованих частинок аміачної селітри і нітроамофоски встановлено, що за визначеними технологічними параметрами отримано мінеральні добрива із прогнозованими властивостями.
APA, Harvard, Vancouver, ISO, and other styles
4

Лук'янова, Т. В., О. Я. Хлієва, Ю. В. Семенюк, В. П. Желєзний, С. Г. Корнієвич, and E. I. Альтман. "Експериментальне дослідження коефіцієнта тепловіддачі при кипінні нанохолодоагенту R141b/наночастинки TiO2 на поверхнях з різним ступенем змочування." Refrigeration Engineering and Technology 54, no. 3 (December 12, 2018): 50–57. http://dx.doi.org/10.15673/ret.v54i3.1111.

Full text
Abstract:
Як один із перспективних і недорогих способів інтенсифікації процесів кипіння холодоагентів у випарниках холодильних машин останнім часом розглядається введення в склад робочого тіла наночастинок. Наявні в даний час експериментальні дослідження в цій області нечисленні й суперечливі. Тому дослідження впливу добавок наночастинок на процес кипіння модельного холодоагенту є актуальними. В роботі наведено результати експериментального дослідження впливу добавок наночастинок TiO2 (0,1 мас. %) і поверхнево-активної речовини (ПАР) Span80 (0,1 мас. %) в холодоагент R141b на коефіцієнт тепловіддачі при кипінні у вільному об’ємі. При проведенні експерименту густина теплового потоку варіювалася від 5 до 60 кВт·м-2, значення тиску підтримувалися рівними 0,2, 0,3 і 0,4 МПа. Експерименти проведено при кипінні об'єктів дослідження на двох поверхнях нагріву, які відрізнялися ступенем змочування холодоагентом R141b: на поверхні з нержавкої сталі та на поверхні, вкритій тонким шаром фторопласту. Встановлено, що при кипінні на поверхні, вкритій фторопластом, спостерігаються значно більші значення перегріву в порівнянні з кипінням на сталевій поверхні, а відтак, менші значення коефіцієнту тепловіддачі. Зроблено висновок, що зниження коефіцієнта тепловіддачі при кипінні на поверхні, покритій фторопластом, обумовлено переважно не зміною ступеня змочування, а меншою шорсткістю поверхні фторопластового покриття. Показано, що уведення у холодоагент наночастинок і ПАР призводить до інтенсифікації процесу тепловіддачі при кипінні в діапазонах параметрів, характерних для роботи випарників холодильних систем.
APA, Harvard, Vancouver, ISO, and other styles
5

Zavodyannij, Viktor Volodimirovich, and Yurij Kirilovich Ivashina. "ВИЗНАЧЕННЯ КОЕФІЦІЄНТУ КОНВЕКТИВНОЇ ТЕПЛОВІДДАЧІ В ПРИСТІННОМУ ШАРІ ПОВІТРЯ ЖИТЛОВИХ ПРИМІЩЕНЬ." Научный взгляд в будущее, no. 05-02 (October 12, 2017): 95–100. http://dx.doi.org/10.30888/2415-7538.2017-05-02-080.

Full text
Abstract:
. Проведено визначення коефіцієнта конвективної теплопередачі для внутрішньої стіни будівлі з використанням диференційного рівняння теплопередачі. Встановлено що значення цього коефіцієнту в рази відрізняється від значення отриманого за допомогою теорії п
APA, Harvard, Vancouver, ISO, and other styles
6

Бошкова, І. Л., Н. В. Волгушева, М. Д. Потапов, Н. О. Колесниченко, and О. С. Бондаренко. "Рішення завдань теплопровідності в тілі при дії двох джерел теплоти." Refrigeration Engineering and Technology 56, no. 3-4 (January 11, 2021): 146–55. http://dx.doi.org/10.15673/ret.v56i3-4.1945.

Full text
Abstract:
У роботі аналізуються математичні моделі, що представляють нагрівання тіл у мікрохвильовому електромагнітному полі з урахуванням масовіддачі, наприклад, при випаровуванні вологи. Дослідження ґрунтуються на підходах, запропонованих О.В. Ликовим, в основі яких лежить рівняння теплопровідності з урахуванням внутрішніх джерел теплоти, які можуть бути як позитивними, так і негативними. Об’ємний характер нагрівання матеріалу в мікрохвильовому полі дозволяє розглядати матеріал як середовище, у якому діють внутрішні позитивні джерела теплоти. Негативне джерело теплоти пов'язане з потоком вологи, що випарувалася. Розглядаються моделі, що описують теплопровідність у напівобмеженому масиві при граничних умовах I і III роду. Рішення моделей у неявному (диференціальному) вигляді привело до одержання залежностей для розрахунку локальних температур у тілі. Проведено аналіз розрахункових даних по розподілу вологовмісту й температури матеріалу в процесі сушіння при мікрохвильовому підведенні енергії. Представлено результати розрахунків при різних значеннях коефіцієнтів тепловіддачі, питомої потужності магнетронів, коефіцієнта температуропровідності матеріалу. Отримано відповідність розрахун­кових значень реальним фізичним процесам. У той же час виявлені області, для яких розрахунки не відповідають реальній фізичній картині. Визначені обмеження по застосовності по питомій щільності теплового потоку й коефіцієнту тепловіддачі. Аналітично досліджена середня температура тіла з безперервно діючими джерелами теплоти при граничних умовах III роду. Установлено, що для одержання достовірних даних по температурах матеріалу по аналітичним залежностям, отриманим для середньої безрозмірної надлишкової температури, потрібне виконання умови tc > t0 (температура навколишнього середовища вище температури матеріалу)
APA, Harvard, Vancouver, ISO, and other styles
7

В. Білецький, Едуард, Ігор М. Рищенко, Олена В. Петренко, and Дмитро П. Семенюк. "РІВНЯННЯ ТЕПЛООБМІНУ ПРИ ТЕЧІЇ НЕНЬЮТОНІВСЬКИХ РІДИН У КАНАЛАХ ТЕХНОЛОГІЧНОГО ОБЛАДНАННЯ." Journal of Chemistry and Technologies 29, no. 2 (July 20, 2021): 254–64. http://dx.doi.org/10.15421/jchemtech.v29i2.229829.

Full text
Abstract:
Розглянуто процеси теплообміну у каналах технологічного обладнання з навколишнім середовищем у випадках, які є найбільш розповсюдженими в машинах та апаратах хімічної та харчової промисловості. У першому випадку зовнішнє середовище вважається нескінченним тепловим резервуаром із заданою температурою. У другому випадку роль зовнішнього середовища виконує канал, у якому рухається теплоносій, при цьому температура теплоносія не вважатися заданою і змінюється уздовж довжини каналу. У рівняння теплообміну входять конвективні доданки та доданки з теплопровідністю при цьому теплообмін у каналі з неньютонівською рідиною відбувається при великих значеннях числа Пекле. Рух теплоносія в каналі вважається інерційним і теж відповідає великим значенням числа Пекле. У гідродинамічному аспекті неньютонівські рідини та теплоносій рухаються в різних режимах, а в тепловому аспекті – в одному. Сформульовано рівняння теплообміну при течії неньютонівських (в’язкопластичної та узагальнено-зрушеної) рідин. Наведені рівняння теплообміну, являють собою систему диферинціальних рівнянь першого порядку в кінцевих різницях для температури рідини в каналі. І в цьому полягає їх головна відмінність від розрахунків для випадків фіксованих температу на стінках прямого каналу та занурення прямого каналу в тепловий резервуар з фіксованою температурою. Показано, що температура рідини залежить від поздовжньої координати вздовж каналу. В цьому випадку залежність температури від геометричних характеристик каналу визначається площею поперечного перетину каналу та його периметром, а також відношенням геометрічних розмірів (ширини, висоти та довжини) каналу. Отримані вирази, при проведенні інженерних розрахунків дозволяють визначати відповідні коефіцієнти тепловіддачі і теплопередачі при течії неньютоновскіх рідин в каналах і з зовнішнім середовищем.
APA, Harvard, Vancouver, ISO, and other styles
8

Vorobiov, Yu, and I. Tereshchenko. "Розрахункове дослідження числових критеріїв ефективності теплообмінників системи аварійного охолодждения активної зони за різних умов роботи з допомогою коду RELAP5." Nuclear and Radiation Safety, no. 2(62) (June 10, 2014): 17–21. http://dx.doi.org/10.32918/nrs.2014.2(62).04.

Full text
Abstract:
Виконано моделювання теплообмінника САОЗ для комп’ютерного коду RELAP5/MOD3.2, на основі якого досліджено ефективність його роботи в проектних та аварійних режимах залежно від ступеню забруднення теплообмінних трубок. Розглянуто спектр можливих значень коефіцієнтів термічного опору, проведено оцінку різноманітних варіантів глушення теплообмінних трубок. На підставі отриманих результатів оцінено величини змінення ефективності теплообмінника, коефіцієнта тепловіддачі та граничних параметрів, за яких критерії по температурі води на виході з теплообмінника не перевищують 90 °С.
APA, Harvard, Vancouver, ISO, and other styles
9

Горін, В. В., В. В. Середа, and П. О. Барабаш. "Метод розрахунку теплообміну під час конденсації холодоагентів у середині горизонтальних труб у разі стратифікованого режиму течії фаз." Refrigeration Engineering and Technology 55, no. 1 (February 10, 2019): 47–53. http://dx.doi.org/10.15673/ret.v55i1.1353.

Full text
Abstract:
У сучасних конденсаторах систем кондиціонування повітря, теплових насосів, випарниках систем опріснювання морської води і нагрівачах електростанцій процес конденсації пари здійснюється переважно у середині горизонтальних труб і каналів. Процеси теплообміну, що відбуваються у теплообмінниках цього типу, мають суттєвий вплив на загальну енергоефективність таких систем. У даній роботі представлено експериментальні дослідження теплообміну у разі конденсації холодоагентів R22, R406A, R407C у гладкій горизонтальній трубі з внутрішнім діаметром d = 17 мм за наступними режимними параметрами:температура насичення 35 - 40ºC, масова швидкість 10 - 100 кг/кв.м/c, масовий паровміст 0,1 - 0,8, питомий тепловий потік 5 ‑ 50 кВт/кв.м, різниця між температурою конденсації та температурою стінки труби 4 - 14 К. Вимірювання локальних за перерізом труби теплових потоків і коефіцієнтів тепловіддачі проводились за методом «товстої стінки» під час різних режимів конденсації. За результатами досліджень установлено, що у верхній частині труби з підвищенням теплового потоку зростає товщина плівки конденсату, що призводить до зменшення тепловіддачі. У нижній частині труби збільшення теплового потоку підвищує тепловіддачу, що характерно для турбулентної течії рідини в трубі. Отримані результати роботи дозволили покращити метод розрахунку теплообміну у разі конденсації пари, яка ураховує вплив течії конденсату у нижній частині труби на теплообмін. Цей метод із достатньою точністю (похибка ±30%) узагальнює експериментальні дані під час конденсації пари холодоагентів R22, R134a, R123, R125, R32, R410a за умови стратифікованого потоку. Використання цього методу у разі проектування теплообмінних апаратів, які використовують такі типи речовин, підвищить ефективність енергетичних систем.
APA, Harvard, Vancouver, ISO, and other styles
10

Havrysh, V. I., O. S. Korol, I. G. Kozak, O. V. Kuspish, and V. U. Maikher. "Математична модель аналізу теплообміну між двошаровою пластиною з локально зосередженим джерелом тепла та навколишнім середовищем." Scientific Bulletin of UNFU 29, no. 5 (May 30, 2019): 129–33. http://dx.doi.org/10.15421/40290526.

Full text
Abstract:
Розроблено математичну модель аналізу теплообміну між ізотропною двошаровою пластиною, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів, і навколишнім середовищем. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла, коефіцієнта теплопровідності конструкційних матеріалів пластини та коефіцієнта тепловіддачі з межових поверхонь пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообміну між пластиною та навколишнім середовищем, зумовленим різними температурними режимами завдяки нагріванню пластини точковим джерелом тепла, зосередженим на поверхнях спряження шарів, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообміну між двошаровою пластиною з точковим джерелом тепла, зосередженим на поверхнях спряження шарів і навколишнім середовищем, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості під час нагрівання. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Коефіцієнти тепловіддачі"

1

Арсеньєва, Ольга Петрівна, Леонід Леонідович Товажнянський, Петро Олексійович Капустенко, and О. І. Мацегора. "Комп'ютерне моделювання процесу утворення забруднень на поверхні теплопередачі пластинчастого теплообмінника." Thesis, Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41633.

Full text
Abstract:
Наведено математичну модель пластинчастого теплообмінника (ПТО) при утворенні забруднень на поверхні пластин. Модель представлена системою рівнянь в приватних похідних, інтегрування якої дозволяє оцінити локальні параметри процесу і розрахувати зміну місцевих значень товщини шару забруднюючої речовини в часі. Адекватність моделі підтверджена даними роботи ПТО в промислових умовах.
A mathematical model of Plate Heat Exchanger (PHE) is given for the fouling formation on the surface of the plates. The model is represented by the system of partial differential equations. The system integration allows estimate local process parameters and to calculate the development in time of deposited fouling layer thickness. The model validity is confirmed by data of PHE operation in industrial conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Сарнавський, І. С. "Алгоритмічні і програмні компоненти системи визначення тепловіддачі між тканиною і контактною поверхнею." Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/11127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Корж, П. П., Р. С. Поздняков, and М. А. Коломойцев. "Розрахунок утеплення зовнішньої стіни панельної багатоповерхової будівлі." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/39911.

Full text
Abstract:
Метою роботи є розрахунок необхідної товщини зовнішнього утеплювача типової панельної багатоповерхової будівлі у м. Суми., а також визначення економічної ефективності встановлення зовнішнього утеплювача в таких панельних керамзитобетонних будівлях.
APA, Harvard, Vancouver, ISO, and other styles
4

Шамчук, Борис Леонідович, and Borys Shamruk. "Модернізація кожухотрубної теплообмінної установки марки 800ТНГ-2,5-М1 для нагрівання молока із дослідженням коефіцієнту теплопередачі." Master's thesis, ТНТУ, 2020. http://elartu.tntu.edu.ua/handle/lib/33870.

Full text
Abstract:
Захист відбувся 22 грудня 2020р. о 13.00 годині на засіданні екзаменаційної комісії №18
Робота присвячена підвищенню інтенсифікації теплообміну в кожухотрубному теплообміннику. Досліджено процес теплообміну в кожухотрубному теплообміннику, зокрема досліджено вплив статичних спіральних вставок на значення коефіцієнта теплопередачі. Запропоновано заходи для підвищення коефіцієнта теплопередачі
Вступ 1. 1. Оглядова частина. 1.1. Огляд існуючого теплообмінного обладнання. 1.1.1. Загальні поняття. 1.1.2. Класифікація теплообмінного обладнання. 1.2. Мета та задачі роботи 2. Методи досліджень. 2.1. Встановлення математичних залежностей між досліджуваними в роботі фізичними величинами. 2.2. Методика математичного моделювання процесу теплообміну в пастеризаційній установці. 3. Дослідження процесу теплопередачі при нагріванні молока в кожухотрубній теплообмінній установці. 3.1. Інтенсифікації теплообміну 3.1.1. Збільшення площі теплообміну. 3.1.2. Збільшення різниці температур. 3.1.3. Підвищення коефіцієнтів тепловіддачі. 3.2. Теоретичні дослідження теплопередачі при застосуванні статичних спіральних вставок. 3.3. Моделювання руху рідини при застосуванні статичних спіральних вставок 3.4. Висновки до розділу. 4. Розрахунок кожухотрубного теплообмінного апарата для нагрівання молока. 4.1. Тепловий розрахунок. 4.2. Конструктивний розрахунок. 4.3. Гідравлічний розрахунок. 4.4. Підбір насоса для води. 4.3. Висновки до розділу. 5. Охорона праці та безпека в надзвичайних ситуаціях. 5.1 Охорона праці. 5.2. Заходи з безпеки в надзвичайних ситуаціях.
APA, Harvard, Vancouver, ISO, and other styles
5

Наумова, Альона Миколаївна. "Теплопередаючі характеристики пульсаційних капілярних теплових труб, призначених для малогабаритних систем охолодження." Thesis, НТУУ "КПІ", 2016. https://ela.kpi.ua/handle/123456789/14940.

Full text
Abstract:
Дисертація присвячена дослідженню теплопередаючих характеристик пульсаційних капілярних теплових труб (ПТТ) в залежності від режимних та експлуатаційних параметрів. Дослідження проводились зі скляною та мідною ПТТ з внутрішнім діаметром, відповідно, 3,8мм та 1мм; кількість петель 4 та 7. Теплоносієм слугувала вода з коефіцієнтом заповнення приблизно 50% від внутрішнього об’єму. Охолодження скляної ПТТ відбувалося за рахунок вільної конвекції повітря, мідної – за рахунок вимушеної конвекції рідини з різними значеннями температури та витрати. Кут нахилу мідної ПТТ до горизонту змінювався від -90° до +90° з кроком 45°. Робота ПТТ умовно розділена на два режими передачі тепла: конвективно-кондуктивний, що відповідає малим значенням підведеної теплової потужності, та пульсаційний, що відповідає середнім та високим значенням підведеної теплової потужності та початку кипіння теплоносія. Величину теплового потоку, за якої відбувається перехід від одного режиму передачі тепла до другого, названо перехідним QПЕРЕХ. В результаті досліджень виявлено вплив режимних (підведений тепловий потік, витрата та температура охолоджувальної рідини) і експлуатаційних (орієнтації в просторі, зовнішні механічні вібрації) на температурний режим, термічний опір та коефіцієнти тепловіддачі ПТТ. Отримана напівемпірична залежність для приблизного розрахунку QПЕРЕХ. Отримані формули для обчислення кількості петель замкнутої та розімкнутої ПТТ в залежності від геометрії капілярної трубки, довжин зон нагріву та конденсації. На базі пульсаційного механізму теплопередачі розроблені новітні пристрої. Порівняння роботи ПТТ з іншими радіаторами показало, що пульсаційні теплові труби найбільш ефективні при необхідності відведення високих теплових потоків (більш ніж 6 Вт/см2).
The dissertation is dedicated to the heat transfer characteristics of pulsating capillary heat pipes (PHP) depending on the regime and operational parameters. The experiments were conducted with glass and copper PHP with the internal diameter, respectively, 3,8mm and 1mm; number of turns 4 and 7. The water was used as a heat carrier; the filling ratio was approximately 50% of the internal volume. Cooling of the glass PHP was carried out by free air convection, and cooling of the copper one was carried out by forced convection of the liquid with different values of temperature and flow rate. The inclination angle of the copper PHP varied from -90° to + 90° in increments of 45 °. The PHP operation can be conditionally divided into two modes of heat transfer that are: convection-conductive mode that corresponds to small values of input heat power and pulsation mode that corresponds to middle and high of input heat power and to the heat carrier boiling. The heat flux called transient takes place at the transition from one mode of heat transfer to another. As a result of experimental studies the temperature of the PHP heating, transport, and condensation areas as well as thermal resistance and heat transfer coefficients are presented depending on the input heat flux and parameters of the cooling fluid. The dependence of the PHP heat transfer characteristics on external mechanical vibrations and PHP orientation in space was researched. The simplified semi-empirical formula for transient heat flux calculating is obtained. Given dissertation also presents a constructional calculation of the PHP number of loops when manufactured depending on the geometry of the capillary tube, and the lengths of the heater and the condenser. On the basis of the pulsation heat transfer mechanism some new heat transfer devices were designed, such as pulsating thermosyphon radiator with PHP. Comparing of the PHP with other cooling systems has shown that it is most effective for rejection of the heat fluxes over 6 W/cm2.
Диссертация посвящена исследованию теплопередающих характеристик пульсационных капиллярных тепловых труб (ПТТ) в зависимости от режимных и эксплуатационных параметров. Исследования проводились со стеклянной и медной ПТТ с внутренним диаметром, соответственно, 3,8мм и 1мм; количество петель 4 и 7. Теплоносителем служила вода с коэффициентом заполнения примерно 50% от внутреннего объема. Охлаждение стеклянной ПТТ осуществлялось за счет свободной конвекции воздуха, медной – за счет принудительной конвекции жидкости с разными значениями температуры и расхода. Угол наклона медной ПТТ к горизонту изменялся от -90° до +90° с шагом 45°. Работа ПТТ условно разделена на два режима передачи тепла: конвективно-кондуктивный, соответствующий малым значениям подведенной тепловой мощности, и пульсационный, соответствующий средним и высоким значениям подведенной тепловой мощности и началу кипения теплоносителя. Величина теплового по- тока, при котором происходит переход от одного режима передачи тепла к другому, называется переходным QПЕРЕХ. В результате экспериментальных исследований представлены зависимости температур в зонах нагрева (ЗН), транспорта (ЗТ) и конденсации (ЗК) ПТТ от времени и подведенного теплового потока. Показано влияние параметров охлаждающей жидкости – расхода и температуры – на величину QПЕРЕХ. Для медной ПТТ стабильный пульсационный режим теплопередачи устанавливается при 30-50 Вт в зависимости от параметров эксперимента. Величина термического сопротивления ПТТ различается только в области конвективно-кондуктивного режима теплопередачи и достигает значений 4-5 °С/Вт, после начала кипения эта цифра снижается на порядок и составляет примерно 0,3-0,6 °С/Вт. Влияние режима теплопередачи сказывается и на величину средних коэффициентов теплоотдачи в ЗН и ЗК ПТТ. Если для конвективно-кондуктивного режима теплопередачи средние коэффициенты теплоотдачи для ЗН составляют 400-450 Вт/(м2·К), а для ЗК – 200-250 Вт/(м2·К), то для пульсационного режима передачи тепла в ПТТ средние коэффициенты теплоотдачи в ЗН достигают 3,5-4 кВт/(м2·К), а в ЗК – 1,8 кВт/(м2·К), т.е. почти в 9 раз больше. Впервые исследована зависимость теплопередающих характеристик ПТТ от внешних механических колебаний. Эксперименты показали, что вибрации практически не оказывают влияния на величину термического сопротивления, однако способствуют тому, что QПЕРЕХ наступает при меньших значениях подведенной мощности. Например, если без вибраций QПЕРЕХ = 45-50 Вт, то для частоты 10 Гц это значение снижается до 40 Вт, а для частоты порядка 40 Гц – до 20-25 Вт. Приведена физическая модель процессов, возникающих в ЗН в момент начала кипения теплоносителя. На основе теплового баланса построена математическая модель, учитывающая зарождение, рост и дальнейший отрыв парового пузырька в ЗН. В результате решения математической модели получена упрощенная полуэмпирическая формула для расчета QПЕРЕХ. Расчетные значения величины QПЕРЕХ превышают экспериментальные данные в среднем на 21%, что не уменьшает работоспособности формулы. В работе представлен конструктивный расчет количества петель ПТТ при её изготовлении в зависимости от геометрии капиллярной трубки, а также длин ЗН и ЗК. Приведена методика инженерного расчета ПТТ. Зная максимальную температуру и геометрические параметры теплонагруженного элемента, а также отводимую мощность и условия охлаждения, можно рассчитать среднюю температуру и термическое сопротивление ПТТ. На основе пульсационного механизма передачи тепла разработаны новые конструкции теплопередающих устройств: пульсационный термосифон и радиатор с ПТТ.
APA, Harvard, Vancouver, ISO, and other styles
6

Неїло, Роман Володимирович. "Теплообмін та гідродинаміка коридорних пучків горизонтальних циліндрів в умовах вільної конвекції." Thesis, НТУУ "КПІ", 2016. https://ela.kpi.ua/handle/123456789/17595.

Full text
Abstract:
Дисертаційна робота присвячена дослідженню теплогідравлічних процесів навколо циліндричних поверхонь теплообміну в залежності від зміни режимних параметрів процесу та конструктивних характеристик оточення. В роботі представлено результати візуалізації динамічного поля та поля температури теплоносія, що дозволило значно поглибити знання про механізми тепло- та масопереносу та більш обґрунтовано описати результати дослідження. Отримані результати дослідження дозволили, в діапазоні зміни режимних та конструктивних характеристик, описати вплив цих факторів на коефіцієнти тепловіддачі та характеристики омивання циліндрів, і вивести залежності для розрахунку коефіцієнтів тепловіддачі з врахуванням виявленого впливу.
In the investigation are developed heat and mass transfer theory around horizontal cylinders which depends on heat flux and several constructive characteristics: presents or absence of vertical walls, other horizontal cylinders placed close to each other. Results of dynamic and temperature field visualization are also presented. These results made our knowledge significantly deeper in a part of heat and mass transfer mechanism during natural convection around cylinder systems. Cylinder, placed inside a vertical channel, has variable heat transfer coefficient, which depend on channel geometrical characteristic. If a cylinder will be placed inside the channel with optimal characteristic, its heat transfer coefficient will be increased around 20%. These optimal width is 2,2-2,3 cylinder diameter. Heat transfer coefficient of cylinder bundl is deeply depends on its constructive characteristic. Based on obtained results, formulas and calculation algoritm of heat transfer coefficient was developed, take into consideration several variables.
Диссертационная работа посвящена исследованию теплогидравлических процессов вокруг цилиндрических поверхностей теплообмена в зависимости от изменения режимных параметров процесса и конструктивных характеристик окружения: наличия адиабатных стенок канала, соседних цилиндров в горизонтальном и/или вертикальном направлениях. В работе представлены результаты визуализации динамического поля и поля температуры теплоносителя, которые позволили значительно углубить знания о механизмах тепло- и массопереноса, более точно и обосновано описать изучаемые процессы и результаты исследования. Кроме этого, проведення работа по визуализации исследуемых процессов разрешила проявить коренные изменения в динамическом поле вокруг горизонтального цилиндра (в частности, при его размещении в вертикальном канале), развитию теплового следа над цилиндром в большом объеме, в и над системой цилиндров. Полученные результаты исследования позволили, в изученном диапазоне изменения режимных и конструктивных характеристик, описать влияние этих факторов на коэффициенты теплоотдачи и характеристики движения теплоносителя вокруг системы цилиндров, вывести зависимости для расчета коэффициентов теплоотдачи с учетом такого влияния. В частности показано, что при размещении горизонтального цилиндра в вертикальном щелевидном канале возможно значительное изменение условий течения теплоносителя, что, в свою очередь, может приводить как к повышению, так и понижению интенсивности теплоотдачи на поверхности такого цилиндра. Впервые предложена диаграмма теплогидравлических режимов, которая позволяет уже на этапе конструирования теплообменной поверхности и её окружения ответить на вопрос об оптимальности выбранной конструкции. Кроме инженерных методик расчета интенсивности теплоотдачи от цилиндров в различных условиях, в работе представленные рекомендации по проектированию цилиндрических теплообменных поверхностей, которые рассчитаны на работу в условиях свободной конвекции и учитывают вскрытые изменения динамического и температурного полей при изменении конструктивного окружения цилиндров. В частности, среди таких рекомендацый не обходимо выделить следующие: интенсивность теплоотдачи значительно снижается при формировании пучка цилиндров с малими вертикальным и горизонтальным шагом установки элементов системы; при этом, большее значение имеет вертикальный шаг установки цилиндров; интенсивность теплоотдачи от цилиндров пучка равная такой для одиночного горизонтального цилиндра в большом объеме достигается при относительном вертикальном шаге их установки равном 5,0; впервые предложена и обоснована методика разделения системы цилиндров на отдельные группы при расчете локального и среднего коэффициента теплоотдачи, что позволяет учитывать особенности теплогидравлических процессов внутри системы; показано, что интенсивность теплоотдачи от глубинных цилиндров в системе до 11 элементов, устанавливается равной, примерно, среднему значению между интенсивностями теплоотдачи второго и третього цилиндров; интенсивность теплоотдачи вдоль течения теплоносителя сильно зависит от геометрических характеристик системы и может как уменшаться (при малых вертикальних шагах установи цилиндров), так и увеличиваться (при наибольших из исследованных).
APA, Harvard, Vancouver, ISO, and other styles
7

Долішній, Б. В. "Підвищення ефективності використання теплоти відпрацьованих газів газомотокомпресорів." Thesis, Івано-Франківський національний технічний університет нафти і газу, 2003. http://elar.nung.edu.ua/handle/123456789/3989.

Full text
Abstract:
Захищаються результати досліджень, спрямовані на підвищення ефективності використання теплоти відпрацьованих газів газомотокомпресорів. Розроблена і створена експериментальна установка для дослідження тепловіддачі пульсуючої течії відпрацьованих газів. Конструкція установки забезпечувала зміну частоти обертання колінчастого вала дизеля, так і міру його навантаженості з одночасним вимірюванням значень амплітуд пульсацій тиску і температури на вході і виході з теплообмінника. Створено апаратурне забезпечення для експериментальних досліджень процесів теплообміну пульсуючої течії відпрацьованих газів згідно розробленої методики. Отримано алгоритм розрахунку амплітуд пульсацій тиску і температури течії відпрацьованих газів з врахуванням експериментально встановлених динамічних властивостей розроблених малоінерційних давачів тиску та температури. Здійснений метрологічний аналіз результатів вимірювання частоти й амплітуди пульсацій. Досліджено зміну температури пульсуючого газового потоку та температури стінки внутрішньої труби теплообмінника вздовж її осі, що дало можливість експериментально визначити закономірності зміни локального та середнього коефіцієнтів тепловіддачі. За результатами досліджень отримано критеріальне рівняння конвективного теплообміну пульсуючої течії відпрацьованих газів.
Защищаются результаты исследований, направленные на повышение эффективности использование теплоты выхлопных газов двигателей внутреннего сгорания. Разработана и создана экспериментальная установка для исследования процессов в пульсирующем потоке выхлопных газов дизеля. Конструкция установки обеспечивает регулирование как частоты вращения коленчатого вала дизеля, так и степени его нагрузки с одновременным измерением значений амплитуд пульсаций давления и температуры выхлопных газов на входе и выходе из теплообменника. Осуществлена разработка аппаратурного обеспечения для экспериментальных исследований процессов теплообмена пульсирующего течения выхлопных газов согласно разработанной методике экспериментальных исследований. Разработан алгоритм расчета амплитуд пульсаций давления и температуры течения выхлопных газов с учетом экспериментально установленных динамических свойств разработанных малоинерционных датчиков давления и температуры. Осуществлен метрологический анализ результатов измерения частоты и амплитуды пульсаций. Исследовано изменение температуры пульсирующего газового потока и температуры стенки внутренней трубы теплообменника вдоль его оси, что дало возможность экспериментально определить закономерности изменения локального и среднего коэффициентов теплоотдачи. По результатам исследований получено критериальное уравнение конвективного теплообмена пульсирующего потока выхлопных газов.
There are defended results of experiments, which provide increase of effectiveness using heat of exhausted gasses of internal-combustion engine. Experimental installation is prepared and made to explore processes in pulsed flow exhausted gasses of diesel. The construction of experimental installation provide regulation of frequency of circulating diesel crankshaft and level of its load with simultaneously dimension of amplitude of pressure and temperature pulsing on entrance and exit from heat exchanger. The apparatus providing for experimental exploration of heat exchange processes in pulsing flow of exhausted gasses is made due to experimental observational methodic. The algorithm of computation of amplitude pulsing flow of exhausted gasses of pressure and temperature is provide with consideration to experimental determination dynamic characteristics of pressure and temperature transmitter. The metrological analysis of dimensional results of frequency and amplitude of pressure and temperature pulsing are made too. The temperature change of pulsing gas flow and interior side heat exchanger apparatus along axle were explored as well. It helped to achieve experimental regularity in changing local and average coefficients of heat giving. The criterion equation of convective heat exchange of pulsing flow exhausted gasses is taken due to observational results.
APA, Harvard, Vancouver, ISO, and other styles
8

Чиж, Дмитро Сергійович. "Аналіз процесу нагрівання масивних тіл в електричній камерній печі." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3482.

Full text
Abstract:
Чиж Д. С. Аналіз процесу нагрівання масивних тіл в електричній камерній печі : кваліфікаційна робота магістра спеціальності 144 "Теплоенергетика" / наук. керівник О. Ю. Сазонова. Запоріжжя : ЗНУ, 2020. 81 с.
UA : Робота викладена на 81 сторінках друкованого тексту, містить 3 таблиці,18 рисунків. Перелік посилань включає 42 джерел з них на іноземній мові 0. На основі виконаного аналізу було обрано методику проведення фізичного експерименту по дослідженню процесу нагрівання термічно масивних тіл при постійній температурі печі. Отримано експериментальні дані температури зразка як на поверхні так і у центрі.
EN : The work is presented on 81 pages of printed text, contains 3 tables,18 figures. The list of references includes 42 sources, 0 of them in foreign language. Based on the performed analysis, the method of conducting a physical experiment to study the process of heating thermally massive bodies at a constant furnace temperature was chosen. Experimental temper ature data of the sample both on the surface and in the center were obtained.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography