Contents
Academic literature on the topic 'Звичайні диференціальні рівняння'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Звичайні диференціальні рівняння.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Звичайні диференціальні рівняння"
Лупіна, Т. О., Є. Т. Горалік, and М. М. Крюков. "РУХ РЯТУВАЛЬНОЇ ШЛЮПКИ ВІЛЬНОГО ПАДІННЯ ПРИ СХОДЖЕННІ З ПОХИЛОЇ РАМПИ." Vodnij transport, no. 2(33) (December 14, 2021): 23–35. http://dx.doi.org/10.33298/2226-8553.2022.2.33.03.
Full textPrystavka, Yu. "ТОЧНІ РОЗВ’ЯЗКИ НЕЛІНІЙНОГО (1+2)-ВИМІРНОГО РІВНЯННЯ РЕАКЦІЇ-КОНВЕКЦІЇ-ДИФУЗІЇ." Системи управління, навігації та зв’язку. Збірник наукових праць 3, no. 49 (July 3, 2018): 78–82. http://dx.doi.org/10.26906/sunz.2018.3.078.
Full textHavrysh, V. I., and Yu I. Hrytsiuk. "Аналіз температурних режимів у термочутливих шаруватих елементах цифрових пристроїв, спричинених внутрішнім нагріванням." Scientific Bulletin of UNFU 31, no. 5 (November 25, 2021): 108–12. http://dx.doi.org/10.36930/10.36930/40310517.
Full textIvan. "Симетрія Лі-Беклунда, редукція і розв'язки нелінійних еволюційних рівнянь." Ukrains’kyi Matematychnyi Zhurnal 74, no. 3 (April 26, 2022): 342–50. http://dx.doi.org/10.37863/umzh.v74i3.7007.
Full textIvan. "Симетрія Лі-Беклунда, редукція і розв'язки нелінійних еволюційних рівнянь." Ukrains’kyi Matematychnyi Zhurnal 74, no. 3 (April 26, 2022): 342–50. http://dx.doi.org/10.37863/umzh.v74i3.7007.
Full textЮрик, Іван Іванович. "Точні розв'язки з узагальненим відокремленням змінних рівняння нелінійної теплопровідності." Ukrains’kyi Matematychnyi Zhurnal 74, no. 3 (April 26, 2022): 294–310. http://dx.doi.org/10.37863/umzh.v74i3.6667.
Full textЮрик, Іван Іванович. "Точні розв'язки з узагальненим відокремленням змінних рівняння нелінійної теплопровідності." Ukrains’kyi Matematychnyi Zhurnal 74, no. 3 (April 26, 2022): 294–310. http://dx.doi.org/10.37863/umzh.v74i3.6667.
Full textРакушев, Михайло, and Микола Філатов. "Визначення диференціально-тейлорівського спектру складної функції для випадку суперпозиції при аналізі точності динамічних систем." Сучасні інформаційні технології у сфері безпеки та оборони 42, no. 3 (December 17, 2021): 25–30. http://dx.doi.org/10.33099/2311-7249/2021-42-3-25-30.
Full textVakal, L. P., and Ye S. Vakal. "The solution of boundary value problems for ordinary differential equations using the differential evolu-tion algorithm." Mathematical machines and systems 1 (2020): 43–52. http://dx.doi.org/10.34121/1028-9763-2020-1-43-52.
Full textФуртат, І. Е., and Ю. О. Фуртат. "МЕТОД МОДЕЛЮВАННЯ РУХУ ТЕМПЕРАТУРНОГО ФРОНТУ ЗА НЕІЗОТЕРМІЧНОЇ ФІЛЬТРАЦІЇ." Таврійський науковий вісник. Серія: Технічні науки, no. 3 (November 2, 2021): 47–54. http://dx.doi.org/10.32851/tnv-tech.2021.3.6.
Full textDissertations / Theses on the topic "Звичайні диференціальні рівняння"
Вороненко, М. Д. "Побудова двобічних наближень до розв’язків нелінійних крайових задач для звичайних диференціальних рівнянь." Thesis, ХНУРЕ, 2019. http://openarchive.nure.ua/handle/document/9421.
Full textРуденко, Р. О., and Наталія Андріївна Марченко. "Розробка математичного і програмного забезпечення для розв'язання диференціальних рівнянь за допомогою нейронних мереж." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49110.
Full textВороненко, М. Д. "Методи конструктивного дослідження нелінійних крайових задач для звичайних диференціальних рівнянь." Thesis, ХНУРЕ, 2018. http://openarchive.nure.ua/handle/document/5812.
Full textІванов, Сергій Миколайович. "Аналіз локальних властивостей динаміки автономних систем на компактному гладкому многовиді." Doctoral thesis, Київ, 2019. https://ela.kpi.ua/handle/123456789/32131.
Full textДисертаційна робота присвячена дослідженню актуальних проблем в області аналізу автономних систем. Досліджується локальна структурна стійкість (орбітально топологічна еквівалентність), локальна (в околі точки положення рівноваги) дифеоморфність динамічних систем на компактному гладкому многовиді, які описуються звичайними диференціальними рівняннями (автономними системами), а також фрактальна розмірність Каплана-Йоркі. Математично обґрунтовано метод оцінювання локальної матриці Якобі та обчислення експонент Ляпунова. Проводиться аналіз і обчислення експонент Ляпунова, розмірності та граничної ентропії для геомагнітних індексів Dst, Kp, AE, які мають ознаки гіперхаотичної динаміки.
Калашніков, Дмитро Миколайович. "Розв'язність нетерових крайових задач з керуванням у диференціальній системі у скінченновимірному просторі." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/2570.
Full textUA : Робота викладена на 45 сторінках друкованого тексту, містить 26 джерел. Об’єкт дослідження: нетерові крайові задачі для звичайних диференціальних рівнянь з керуванням в системі. Мета роботи: дослідження на керованість лінійних нетерових крайових задач у скінченновимірному просторі. Метод дослідження: аналітичний. У кваліфікаційній роботі приведені основні означення, теореми, умови існування розв’язку крайових задач для звичайних диференціальних рівнянь, в яких кількість невідомих у системі не співпадає з кількістю крайових умов. Застосовуючи апарат псевдообернених матриць, було розв’язано нетерову крайову задачу та досліджено її на керованість в скінченновимірному просторі
EN : The work is presented on 45 pages of printed text, 26 references. The object of the study is the noetherian boundary-value problems for ordinary system-controlled differential equations. The aim of the study is studying on the controllability of linear boundaryvalue problems in finite-dimensional space. The method of research is analytical. In the qualification paper, we give the basic definitions, theorems, conditions for the existence of a solution of boundary-value problems for ordinary differential equations in which the number of unknowns in the system doesn’t coincide with the number of boundary conditions. Applying the apparatus of pseudoinverse matrices, the Noether boundary-value problem was solved and investigated on controllability in finite-dimensional space.
Дємічева, Лілія Сергіївна. "Застосування методу матричної експоненти до розв’язання лінійних фредгольмових крайових задач." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3302.
Full textUA : Робота викладена на 64 сторінках друкованого тексту, містить 1 рисунок, 1 таблиця, 21 джерело. Об’єкт дослідження: фредгольмові крайові задачі для звичайних диференціальних рівнянь. Мета роботи: знаходження розв’язку лінійних фредгольмових крайових задач у скінченновимірному просторі. Метод дослідження: аналітичний. У кваліфікаційній роботі приведені основні означення, теореми та леми, умови існування розв’язку крайових задач для звичайних диференціальних рівнянь. Застосовуючи метод матричної експоненти, було знайдено нормальну фундаментальну матрицю задачі Коші, за допомогою якої побудовано розв’язок лінійної фредгольмової крайової задачі у скінчено вимірному просторі.
EN : The work is presented on 64 pages of printed text, 1 picture, 1 table, 21 references. The object of the study is the Fredholm boundary-value problems for ordinary differential equations. The aim of the study is finding solutions of linear Fredholm boundary-value problems in finite-dimensional space. The methods of research is analytical. In the qualification paper, we give the basic definitions, theorems and lemmas, conditions for the existence of a solution of boundary-value problems for ordinary differential equations. Applying the matrix exponent method, we found a normal fundamental matrix of the Cauchy problem, which was used to construct the solution of the linear Fredholm boundary-value problem in a finite-dimensional space.
Books on the topic "Звичайні диференціальні рівняння"
Лов'янова, Ірина Василівна. Звичайні диференціальні рівняння. Криворізький державний педагогічний університет, 2010. http://dx.doi.org/10.31812/0564/2501.
Full text