Contents
Academic literature on the topic 'Генератор імпульсних струмів'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Генератор імпульсних струмів.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Генератор імпульсних струмів"
Jartovsky, Oleksandr, Valeriy Kravchenko, Oleksii Larichkin, and Zhan Karyahin. "АВТОМАТИЗОВАНА СИСТЕМА ВИМІРУ ТА РОЗРАХУНКУ ПАРАМЕТРІВ ІМПУЛЬСНОГО ЕЛЕКТРИЧНОГО СТРУМУ." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 2 (12) (2018): 167–75. http://dx.doi.org/10.25140/2411-5363-2018-2(12)-167-175.
Full textYershov, Roman, and Volodymyr Voytenko. "ЧАСТОТНО-ІМПУЛЬСНИЙ МОДУЛЯТОР З АДАПТИВНОЮ КОРЕКЦІЄЮ ТРИВАЛОСТІ ІМПУЛЬСУ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 1(19) (2020): 177–90. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-177-190.
Full textBoiko, Serhii, Yevhen Volkanin, Oleksiy Gorodny, Oksana Borysenko, and Leonid Vershniak. "ЗАСТОСУВАННЯ НЕЙРОННИХ МЕРЕЖ ПРИ АВТОМАТИЗАЦІЇ ДІАГНОСТИКИ СТАНУ АВІАЦІЙНОГО ГЕНЕРАТОРА ГВИНТОКРИЛА." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 3(13) (2018): 152–60. http://dx.doi.org/10.25140/2411-5363-2018-3(13)-152-160.
Full textDissertations / Theses on the topic "Генератор імпульсних струмів"
Вінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин." Thesis, Національний науковий центр "Харківський фізико-технічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33188.
Full textThesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Вінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33183.
Full textThesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)." Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17177.
Full textThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)." Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17176.
Full textThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.