Contents
Academic literature on the topic 'Електромагнітна діагностика'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Електромагнітна діагностика.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Електромагнітна діагностика"
Невойт, Г. В. "ОЦІНКА ПОКАЗНИКІВ АНАЛІЗУ ЕЛЕКТРОФОТОННОЇ ЕМІСІЇ У ХВОРИХ НА ХРОНІЧНІ НЕІНФЕКЦІЙНІ ЗАХВОРЮВАННЯ – ІШЕМІЧНУ ХВОРОБУ СЕРЦЯ." Medical and Ecological Problems 25, no. 1-2 (April 16, 2021): 16–18. http://dx.doi.org/10.31718/mep.2021.25.1-2.04.
Full textЛ.В. Ящинський, Д.А. Захарчук, Ю.В. Коваль, and Л.І. Панасюк. "ДІАГНОСТИКА ЯКОСТІ ГАРТУВАННЯ КІЛЕЦЬ ПІДШИПНИКІВ З ВИКОРИСТАННЯМ ЯВИЩА ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ." Перспективні технології та прилади, no. 15 (January 29, 2020): 131–35. http://dx.doi.org/10.36910/6775-2313-5352-2019-15-19.
Full textІванова, Я. О., І. В. Федорін, and О. В. Вдовиченко. "ОГЛЯД СУЧАСНИХ ТЕХНОЛОГІЙ ДЛЯ ДІАГНОСТИКИ ЯКОСТІ СНУ." Біомедична інженерія і технологія, no. 6 (November 17, 2021): 1–10. http://dx.doi.org/10.20535/2617-8974.2021.6.230253.
Full textЧовнюк, Ю. В. "Парадигма повздовжніх електромагнітних хвиль в концептуальних основах фізики живого: критерії та умови формоутворення, інформаційно-діагностична значимість." Фізика живого (Біофізика і далі) 8, no. 1 (2000): 5–21.
Find full textРоманюк, В., В. Стародубцев, А. Савін, and І. Черепньов. "Оцінка енергетичних характеристик квантово-оптичних засобів контролю вмісту викидів вихлопних газів автомобілів." Науковий журнал «Інженерія природокористування», no. 4(14) (February 24, 2020): 57–61. http://dx.doi.org/10.37700/enm.2019.4(14).57-61.
Full textМаєтний, Є. М. "Використання денситометричного аналізу в практиці торакального хірурга." Infusion & Chemotherapy, no. 2.1 (July 31, 2021): 16. http://dx.doi.org/10.32902/2663-0338-2021-2.1-13.
Full textНічога, Віталій, Людмила Дікмарова, Петро Дуб, and Здзіслав Качмарек. "КОМПОНЕНТНІ МАГНІТНІ Й ЕЛЕКТРИЧНІ ДАВАЧІ ДЛЯ ДІАГНОСТИКИ СТОХАСТИЧНИХ ЕЛЕКТРОМАГНІТНИХ ПОЛІВ." International Journal of Computing, August 1, 2014, 53–58. http://dx.doi.org/10.47839/ijc.1.2.113.
Full textDissertations / Theses on the topic "Електромагнітна діагностика"
Руденко, Сергій Сергійович. "Розробка засобів інтерпретації результатів зондування ґрунту." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26026.
Full textСалам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48184.
Full textThesis for a Candidate Degree in Engineering (Doctor of Philosophy), specialty 05.11.13 "Devices and methods of testing and determination of composition of substances" - National Technical University "Kharkiv Polytechnic Institute". The dissertation is devoted to development of new ultrasonic electromagnetic-acoustic transducers with a source of pulsed polarizing magnetic field, methods of sensitive testing and diagnostics of metalware with the use of transducers of this type. Analytical review and analysis of modern means and methods of testing and diagnostics via electromagnetic-acoustic method [1-3] of ferromagnetic and electrically conductive or strictly electrically conductive products under conditions of impact of constant and pulse polarizing magnetic fields taking into account the presence of coherent interferences of different types, technical level of modern electromagnetic circuits, means of their power supply, reception of ultrasonic pulses from metalware and their processing, determination of known advantages and disadvantages, and opportunities of their use in research and development. The direction of the research is defined and justified: development of electromagnetic-acoustic transducer in the form of a simplified single-wind coil model [4] of a source of a magnetic polarizing field with a ferromagnetic core and a high-frequency coil, which is located between the core and the sample; by modeling [5] the distribution of induction of polarizing magnetic field at the end face of the core of the magnetic field source and in the surface layer of both ferromagnetic and non-ferromagnetic metallurgy the features of the location of the high frequency coil of inductance under the magnetic field source are effectively determined for the effective excitation of shear ultrasonic pulses (near the peripheral end of the ferromagnetic core) [6]. The increase in number of winds of magnetization coil in presence of a ferromagnetic core leads to a significant increase in time of transients during the process of powering of a pulsed source of a polarizing magnetic field and during its switching off. As a result, the duration of the power pulse increases to 1 ms or more, which leads to an increase in the force of attraction of EMAP to the ferromagnetic product, additional losses of electricity, deterioration of temperature conditions of the transducer. To reduce the duration of powering pulse of magnetic field it is necessary to reduce the number of winds of the magnetizing coil, but this leads to a decrease in magnetic induction magnitude, even in presence of a ferromagnetic core. As a result of rational choice of the design of the magnetic field source, the flat coil of magnetization must be made with a two-window three-wind and made of high-conductive high-heat-conducting material [7-9]. The core should be placed in the windows of the magnet coil only by the ends. As a result, the action time of the magnetization pulse is reduced to 200 μs, which is sufficient for testing of samples up to 300 mm thick. The high-frequency inductor coil is made of two linear working sections that are located under the windows of the coil [9]. In opposite directions of high-frequency current in these working areas, in-phase powerful pulses of shear ultrasonic waves are excited in the surface layer of the product. The ratio of the excited amplitudes of the shear and longitudinal pulses exceeds 30 dB. That is, the coherent pulses of longitudinal waves in the testing of the moon by the method will practically not affect the results of the diagnosis of ferromagnetic products. Design variants of electromagnetic-acoustic transducers with one-wind [7], two-wind [8] and three-wind magnetization coils [9] of a source of a pulsed polarizing magnetic field are developed. With a single-coil [7], the transients are minimal when the power pulse is winded on. However, it is necessary to excite in the coil a current of several kA, which complicates the temperature conditions of the transducer and power equipment. With a three-coil [9] magnetization, the amplitude of the bottom pulses in relation to the amplitude of the interference exceeds 24 dB, which allows for testing and diagnostics of large variety of samples. When using the charge core [9], the ratio of amplitudes increased to 38 dB, which makes it possible to monitor the echo by the method. The method [10] of ultrasonic electromagnetic - acoustic testing of ferromagnetic products is developed. vectors of intensity with duration of several periods of high filling frequency, n and this excitation of the pulses of the electromagnetic field is performed at a time equal to the time of transients to establish the operating value of the induction of the polarizing magnetic field, and the reception of ultrasonic pulses reflected from the product is performed in the time period tпр, which is determined by the expression T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, where T is the duration of the magnetization pulse; t1 is the time of transients to establish the working value of the induction of a polarizing magnetic field; t2 - time of packet pulse of electromagnetic field; t3 is the time of damping oscillations in the flat high frequency inductor; H is the thickness of the product or the distance in volume of the product to be ultrasound; C is the velocity of propagation of shear ultrasonic waves in the material of the product. It is established [9] that the interferences in the ferromagnetic core caused by the Barkhausen effect and magnetostrictive transformation of electromagnetic energy into ultrasound are practically excluded by production of the core blended, usage of the material of the core plates which has a low coefficient of magnetostrictive conversion, perpendicular core plates orientation in relation to the conductors of the working areas of the flat high-frequency inductor, as well as filling of the gaps between the plates with a high density fluid, such as glycerol. It is shown that the sensitivity of direct EMA transducers with pulse magnetization when powered by a batch high frequency probe pulse generator [11] and when receiving via a low noise amplifier [12] provide detection of flat-bottomed reflectors with a diameter of 3 mm or more, probe frequency of 40 Hz, peak high-frequency current of 120A, shear linearly polarized ultrasonic oscillations of 2.3 MHz, high frequency packet pulse duration 6…7 filling frequency periods, magnetization pulse duration 200 μs, magnetization current density of 600 A / mm2 and at the gap between the EMAP and the product of 0.2 mm [9]. The amplitude of the echo momentum reflected from the flaw in relation to the noise amplitude reaches 20 dB. The EMATs developed are protected with 2 utility model patents.
Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48181.
Full textThesis for a Candidate Degree in Engineering, specialty 05.11.13 – Devices and methods of testing and determination of composition of substances. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 2020. A relevant scientific – practical problem on development of new types of EMAP for effective ultrasonic control of metal products is solved in the dissertation. Computer simulation of EMAT magnetic fields distribution in pulse magnetization of ferromagnetic and non-magnetic products is performed. Ways to build transducers with maximum sensitivity are established. The method of excitation of pulsed batch ultrasonic pulses due to the sequential formation of pulsed magnetic and electromagnetic fields is developed. Technical solutions for suppression of coherent interference in the core and in the product have been developed. The geometrical and structural parameters of pulsed magnetic field source were determined, which made it possible to excite powerful in-phase packet pulses of high-frequency shear oscillations in a sample. It is shown that the sensitivity of direct EMA transducers with pulse magnetization provide detection of flat-bottom reflectors with a diameter of 3 mm and more at a probing frequency of 40 Hz, a frequency of shear linearly polarized ultrasonic oscillations of 2.3 MHz, a peak current of high-frequency packet pulses of 120 A, duration of batch high frequency current pulses in 6 periods of filling frequency, magnetization pulse duration of 200 μs, magnetization current of 600 A and at the gap between EMAP and product of 0.2 mm.