Academic literature on the topic 'Динаміка руху об’єктів'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Динаміка руху об’єктів.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Динаміка руху об’єктів"

1

Фуртат, І. Е., and Ю. О. Фуртат. "МЕТОД МОДЕЛЮВАННЯ РУХУ ТЕМПЕРАТУРНОГО ФРОНТУ ЗА НЕІЗОТЕРМІЧНОЇ ФІЛЬТРАЦІЇ." Таврійський науковий вісник. Серія: Технічні науки, no. 3 (November 2, 2021): 47–54. http://dx.doi.org/10.32851/tnv-tech.2021.3.6.

Full text
Abstract:
Динаміка об’єктів з розподіленими параметрами описується диференціальними рівняннями в частинних похідних параболічного типу, які з крайовими умовами є мате- матичними моделями багатьох нестаціонарних нелінійних процесів. Математичними моделями тепломасопереносу є системи рівнянь параболічного типу з такими ж гранич- ними умовами. Усі реальні процеси, як правило, є нелінійними. Вибір оптимального методу розв’я- зання тієї або іншої задачі теорії поля і технічного засобу для її реалізацій є складним питанням. У наш час найбільше поширення при математичному моделюванні складних об’єк- тів з розподіленими параметрами одержали методи дискретизації математичної моделі шляхом просторово-тимчасового квантування. Представлення математичної моделі об’єктів з розподіленими параметрами системами звичайних диференціальних або алгебраїчних рівнянь дозволяє моделювати їх на аналогових і цифрових обчислю- вальних машинах. Можна прийняти, що час роботи циркуляційної системи обмежений часом досягнення температурним фронтом експлуатаційної свердловини. Проведеними дослідженнями [1] встановлено, що теплоприток від гірського масиву, що оточує шар, у реальних пласто- вих умовах не виявляє істотного впливу на час роботи циркуляційної системи в постій- ному температурному режимі. Тому в розрахунках теплопритоком нехтуємо. У добуванні геотермальної енергії має місце напірна фільтрація, при якій величина μ має значення порядку 10-6 м-2. У зв’язку з цим система виходить на стаціонарний режим за час, малий у порівнянні з часом її роботи. У статті пропонується метод моделювання руху температурного фронту з вико- ристанням диференціальної моделі з переходом до кінцево-різницевої. Після обчислення першого наближення значення швидкості руху холодної води це значення уточнюється з використанням ітерацій за різними параметрами моделі.
APA, Harvard, Vancouver, ISO, and other styles
2

ДАНИК, Юрій, Валентин МАЗУР, and Ігор БАЛИЦЬКИЙ. "МЕТОДОЛОГІЧНІ ОСНОВИ БЕЗПЕЧНОГО РУХУ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ В ПРОСТОРІ З ДИНАМІЧНИМИ ПЕРЕШКОДАМИ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 82, no. 1 (February 2, 2021): 224–36. http://dx.doi.org/10.32453/3.v82i1.541.

Full text
Abstract:
Розвиток і все більше поширення застосування засобів малої авіації обумовлює необхідність вирішення широкого кола завдань. Одним з таких актуальних завдань є забезпечення безпечного руху безпілотних літальних апаратів. Забезпечення безпечного руху є комплексною проблемою яка включає визначення управління безпілотним літальним апаратом при якому виключаються небезпеки. Збільшення інтенсивності польотів засобів малої авіації поряд з урбанізацією місцевості ускладнює вирішення проблеми забезпечення безпечного руху. При цьому важливо враховувати як статичні так і динамічні небезпеки. Задача урахування при польоті статичних небезпек є на сьогодні достатньо вивченою. Існують методики побудови траєкторії польоту безпілотних літальних апаратів з огинанням статичних небезпечних об’єктів. До таких об’єктів відносяться різноманітні будівлі, лінії електропередачі, вежі та інші конструкції. Особливості рельєфу місцевості також відносять до статичних небезпек, які можливо уникнути за рахунок їх врахування навігаційною системою безпілотного літального апарату. Набагато більш складним є забезпечення безпечного руху безпілотних літальних апаратів в умовах динамічних небезпек. Вирішення цієї проблеми потребує комплексного урахування маневрених властивостей безпілотних літальних апаратів, можливостей бортової інформаційної системи та характеристик сенсорів, які дозволяють виявляти небезпечні рухомі об’єкти і на сьогодні є недостатньо вивченим. Все це обумовлює актуальність формування підходів до побудови методичного забезпечення безпеки польоту безпілотних літальних апаратів з урахуванням раптово виникаючих небезпечних об’єктів що і є метою даної роботи. У дослідженні запропонована формалізована постановка завдання забезпечення безпечного руху безпілотних літальних апаратів з урахуванням динамічних загроз. При цьому використаний сферичний простір безпеки. Визначені рівняння, що описують динаміку руху як самого безпілотного літального апарату, так і околу безпеки. Аналіз розв’язків цих рівнянь дозволив дослідити процес взаємного переміщення досліджуваних об’єктів і встановити умови при яких можливе ухилення від динамічної небезпеки.
APA, Harvard, Vancouver, ISO, and other styles
3

Mashkov, O., Yu Mamchur, S. Zhukauskas, and S. Nigorodova. "ЗАСТОСУВАННЯ КОНЦЕПЦІЙ ЗВОРОТНИХ ЗАДАЧ ДИНАМІКИ В МОБІЛЬНИХ КОМПЛЕКСАХ ЕКОЛОГІЧНОГО МОНІТОРИНГУ ДЛЯ СТАБІЛІЗАЦІЇ РУХУ ПРИ ВИНИКНЕННІ НЕШТАТНИХ СИТУАЦІЙ." Системи управління, навігації та зв’язку. Збірник наукових праць 5, no. 57 (October 30, 2019): 95–102. http://dx.doi.org/10.26906/sunz.2019.5.095.

Full text
Abstract:
Запропоновано застосувати концепцію зворотних задач динаміки для створення системи керування мобільного комплексу екологічного моніторингу. Запропонований підхід доцільно використовувати при вирішенні завдання стабілізації руху в умовах нештатних ситуацій. Визначено, що формування системи керування на основі концепції зворотної задачі динаміки передбачає вирішення двох задач. По-перше це визначення керуючої сили для об’єкта керування. По-друге це визначення алгоритму керування силою. Отримано аналітичний вираз для вектору керуючої сили з урахуванням властивостей об'єкта керування, початкових умов, завданням програмної траєкторії руху. Надана аналітична оцінка якості процесу керування при нештатних ситуаціях з алгоритмом на основі вирішення зворотних задач динаміки. Час перехідного процесу в системі керування оцінено для двох випадків, - як без зовнішніх збурень, так й при збудженні системи керування. Надані практичні рекомендації щодо побудови системи мобільного екологічного моніторингу.
APA, Harvard, Vancouver, ISO, and other styles
4

Федорчук, С., О. Шльонська, О. Борисова, І. Когут, В. Маринич, Є. Петрушевський, and М. Ф.К.Хаммуді. "Стан психофізіологічних функцій і динамічна м’язова витривалість у спортсменок в ігрових видах спорту." Спортивна медицина, фізична терапія та ерготерапія, no. 2 (December 20, 2021): 35–40. http://dx.doi.org/10.32652/spmed.2021.2.35-40.

Full text
Abstract:
Резюме. Мета. Порівняння стану психофізіологічних функцій та динамічної м’язової витривалості руху кисті (за показниками тепінг-тесту) спортсменок у різних ігрових видах спорту. Методи. Для визначення стану психофізіологічних функцій та динамічної м’язової витривалості руху кисті використовували діагностичний комплекс «Діагност-1» (М. В. Макаренко, В. С. Лизогуб). Відповідно до мети роботи досліджували латентні періоди простої зорово-моторної реакції, простої і складної реакції вибору, ефективність сенсомоторної діяльності, динамічність нервових процесів, точність реакції на рухомий об’єкт, основні властивості нервової системи, динамічну м’язову витривалість руху кисті тощо. Результати. За результатами дослідження, ігрові види спорту сприяють розвитку, вдосконаленню однієї з основних властивостей центральної нервової системи – функціональної рухливості нервових процесів, що цілком узгоджується з відомими літературними даними про вплив фізичних навантажень і занять різними видами спорту на формування і стан цих властивостей. Це певною мірою підтвердив кореляційний аналіз отриманих даних – функціональна рухливість нервових процесів у режимі нав’язаного ритму асоціювалася зі спеціальним спортивним стажем спортсменок (p < 0,05), у режимі зворотного зв’язку – з віком обстежених спортсменок (p < 0,01). За рівнем функціональної рухливості нервових процесів обстежені спортсменки (волейболістки і гандболістки) не відрізнялися. Удосконалення спеціальної підготовленості обстежених волейболісток і гандболісток було пов’язано насамперед з розвитком функціональної рухливості нервових процесів та точності реакції на рухомий об’єкт. Більш точними у реакції на рухомий об’єкт за кількістю реакцій випередження і середнім відхиленням у реакціях випередження виявилися обстежені гандболістки (спортсменки з вищим рівнем спортивної майстерності). Більш високий психофізіологічний статус за показниками сили нервових процесів упродовж довготривалих сенсомоторних навантажень (у режимі нав’язаного ритму) продемонстрували волейболістки (спортсменки з більшим стажем спортивного тренування). Ключові слова: стан психофізіологічних функцій, динамічна м’язова витривалість руху кисті, волейбол, гандбол.
APA, Harvard, Vancouver, ISO, and other styles
5

Ляшенко, В. А., В. М. Зозуля, О. В. Рижков, О. В. Юла, В. В. Стригун, and Р. Д. Барвінок. "Рекомендації щодо застосування радарної системи MFTR – 2100/40 на основі проведеного аналізу випробувань зразків озброєння та військової техніки." Збірник наукових праць Харківського національного університету Повітряних Сил, no. 2(68) (April 21, 2021): 137–46. http://dx.doi.org/10.30748/zhups.2021.68.18.

Full text
Abstract:
У статті досліджено процес застосування допплеровської радарної системи зовнішньо – траєкторних вимірювань типу MFTR–2100/40, в якій технічно реалізована одночасна сумісна робота радіолокаційного та оптико – електронних каналів, які окрім траєкторних параметрів дозволяють отримати відеозапис (кінограму, фотографічний портрет) об’єкту супроводження, що дає можливість проведення аналізу його просторової орієнтації у русі, траєкторії, динаміки руху, розділення, підриву, руйнування, пуску. та запропоновані рекомендації щодо її застосування на основі проведеного аналізу випробувань зразків озброєння та військової техніки на полігонах Збройних Сил України.
APA, Harvard, Vancouver, ISO, and other styles
6

Степанов, М. Т. "Замкнуті САР з прогнозуванням: аналіз альтернативних варіантів сруктур." Automation of technological and business processes 13, no. 3 (November 4, 2021): 38–48. http://dx.doi.org/10.15673/atbp.v13i3.2144.

Full text
Abstract:
У статті розглядається системи автоматичного регулювання які реалізують алгоритми керування з прогнозуванням складових вільного та вимушеного руху на час запізнення вперед в замкнутому контурі. Проводиться порівняльний аналіз їх роботи у перехідних та сталих режимах роботи, а також запасів стійкості які вони забезпечують. Об'єкти технологічного типу досить часто мають велику інерційність в каналах регулювання яка пов'язаної не тільки з чистим запізненням, але, більшою мірою з акумуляцією речовини і енергії, так званим ємнісним запізненням. Повна або часткова компенсація цієї інерційності може в значній мірі поліпшити якість регулювання для таких об'єктів. На практиці для компенсації впливу запізнення на динаміку власного руху часто використовують системи з упереджувачем Сміта які значно розширюють запас стійкості систем і забезпечують їх працездатність в умовах нестаціонарних властивостей об’єкта керування. Також прогнозування використовується у системах керування з прогнозуючою моделлю, в яких керуючий вплив на кожному кроці розраховується за рахунок вирішення оптимізаційної задачі на основі математичної моделі об’єкта керування. Ці системи також застосовують для керування об’єктами технологічного типу, зокрема рекомендують до застосування при керуванні багатоканальними об’єктами канали яких пов’язані між собою через дію перехресних зв’язків. В якості альтернативи вказаним системам запропонована система регулювання з прогнозуванням вимушеного руху в замкнутий контур якої введено алгоритм прогнозування в реальному часі на основі кубічного сплайну. Проведено структурний та оптимальний параметричний синтез альтернативних варіантів систем автоматичного регулювання. В якості базового регулятора було обрано типовий ПІД-регулятор. Порівняльний аналіз оптимальних систем, проведений в часовій і частотних областях, показав перевагу системи регулювання, що реалізує принцип керування за прогнозом на основі кубічного сплайну. При аналізі роботи систем за каналом дії неконтрольованих збурень система регулювання з прогнозуванням по кубічному сплайну забезпечує зниження інтегрального і прямих показників якості перехідних процесів до 40%. Перевірка на грубість систем автоматичного регулювання показала, що система автоматичного регулювання з прогнозуванням регульованої змінної за кубічним сплайном має приблизно однаковий запас стійкості за часом запізнення та трошки нижчий запас стійкості за коефіцієнтом передачі об’єкта керування, ніж система з упереджувачем Сміта.
APA, Harvard, Vancouver, ISO, and other styles
7

Поліщук, Олександр Павлович, and Євген Володимирович Гожев. "Дослідження динаміки та прогнозування курсів цінних паперів." New computer technology 5 (November 7, 2013): 77–78. http://dx.doi.org/10.55056/nocote.v5i1.89.

Full text
Abstract:
Розвиток людини, суспільства й економіки має спрямованість у майбутнє, що знайшло відображення у виникненні таких понять, як «передбачення», «прогноз». Прогнозування («наукове передбачення») – це та сторона пізнавальної діяльності суб’єкта, результатом якого є одержання знань про майбутні події.Моделі складних систем, таких як фінансові ринки, не завжди можуть давати однозначні рекомендації або прогноз.Серед факторів, що характеризують динаміку ринку та впливають на неї, є велика кількість даних нечислової природи, значення яких мають імовірнісну природу.Для подолання проблем, з якими доводиться зіштовхуватися при аналізі фінансової ситуації, робляться спроби застосування таких розділів сучасної фундаментальної й обчислювальної математики, як нейрокомп’ютери, теорія стохастичного моделювання (теорія хаосу) і теорія ризиків, теорія катастроф, синергетика й теорія систем, що самоорганізуються (включаючи генетичні алгоритми), теорія фракталів, нечіткі логіки й навіть віртуальна реальність.Правильне розуміння ситуації на ринку, аналіз його динаміки, прогнозування поводження ринку приводить до обґрунтованого прийняття рішень.Основна мета роботи полягала у розробці програмного забезпечення для дослідження динаміки й прогнозування курсу цінних паперів.Вiдповiдно до мети, було необхiдно вирiшити наступнi задачi:Розглянути основні підходи до аналізу ринку цінних паперів.Дослідити можливості програмного комплексу MetaTrader 4 по керуванню ринком цінних паперів.Проаналізувати можливості мови MQL 4 по створенню ринкових індикаторів і експертних систем аналізу ринку цінних паперів.Розробити й протестувати індикатор для аналізу динаміки курсів валют і експертну систему для короткочасного прогнозування й прийняття рішень на валютному ринку.Аналіз літератури з проблеми дослідження дозволив виділити наступні суттєві характеристики об’єкта дослідження:валютний ринок Forex має високу ліквідність;відсутність обмежень за часом роботи забезпечує неперервність процесу дослідження;децентралізованість забезпечує незалежність від локальних геополітичних факторів;велика кількість учасників ринку дозволяє абстрагуватися від індивідуальних особливостей гравців;об’єкт дослідження являє собою складну систему з великою кількістю нелінійних зв’язків.Виділені властивості валютного ринку дозволяють розглядати його як динамічну систему, що може бути проаналізована. Прогноз стану системи є актуальною проблемою, безпосередньо пов’язану з отриманням прибутку.Розгляд алгоритмів отримання якісних і кількісних характеристик ринку засобами фундаментального, технічного та комп’ютерного аналізу дозволив зробити наступні висновки:1. На практиці можна знайти випадки, коли кожен з представлених підходів до аналізу ринку дасть прийнятний результат. Для трейдерів, що не є ринкоутворювачами, найбільш прийнятним є комп’ютерний індикаторний аналіз з автотрейдингом за короткочасними прогнозами.2. Автоматичні індикатори є ефективним засобом графічного аналізу часових рядів, надаючи трейдеру можливість прийняття обґрунтованого рішення.3. При розробці експертної системи для робочого місця трейдера необхідно розрізняти поняття «прогнозування руху цін на ринку», з одного боку, та «ігрові робочі гіпотези», зважені за ймовірністю подій, з іншого.4. Критеріями вибору трейдингової системи є підтримка великого набору індикаторів і експертів, можливість розширення системи компонентами користувача, наявність вбудованої мови програмування та локалізація.В результаті дослідження було створено експертну систему, призначену для автоматичного ведення торгів на ринку цінних паперів. Експертна система реалізована засобами мови програмування MQL 4, що вбудована в термінал MetaTrader 4.Розгляд підходів до написання технічних індикаторів та експертних систем для підтримки прийняття рішень на основі аналізу динаміки курсу цінних паперів та короткочасного прогнозування дозволило зробити наступні висновки:Мова програмування MQL 4 має всі необхідні інструменти для забезпечення якісного технічного аналізу курсу валют.Можливість написання та тестування експертів в торговій системі MetaTrader дозволяє користувачу створити систему торгівлі, що приносить прибуток.Аналіз присутніх на ринку торгових систем виявив типові помилки в написанні експертних систем, що були враховані при розробці власного автотрейдингового експерта.Подальший розвиток даної роботи планується у напрямку дослідження динаміки валютних ринків з метою удосконалення алгоритмів прогнозування курсу та оптимізації роботи торгових експертних систем із застосування механізму нейронних мереж.
APA, Harvard, Vancouver, ISO, and other styles
8

Краснобокий, Юрій Миколайович, and Ігор Анатолійович Ткаченко. "Інтеграція природничо-наукових дисциплін у світлі компетентнісної парадигми освіти." Theory and methods of learning fundamental disciplines in high school 8 (November 23, 2013): 83–89. http://dx.doi.org/10.55056/fund.v8i1.195.

Full text
Abstract:
Система освіти, яка ґрунтується на наукових засадах її організації, характеризується зміщенням акцентів від отримання готового наукового знання до оволодіння методами його отримання як основи розвитку загальнонаукових компетенцій.Уже достатньо чітко визначена спрямованість нової освітньої парадигми, осмислені її детермінуючі особливості, визначено предмет постнекласичної педагогіки та її основоположні аксіоми. Вироблені пріоритети всієї постнекласичної дидактики, аж до розроблення її категоріального апарату. Проте, на фоні такої колосальної роботи педагогічної думки так і не сформульовано достатньо чітко концептуальні основи постнекласичної дидактики, яка перебуває в стані активного формування як загалом, так і по відношенню до її природничо-наукової компоненти.На сучасному етапі модернізації освіти головним завданням стає формування у студентів здатності навчатися, самостійно здобувати знання і творчо мислити, приймати нестандартні рішення, відповідати за свої дії і прогнозувати їх наслідки; за період навчання у них мають бути сформовані такі навики, які їм будуть потрібні упродовж всього життя, у якій би галузі вони не працювали: самостійність суджень, уміння концентруватися на основних проблемах, постійно поповнювати власний запас знань.Зараз вимоги до рівня підготовки випускника пред’являються у формі компетенцій. Обов’язковими компонентами будь-якої компетенції є відповідні знання і уміння, а також особистісні якості випускника. Синтез цих компонентів, який виражається в здатності застосовувати їх у професійній діяльності, становлять сутність компетенції. Отже, інтегральним показником досягнення якісно нового результату, який відповідає вимогам до сучасного вчителя, виступає компетентність випускника університету. Оволодіння сукупністю універсальних (завдяки інтегральному підходові до викладання) і професійних компетенцій дозволить випускнику виконувати професійні обов’язки на високому рівні. Необхідно шляхом інтеграції навчальних дисциплін, використовуючи активні методи та інноваційні технології, які привчають до самостійного набуття знань і їх застосування, допомагати як формуванню практичних навиків пошуку, аналізу і узагальнення любої потрібної інформації, так і набуттю досвіду саморозвитку і самоосвіти, самоорганізації і самореалізації, сприяти становленню і розвиткові відповідних компетенцій, актуальних для майбутньої професійної діяльності учителя.Стосовно обговорюваного питання, то в результаті вивчення циклу природничих дисциплін випускник повинен знати фундаментальні закони природи, неорганічної і органічної матерії, біосфери, ноосфери, розвитку людини; уміти оцінювати проблеми взаємозв’язку індивіда, людського суспільства і природи; володіти навиками формування загальних уявлень про матеріальну першооснову Всесвіту. Звичайно, що забезпечити такі компетенції будь-яка окремо взята природнича наука не в змозі. Шлях до вирішення цієї проблеми лежить через їх інтеграцію, тобто через оволодіння масивом сучасних природничо-наукових знань як цілісною системою і набуття відповідних професійних компетенцій на основі фундаментальної освіти [2].Когнітивною основою розвитку загальнонаукових компетенцій є наукові знання з тих розділів дисциплін природничо-наукового циклу ВНЗ, які перетинаються між собою. Тобто, успішність їх розвитку визначається рівнем міждисциплінарної інтеграції вказаних розділів. Загальновідомо, що найбільший інтеграційний потенціал має загальний курс фізики, оскільки основні поняття, теорії і закони фізики широко представлені і використовуються у більшості інших загальнонаукових і вузькоприкладних дисциплін, що створює необхідну базу для розвитку комплексу загальнонаукових компетентностей.У той же час визначальною особливістю структури наукової діяльності на сучасному етапі є розмежування науки на відносно відособлені один від одного напрями, що відображається у відокремлених навчальних дисциплінах, які складають змістове наповнення навчальних планів різних спеціальностей у ВНЗ. До деякої міри це має позитивний аспект, оскільки дає можливість більш детально вивчити окремі «фрагменти» реальності. З іншого боку, при цьому випадають з поля зору зв’язки між цими фрагментами, оскільки в природі все між собою взаємопов’язане і взаємозумовлене. Негативний вплив відокремленості наук вже в даний час особливо відчувається, коли виникає потреба комплексних інтегрованих досліджень оточуючого середовища. Природа єдина. Єдиною мала б бути і наука, яка вивчає всі явища природи.Наука не лише вивчає розвиток природи, але й сама є процесом, фактором і результатом еволюції, тому й вона має перебувати в гармонії з еволюцією природи. Збагачення різноманітності науки повинно супроводжуватися інтеграцією і зростанням упорядкованості, що відповідає переходу науки на рівень цілісної інтегративної гармонічної системи, в якій залишаються в силі основні вимоги до наукового дослідження – універсальність досліду і об’єктивний характер тлумачень його результатів.У даний час загальноприйнято ділити науки на природничі, гуманітарні, математичні та прикладні. До природничих наук відносять: фізику, хімію, біологію, астрономію, геологію, фізичну географію, фізіологію людини, антропологію. Між ними чимало «перехідних» або «стичних» наук: астрофізика, фізична хімія, хімічна фізика, геофізика, геохімія, біофізика, біомеханіка, біохімія, біогеохімія та ін., а також перехідні від них до гуманітарних і прикладних наук. Предмет природничих наук складають окремі ступені розвитку природи або її структурні рівні.Взаємозв’язок між фізикою, хімією і астрономією, а особливо аспектний характер фізичних знань стосовно до хімії і астрономії дають можливість стверджувати, що роль генералізаційного фактору при формуванні змісту природничо-наукової освіти можлива лише за умови функціонування системи астрофізичних знань. Генералізація фізичних й астрономічних знань, а також підвищення ролі наукових теорій не лише обумовили фундаментальні відкриття на стику цих наук, але й стали важливим засобом подальшого розвитку природничого наукового знання в цілому [4]. Що стосується змісту, то його, внаслідок бурхливого розвитку астрофізики в останні декілька десятків років потрібно зробити більш астрофізичним. Астрофізика як розділ астрономії вже давно стала найбільш вагомою її частиною, і роль її все більше зростає. Вона взагалі знаходиться в авангарді сучасної фізики, буквально переповнена фізичними ідеями й має величезний позитивний зворотній зв’язок з сучасною фізикою, стимулюючи багато досліджень, як теоретичних, так і експериментальних. Зумовлено це, в першу чергу, невпинним розвитком сучасних астрофізичних теорій, переоснащенням науково-технічної дослідницької бази, значним успіхом світової космонавтики [3].Разом з тим, сучасна астрономія – надзвичайно динамічна наука; відкриття в ній відбуваються в різних її галузях – у зоряній і позагалактичній астрономії, продовжуються відкриття екзопланет тощо. Так, нещодавно відкрито новий коричневий карлик, який через присутність у його атмосфері аміаку і тому, що його температура істотно нижча, ніж температура коричневих карликів класів L і T, може стати прототипом нового класу (його вчені вже позначили Y). Важливим є й те, що такий коричневий карлик – фактично «сполучна ланка» між зорями і планетами, а його відкриття також вплине на вивчення екзопланет.Сучасні астрофізичні космічні дослідження дозволяють отримати унікальні дані про дуже віддалені космічні об’єкти, про події, що відбулися в період зародження зір і галактик. Міжнародна астрономічна спілка (МАС) запровадила зміни в номенклатурі Сонячної системи, ввівши новий клас об’єктів – «карликові планети». До цього класу зараховано Плутон (раніше – дев’ята планета Сонячної системи), Цереру (до цього – найбільший об’єкт з поясу астероїдів, що міститься між Марсом і Юпітером) та Еріду (до цього часу – об’єкт 2003 UB313 з поясу Койпера). Водночас МАС ухвалила рішення щодо формулювання поняття «планета». Тому, планета – небесне тіло, що обертається навколо Сонця, має близьку до сферичної форму і поблизу якого немає інших, таких самих за розмірами небесних тіл. Існування в планетах твердої та рідкої фаз речовини в широкому діапазоні температур і тисків зумовлює не тільки величезну різноманітність фізичних явищ та процесів, а й перебіг різнобічних хімічних процесів, таких, наприклад як, утворення природних хімічних сполук – мінералів. На жодних космічних тілах немає такого розмаїття хімічних перетворень, як на планетах. Проте на них можуть відбуватися не тільки фізичні та хімічні процеси, а й, як свідчить приклад Землі, й біологічні та соціальні. Тобто планети відіграють особливу роль в еволюції матерії у Всесвіті. Саме завдяки існуванню планет у Всесвіті відбувається перехід від фізичної форми руху матерії до хімічної, біологічної, соціальної, цивілізаційної. Планети – це база для розвитку вищих форм руху матерії. Слід зазначити, що це визначення стосується лише тіл Сонячної системи, на екзопланети (планет поблизу інших зір) воно поки що не поширюється. Було також визначено поняття «карликова планета». Окрім цього, вилучено з астрономічної термінології термін «мала планета». Таким чином, сьогодні в Сонячній системі є планети (та їх супутники), карликові планети (та їх супутники), малі тіла (астероїди, комети, метеороїди).Використання даних сучасних астрономічних, зокрема астрофізичних уявлень переконливо свідчать про те, що дійсно всі випадки взаємодій тіл у природі (як в мікросвіті, так й у макросвіті і мегасвіті) можуть бути зведені до чотирьох видів взаємодій: гравітаційної, електромагнітної, ядерної і слабкої. В іншому плані, ілюстрація застосувань фундаментальних фізичних теорій, законів і основоположних фізичних понять для пояснення особливостей будови матерії та взаємодій її форм на прикладі всіх рівнів організації матерії (від елементарних частинок до мегаутворень Всесвіту) є переконливим свідченням матеріальної єдності світу та його пізнаваності.Наукова картина світу, виконуючи роль систематизації всіх знань, одночасно виконує функцію формування наукового світогляду, є одним із його елементів [1]. У свою чергу, з науковою картиною світу завжди корелює і певний стиль мислення. Тому формування в учнів сучасної наукової картини світу і одночасно уявлень про її еволюцію є необхідною умовою формування в учнів сучасного стилю мислення. Цілком очевидно, що для формування уявлень про таку картину світу і вироблення у них відповідного стилю мислення необхідний й відповідний навчальний матеріал. В даний час, коли астрофізика стала провідною складовою частиною астрономії, незабезпеченість її опори на традиційний курс фізики є цілком очевидною. Так, у шкільному курсі фізики не вивчаються такі надзвичайно важливі для осмисленого засвоєння програмного астрономічного матеріалу поняття як: ефект Доплера, принцип дії телескопа, світність, закони теплового випромінювання тощо.В умовах інтенсифікації наукової діяльності посилюється увага до проблем інтеграції науки, особливо до взаємодії природничих, технічних, гуманітарних («гуманітаризація освіти») та соціально-економічних наук. Розкриття матеріальної єдності світу вже не є привілеями лише фізики і філософії, та й взагалі природничих наук; у цей процес активно включилися соціально-економічні і технічні науки. Матеріальна єдність світу в тих галузях, де людина перетворює природу, не може бути розкритою лише природничими науками, тому що взаємодіюче з нею суспільство теж являє собою матерію, вищого ступеня розвитку. Технічні науки, які відображають закони руху матеріальних засобів людської діяльності і які є тією ланкою, що у взаємодії поєднує людину і природу, теж свідчать про матеріальність засобів людської діяльності, з допомогою яких пізнається і перетворюється природа. Тепер можна стверджувати, що доведення матеріальної єдності світу стало справою не лише філософії і природознавства, але й всієї науки в цілому, воно перетворилося у завдання загальнонаукового характеру, що й вимагає посилення взаємозв’язку та інтеграції перерахованих вище наук.Звичайно, що найбільший внесок у цю справу робить природознавство, яке відповідно до характеру свого предмета має подвійну мету: а) розкриття механізмів явищ природи і пізнання їх законів; б) вияснення і обґрунтування можливості екологічно безпечного використання на практиці пізнаних законів природи.Інтеграція природничо-наукової освіти передбачає застосування впродовж всього навчання загальнонаукових принципів і методів, які є стержневими. Для змісту інтегративних природничо-наукових дисциплін найбільш важливими є принцип доповнюваності, принцип відповідності, принцип симетрії, метод моделювання та математичні методи.Вважаємо за доцільне звернути особливу увагу на метод моделювання, широке застосування якого найбільш характерне для природничих наук і є необхідною умовою їх інтеграції. Необхідність застосування методу моделювання в освітній галузі «природознавство» очевидна у зв’язку зі складністю і комплексністю цієї предметної галузі. Без використання цього методу неможлива інтеграція природничо-наукових знань. У процесі моделювання об’єктів із області природознавства, що мають різну природу, якісно нового характеру набувають інтеграційні зв'язки, які об’єднують різні галузі природничо-наукових знань шляхом спільних законів, понять, методів дослідження тощо. Цей метод дозволяє, з одного боку, зрозуміти структуру різних об’єктів; навчитися прогнозувати наслідки впливу на об’єкти дослідження і керувати ними; встановлювати причинно-наслідкові зв’язки між явищами; з іншого боку – оптимізувати процес навчання, розвивати загальнонаукові компетенції.Фундаментальна підготовка студентів з природничо-наукових спеціальностей неможлива без послідовного і систематичного формування природничо-наукового світогляду у майбутніх фахівців.Науковий світогляд – це погляд на Всесвіт, на природу і суспільство, на все, що нас оточує і що відбувається у нас самих; він проникнутий методом наукового пізнання, який відображає речі і процеси такими, якими вони існують об’єктивно; він ґрунтується виключно на досягнутому рівні знань всіма науками. Така узагальнена система знань людини про природні явища і її відношення до основних принципів буття природи складає природничо-науковий аспект світогляду. Отже, світогляд – утворення інтегральне і ефективність його формування в основному залежить від ступеня інтеграції всіх навчальних дисциплін. Адже до складу світогляду входять і відіграють у ньому важливу роль такі узагальнені знання, як повсякденні (життєво-практичні), так і професійні та наукові.Вищим рівнем асоціативних зв’язків є міждисциплінарні зв’язки, які повинні мати місце не лише у змісті окремих навчальних курсів. Тому, сучасна тенденція інтеграції природничих наук і створення спільних теорій природознавства зобов’язує викладацький корпус активніше упроваджувати міждисциплінарні зв’язки природничо-наукових дисциплін у навчальний процес ВНЗ, що позитивно відобразиться на ефективності його організації та підвищенні якості навчальних досягнень студентів.Підсумовуючи вище викладене, можна зробити наступні висновки:Однією з особливостей компетентісного підходу, що відрізняє його від знанієво-центрованого, є зміна функцій підготовки вчителів з окремих дисциплін, які втрачають свою традиційну самодостатність і стають елементами, що інтегруються у систему цілісної психолого-педагогічної готовності випускника до роботи в умовах сучасного загальноосвітнього навчального закладу.Інтеграційні процеси, так характерні для сучасного етапу розвитку природознавства, обов’язково мають знаходити своє відображення в природничо-науковій освіті на рівні як загальноосвітньої, так і вищої школи. Майбутнім педагогам необхідно усвідомлювати взаємозв’язок і взаємозалежність наук, щоб вони могли підготувати своїх учнів до роботи в сучасних умовах інтеграції наук.Учителям біології, хімії, географії необхідно володіти методами дослідження об’єктів природи, переважна більшість яких базується на законах фізики і передбачає уміння працювати з фізичними приладами. Крім того, саме фізика створює основу для вивчення різноманітних явищ і закономірностей, які складають предмет інших природничих наук.Інтеграція природничо-наукових дисциплін дозволить розкрити у процесі навчання фундаментальну єдність «природа – людина – суспільство», значно посилить інтерес студентів до вивчення цього циклу дисциплін, дасть можливість інтенсифікувати навчальний процес і забезпечити високий рівень якості його результату.
APA, Harvard, Vancouver, ISO, and other styles
9

Колос, Катерина Ростиславівна. "Особливості використання мультимедійних презентацій для підтримки навчально-пізнавального процесу закладу післядипломної педагогічної освіти." Theory and methods of e-learning 4 (February 28, 2014): 140–43. http://dx.doi.org/10.55056/e-learn.v4i1.382.

Full text
Abstract:
Раціональне використання інформаційно-комунікаційних технологій (ІКТ) є невід’ємною складовою підтримки сучасного навчально-пізнавального процесу закладу післядипломної педагогічної освіти, під якою будемо розуміти динамічну систему, яка функціонує на основі використання педагогічно виваженого добору ІКТ й спрямована на оптимізацію навчально-пізнавальної діяльності слухачів курсів підвищення кваліфікації педагогічних кадрів.Тому під час навчально-пізнавального процесу у комп’ютерно орієнтованому навчальному середовищі закладу післядипломної педагогічної освіти слухачів потрібно не лише ознайомлювати з можливостями, перевагами та недоліками сучасних ІКТ, а й на прикладах демонструвати методику їх використання у навчально-пізнавальному процесі, навчати основам створення власних педагогічних програмних засобів за допомогою сучасних ІКТ.Одним із таких найчастіше використовуваних педагогічних програмних засобів, необхідних для підтримки навчально-пізнавального процесу в комп’ютерно орієнтованому навчальному середовищі закладу післядипломної педагогічної освіти, є мультимедійна презентація. Це пояснюється тим, що значна кількість занять, які читаються на курсах підвищення кваліфікації педагогічних кадрів, несуть велике теоретичне навантаження випереджувального характеру. Тому потребують від науково-викладацьких і методичних працівників закладу післядипломної педагогічної освіти, підготовку та представлення «публічно спрямованого виступу, який базується на результатах узагальнення інформації, дослідження певної проблеми, має чітке логіко-композиційне оформлення і спрямований на представлення нової інформації, спонукання до дії чи переконання аудиторії, – що і вміщує в собі поняття презентація» [1, 9].Використання мультимедійних презентацій під час навчально-пізнавального процесу не лише полегшує показ графічних об’єктів (фотографій, малюнків, графіків тощо), а й при використанні руху, відеофрагментів дозволяють демонструвати динамічні процеси, на сучасному рівні забезпечити наочність, що сприяє комплексному сприйняттю і кращому запам’ятовуванню матеріалу.Проте короткотривале перебування слухачів на курсах підвищення кваліфікації педагогічних кадрів не дозволяє їм в повній мірі оволодіти всіма відомостями, які подаються на заняттях. Звідси виникає потреба у копіюванні на засоби запису даних або ж розміщення на сайті закладу післядипломної педагогічної освіти матеріалів, що використовуються викладачами на заняттях.Отже, важливим у здійсненні підтримки навчально-пізнавального процесу є захист авторських прав, що в Україні регулюється, в основному, такими національними нормативними актами, як Закон України «Про авторське право і суміжні права» та Цивільний кодекс України. Тому пріоритетними при виборі програми для створення мультимедійних презентацій є наявність засобів захисту авторських прав.У більшості наукових праць досліджувались лише окремі аспекти використання мультимедійних презентацій для здійснення підтримки навчального процесу закладу освіти. Особливий інтерес становлять праці, присвячені створенню педагогічних умов, з використанням мультимедійних презентацій, для підвищення рівня засвоєнню знань учнів (Н. В. Морзе, Г. І. Шолом, М. М. Сидорович, О. В. Єргіна, Вікт. М. Ракута); принципам розробки та оформлення мультимедійних презентацій (Т. М. Козак, Т. В. Будкевич, Л. О. Костриба, Т. М. Соловйова); технології та методики застосування мультимедійних презентацій під час проведення уроків у загальноосвітніх навчальних закладах (С. С. Ковальський, С. І. Нетьосов, Н. В. Никитюк та ін.).Проблема виявлення оптимальної програми для створення мультимедійних презентацій для підтримки навчально-пізнавального процесу закладу освіти є досить актуальною на кожному з етапів розвитку ІКТ.Мультимедійні презентації доцільно використовувати під час навчально-пізнавального процесу на курсах підвищення кваліфікації педагогічних кадрів, насамперед при:– вивченні нового матеріалу: дозволяє ілюструвати різноманітні наочні засоби, зокрема, показ динаміки розвитку будь-якого процесу;– закріпленні вивченої теми;– поглибленні знань: підготовка додаткового матеріалу до занять;– організації підготовки та представленні проектної роботи слухачів;– створенні теоретичних матеріалів для дистанційного курсу;– оформленні відео-, фото-матеріалів з проведеного науково-методичного засідання, семінару, конференції, майстер-класу тощо закладом післядипломної педагогічної освіти та їх викладення у соціальні мережі, на сайт закладу;– поданні статистичних відомостей, наприклад, про рівень надання навчальних послуг закладом післядипломної педагогічної освіти за навчальний рік.Найчастіше використовуваними програмами для створення мультимедійних презентацій є: Microsoft Office PowerPoint, Picasa, Windows Movie Maker, OpenOffice.org Impress, ProShowProduser, Photo Slideshow Maker Platinum тощо. Наведені програми містять засоби, потрібні для створення мультимедійних презентацій, необхідних для підтримки навчально-пізнавального процесу у закладі освіти.Висвітлимо деякі особливості навчання слухачів курсів підвищення кваліфікації педагогічних кадрів створенню мультимедійної презентації. Здійснимо це на основі програми ProShowProduser.Для підвищення рівня мотивації слухачів щодо доцільності використання мультимедійних презентацій, розроблених за допомогою програми ProShowProduser, в навчально-виховному процесі загальноосвітнього навчального закладу, необхідно продемонструвати готові мультимедійні презентації. Для цього можна скористатися ресурсом «Інформаційно-комунікаційні технології в ЖОІППО», що реалізований на сайті https://sites.google.com/site/iktvzoippo/home або під час підготовки до заняття викладачу потрібно самостійно розробити декілька різнотипних варіантів мультимедійних презентацій, які відображатимуть можливості засобів програми ProShowProduser, а також багатогранність реалізації ідей.Перед створенням мультимедійної презентації у програмі ProShowProduser потрібно насамперед мати змістову наповненість (відео-, аудіо-, графічні, текстові матеріали). Тому доцільним буде зробити невелику «фотосесію» слухачів, фотографії з якої, а також попередньо здійснений викладачем підбір фонів, відео-заставок, і будуть складати змістову наповненість майбутньої мультимедійної презентації, створену слухачами за безпосередньої підтримки викладача.Далі відбувається процес створення мультимедійної презентації за допомогою засобів програми.Створену у програмі ProShowProduser мультимедійну презентацію доречно завжди зберігати у форматі проекту, адже педагогічні програмні засоби повинні відображати сучасні можливості і потреби суспільства, тому повинні легко піддаватися поточним змінам.Крім цього, програма ProShowProduser надає можливості зберігати мультимедійну презентацію у форматах, необхідних для розміщення і перегляду в Інтернеті, зокрема на соціальних медіа- ресурсах; автономного перегляду на комп’ютері, DVD-програвачі тощо.Для швидкого та ґрунтовного оволодіння слухачами, науково-педагогічними, методичними кадрами закладу післядипломної педагогічної освіти уміннями роботи у програмі ProShowProduser, доцільно розробити методичні рекомендації з використання засобів цієї програми для створення мультимедійних презентацій.
APA, Harvard, Vancouver, ISO, and other styles
10

Здещиц, Валерий Максимович. "Вимірювання сенсомоторної реакції учнів як засіб вдосконалення процесу їх навчання." Theory and methods of e-learning 2 (February 3, 2014): 272–80. http://dx.doi.org/10.55056/e-learn.v2i1.286.

Full text
Abstract:
Вивчення швидкості простої руховій реакції людини починається у 1796 р., коли глава Грінвічської обсерваторії Маськелайн звільнив молодого астронома, оскільки він спізнювався відзначати проходження зірки через меридіан на півсекунди. Помилковість обчислень Маськелайн встановив порівнянням отриманих даних зі своїми, які він вважав за непогрішимі. Тільки через тридцять років німецький астроном Бессел відновив репутацію молодого астронома, показавши, що неточно відмічають час всі астрономи, у тому числі і Маськелайн, та і він сам, і що у кожного астронома є свій середній час помилки. Цей час з тих пір включався в астрономічні обчислення у вигляді коефіцієнта, що отримав назву «особисте рівняння». Проте особисте рівняння – це не швидкість простої реакції, а точність реакції на рухомий об’єкт. Адже астроном може не тільки запізнитися, але і поквапитися відмітити той час, коли нитка в окулярі телескопу як би перерізує світило навпіл.Проста рухова реакція – це можливо швидша відповідь простим і заздалегідь відомим рухом на відомий сигнал, що раптово з’являється. Більш повно і точно ця реакція називається простою сенсомоторною реакцією, оскільки існує і складна сенсомоторна реакція вибору.Час простої реакції, тобто час від моменту появи сигналу до моменту початку рухової відповіді, вперше виміряв Гельмгольц у 1850 р. Він залежить від того, на який сенсор діє сигнал, від сили сигналу і від фізичного і психологічного стану людини. Зазвичай він дорівнює: на світло – 100–200 мс, на звук – 120–150 мс і на електрошкірний подразник – 100–150 мс. Нейрофізіологічні методи дозволили розкласти цей час на ряд відрізків.Однією з основних властивостей центральної нервової системи (ЦНС), разом із збудженням і гальмуванням, є швидкість проведення збудження. Даний показник характеризує загальний стан нервової системи і показує, наскільки швидко здійснюються процеси, що приводять до реакції організму на який-небудь стимул.Час, протягом якого людина відповідає руховою реакцією на зовнішній стимул, називається латентним періодом (ЛП), тобто, іншими словами, латентний (прихований) період – це час проходження нервового імпульсу від рецептора до м’яза.Час латентного періоду складається з ряду подій, які відбуваються як в ЦНС, так і за її межами. Так в латентний час слухо-моторної реакції входить: 1) час збудження кортієва органу внутрішнього вуха; 2) проведення нервового імпульсу по слуховому нерву; 3) декілька синаптичних перемикань в ЦНС; 4) проведення нервового імпульсу по руховому (моторному) волокну; 5) збудження і скорочення м’яза.За наявності стомлення в ЦНС латентний період реакції збільшується. Крім того, на час реакції впливають типологічні особливості темпераменту і вік людини.З віком час реакції зменшується. У дітей латентні періоди реакцій значно перевищують значення, характерні для дорослої людини. Це пояснюється низьким рівнем розвитку ЦНС і зокрема низьким рівнем мієлінізації волокон і тривалішим часом синаптичних перемикань. У літніх людей спостерігається збільшення латентних періодів реакцій.Залежність латентного періоду реакції від стомлення, віку відкриває можливість управління процесом навчання людини на підставі науково обґрунтованого часового навантаження. Відомо, що при зміні програми навчання, часу занять, тривалість уроків є величиною сталою. Доза нового теоретичного матеріалу і часові рамки його викладання тепер можуть бути визначені рівнем сприйняття школярів і студентів, тобто адекватністю їх реакції. Перманентно контролювати цей процес в наш комп’ютерний час не представляється складним.Тому метою даної роботи є 1) розробка сучасних вимірників простої сенсомоторної реакції і складної сенсомоторної реакції вибору, 2) визначення латентних періодів сенсомоторних і розумових реакцій учнів, 3) на підставі аналізу отриманих даних розробка методик навчання з урахуванням фактору сенсомоторної реакції учня.У цієї статті розглядаються перші два пункти проведеної роботи. Третій етап потребує значно більших зусиль і часу. Тому результати виконання цього дуже важливого для педагогічної практики етапу роботи будуть оприлюднені пізніше.Зробимо короткий огляд пристроїв, методів і результатів вимірювання сенсомоторних реакцій, які відомі у наш час.О. Пиріжків, С. Кочеткова (Кубанська державна академія фізичної культури, Краснодар, Росія) досліджували сенсомоторні реакції 35 бійців спеціальних підрозділів 21–32 років, що займаються різними видами рукопашного бою, що має в основі: самбо (12), карате (11), кікбоксинг (12 чоловік) і 13 чоловіків ідентичного віку, що не займаються спортом. Диференціювання уніполярного світлового подразника досліджуваний здійснював стоячи на платформі, забезпеченій мікровимикачами. Реакцією на спалах верхніх світлодіодів було максимально швидке натиснення кнопки великим пальцем однойменної руки, нижніх – відрив відповідної ноги від платформи. Реєстрували час простої (ЧПРР) і складної рухових реакцій (ЧСРР), розраховували відсоток помилок від кількості проб. Дані обробляли згідно критерію Стьюдента. Отримані результати приведені в таблиці 1.Каратисти виявили найкоротший ЧПРР на звук і при реагуванні на світло руками і ногами. Вони зберегли пріоритет і у ЧСРР руками і ногами, припустивши при цьому мінімальну кількість помилок.Таблиця 1Час рухових реакцій у представників різних шкіл єдиноборства ГрупиЧПРРЧСРРЧСРРрукирукиногирукиногируки-ногизвуксвітлосвітлопомилкасвітлопомилкасвітлопомилкамсмс%мс%мс%Самбо135±8,4170±10,1240±8,6267±9,811,2335±7,411,0395±10,012,4Карате134±9,2155±8,9223±9,3223±7,910,1309±8,911,2368±11,416,0Кікбоксинг148±7,8172±11,4243±11,1264±10,210,0328±6,617,1437±12,319,3Нетреновані146±6,6180±9,9281±12,0285±11,612,8360±9,518,7464±11,325,2Ускладнений варіант реакції (ЧСРР р-н) підтвердив надійність швидкісних проявів центральної нервової системи у представників карате. У цих умовах вони відреагували на 27-96 мс швидше (P<0,05–0,001) за однолітків з інших груп. У нетренованих чоловіків кожна четверта реакція була помилковою при низькій швидкості реагування на хаотично виникаючі світлові сигнали (464 мс).Як показали спостереження, ускладнення умов пред’явлення стимулу подовжує час реагування особливо в ситуаціях, що вимагають прояву екстраполяції, зростає відсоток неадекватних дій на світлові подразники, що хаотично пред’являються.Для оцінки швидкості психомоторної реакції, функціонального стану центральної нервової системи розроблений також реакціометр – вимірник RA–1. Вимірник реакції призначений для вимірювання часу реакції людини на червоне (небезпека), зелене світло, а також звуковий сигналТехнічні дані пристрою: дискретність вимірювання часу реакції 1 мс, абсолютна похибка вимірювання часу реакції не більш ±2мс.Дослідження сенсомоторних реакцій у робітників показало, що зміна часу реакції при стомленні пов’язана із зміною стійкості уваги і швидкості переробки інформації. Час реакції ближче до кінця зміни може перевищувати мінімальне значення більш ніж в 2 рази. Час реакції дуже збільшується при хворобливому стані і після прийому навіть невеликих доз алкоголю.Особливості сенсомоторної реакції людини при флуктуації атмосферного тиску в наш час досліджували Р. Шарафі, С. Богданов, Д. Горлов, Ю. Горго, Р. Коробейників (Київський національний університет ім. Тараса Шевченка). Всього в експериментах брали участь 135 осіб. Віковий діапазон випробовуваних складав від 15 до 30 років і з середнім віком 20±2 роки. Було проведено дослідження латентних періодів простої сенсомоторної реакції за допомогою комп’ютерної програми «React 22». При дослідженнях подавали 100 сигналів середньої інтенсивності з інтервалом 1500-3000 мс, який змінювався випадковим чином у вказаному діапазоні. Випробовувані повинні були сидіти за столом перед монітором (відстань від монітора до очей випробовуваних близько 50 см) і реагувати натисненням на будь-яку клавішу правою рукою на появу кожного квадрата якнайскоріше.Паралельно вимірювали флуктуації атмосферного тиску (ФАТ). Абсолютний тиск весною 2005 р. (Київ) склав 99046±24 Па; восени 2005 р., (Київ) 99922±19 Па; взимку 2006 р. (Шираз) 84618±10 Па.Результати дослідження латентного періоду під час участі чоловіків в експерименті в різний час року на території України і Ірану наведені в табл. 2.Таблиця 2Результати дослідження простої сенсомоторної реакції Весна, Київ, чоловіки (n = 48)I групаОсінь, Київ, чоловіки (n = 15)II групаЗима, Шираз, чоловіки (n = 25)III група222 (197-254)227 (202-260)210 (179-257)Знайдена середня величина часу простої сенсомоторної реакції чоловіків на 30-50 мс більше, ніж наведена в табл. 1. Це можна пояснити тільки постійною помилкою вимірювань.Отже, вимірювання, яки були зроблені у 1970-х роках і за допомогою новітніх комп’ютерних програм XXI-го ст., мають однакові недоліки, пов’язані з недосконалістю техніки і методики вимірювань. Тому до сіх пір є актуальною проблема розробки вимірників як простої, так і складної сенсомоторної реакції людини.Досвід вимірювання багатьох дослідників вказує на ряд факторів, які впливають на реакцію людини. Розглянемо ті фактори, які впливають безпосередньо на ефективність навчання школярів і студентів. Це дозволить скласти програму дослідження, тривалість якої може сягати десятиріч.Особливості рухової асиметрії правої і лівої руки в шкільному віці вивчали А. Т. Бондар, Н. А. Отмахова, А. І. Федотчев.Асиметрія , що є різницею між часом реакції правої і лівої рук, у всіх вікових групах відображає наявність швидших реакцій правої руки. Було виявлено, що вік 11–12 років є критичним періодом в розвитку рухової асиметрії у людини.Особливості динаміки латентного періоду за допомогою правої і лівої руки під час больового стресу у чоловіків і жінок вивчав М. Ю. Каменськов зі студентами 2-3 курсів у віці 18-20 років. Виявлено, що час реакції коротший, а больовий поріг вище у правшей.Для вдосконалення цього методу, на наш погляд, спостереження асиметрії часу руху треба вести на протязі всього часу навчання одних й тих же учнів, тобто, 10-15 років. Це дозволить достатньо детально описати становлення рухової функції і її асиметрії в шкільні і студентські роки навчання.Підведемо підсумки огляду.1. Високоточне вимірювання сенсомоторної реакції людини є актуальним завданням. Результати вимірювань використовуються в найрізноманітніших областях людської діяльності.2. Величина сенсомоторної реакції людини залежить від віку, особливостей темпераменту, рухової ассиметрії, роду занять, погодних умов, стомленості, хворобливості стану, прийому доз алкоголю, наркотиків і тому подібне.3. Дослідження складної сенсомоторної реакції вибору представлені в публікаціях дуже мало, а ця галузь знань найбільш важлива для процесу навчання.Все це вимагає подальшої розробки вимірювальної техніки і удосконалення методик вимірювання та обробки їх результаті.Розробка вимірника простої і складної сенсомоторної реакції в Криворізькому державному педагогічному університеті велась на кафедрі фізики та методики її навчання з урахуванням тих вад, які перекручували результати вимірювань попередників. Особлива увага приділялася врахуванню часу власної затримки вимірювальних приладів, яка не враховувалася, як видно з обзору, деякими дослідниками, особливо при роботі з комп
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Динаміка руху об’єктів"

1

Бурау, Н. І., and А. І. Вознюк. "Моделювання впливу нерівностей доріг та динамічні характеристики наземних рухомих об’єктів." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/25889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography