Academic literature on the topic 'Zygote Genome Activation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zygote Genome Activation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zygote Genome Activation"

1

Torres-Padilla, Maria Elena, and Magdalena Zernicka-Goetz. "Role of TIF1α as a modulator of embryonic transcription in the mouse zygote." Journal of Cell Biology 174, no. 3 (July 31, 2006): 329–38. http://dx.doi.org/10.1083/jcb.200603146.

Full text
Abstract:
The first events of the development of any embryo are under maternal control until the zygotic genome becomes activated. In the mouse embryo, the major wave of transcription activation occurs at the 2-cell stage, but transcription starts already at the zygote (1-cell) stage. Very little is known about the molecules involved in this process. We show that the transcription intermediary factor 1 α (TIF1α) is involved in modulating gene expression during the first wave of transcription activation. At the onset of genome activation, TIF1α translocates from the cytoplasm into the pronuclei to sites of active transcription. These sites are enriched with the chromatin remodelers BRG-1 and SNF2H. When we ablate TIF1α through either RNA interference (RNAi) or microinjection of specific antibodies into zygotes, most of the embryos arrest their development at the 2–4-cell stage transition. The ablation of TIF1α leads to mislocalization of RNA polymerase II and the chromatin remodelers SNF2H and BRG-1. Using a chromatin immunoprecipitation cloning approach, we identify genes that are regulated by TIF1α in the zygote and find that transcription of these genes is misregulated upon TIF1α ablation. We further show that the expression of some of these genes is dependent on SNF2H and that RNAi for SNF2H compromises development, suggesting that TIF1α mediates activation of gene expression in the zygote via SNF2H. These studies indicate that TIF1α is a factor that modulates the expression of a set of genes during the first wave of genome activation in the mouse embryo.
APA, Harvard, Vancouver, ISO, and other styles
2

Ntostis, Panagiotis, Deborah Carter, David Iles, John Huntriss, Maria Tzetis, and David Miller. "Potential sperm contributions to the murine zygote predicted by in silico analysis." Reproduction 154, no. 6 (December 2017): 777–88. http://dx.doi.org/10.1530/rep-17-0097.

Full text
Abstract:
Paternal contributions to the zygote are thought to extend beyond delivery of the genome and paternal RNAs have been linked to epigenetic transgenerational inheritance in different species. In addition, sperm–egg fusion activates several downstream processes that contribute to zygote formation, including PLC zeta-mediated egg activation and maternal RNA clearance. Since a third of the preimplantation developmental period in the mouse occurs prior to the first cleavage stage, there is ample time for paternal RNAs or their encoded proteins potentially to interact and participate in early zygotic activities. To investigate this possibility, a bespoke next-generation RNA sequencing pipeline was employed for the first time to characterise and compare transcripts obtained from isolated murine sperm, MII eggs and pre-cleavage stage zygotes. Gene network analysis was then employed to identify potential interactions between paternally and maternally derived factors during the murine egg-to-zygote transition involving RNA clearance, protein clearance and post-transcriptional regulation of gene expression. Ourin silicoapproach looked for factors in sperm, eggs and zygotes that could potentially interact co-operatively and synergistically during zygote formation. At least five sperm RNAs (Hdac11,Fbxo2,Map1lc3a,Pcbp4andZfp821) met these requirements for a paternal contribution, which with complementary maternal co-factors suggest a wider potential for extra-genomic paternal involvement in the developing zygote.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hyeonji, Seong-Yeob You, Dong Wook Han, Hyeonwoo La, Chanhyeok Park, Seonho Yoo, Kiye Kang, Min-Hee Kang, Youngsok Choi, and Kwonho Hong. "Dynamic Change of R-Loop Implicates in the Regulation of Zygotic Genome Activation in Mouse." International Journal of Molecular Sciences 23, no. 22 (November 18, 2022): 14345. http://dx.doi.org/10.3390/ijms232214345.

Full text
Abstract:
In mice, zygotic genome activation (ZGA) occurs in two steps: minor ZGA at the one–cell stage and major ZGA at the two–cell stage. Regarding the regulation of gene transcription, minor ZGA is known to have unique features, including a transcriptionally permissive state of chromatin and insufficient splicing processes. The molecular characteristics may originate from extremely open chromatin states in the one–cell stage zygotes, yet the precise underlying mechanism has not been well studied. Recently, the R-loop, a triple–stranded nucleic acid structure of the DNA/RNA hybrid, has been implicated in gene transcription and DNA replication. Therefore, in the present study, we examined the changes in R-loop dynamics during mouse zygotic development, and its roles in zygotic transcription or DNA replication. Our analysis revealed that R-loops persist in the genome of metaphase II oocytes and preimplantation embryos from the zygote to the blastocyst stage. In particular, zygotic R-loop levels dynamically change as development proceeds, showing that R-loop levels decrease as pronucleus maturation occurs. Mechanistically, R-loop dynamics are likely linked to ZGA, as inhibition of either DNA replication or transcription at the time of minor ZGA decreases R-loop levels in the pronuclei of zygotes. However, the induction of DNA damage by treatment with anticancer agents, including cisplatin or doxorubicin, does not elicit genome-wide changes in zygotic R-loop levels. Therefore, our study suggests that R-loop formation is mechanistically associated with the regulation of mouse ZGA, especially minor ZGA, by modulating gene transcription and DNA replication.
APA, Harvard, Vancouver, ISO, and other styles
4

Gutierrez, Karina, Werner G. Glanzner, Mariana P. de Macedo, Vitor B. Rissi, Naomi Dicks, Rodrigo C. Bohrer, Hernan Baldassarre, Luis B. Agellon, and Vilceu Bordignon. "Cell Cycle Stage and DNA Repair Pathway Influence CRISPR/Cas9 Gene Editing Efficiency in Porcine Embryos." Life 12, no. 2 (January 25, 2022): 171. http://dx.doi.org/10.3390/life12020171.

Full text
Abstract:
CRISPR/Cas9 technology is a powerful tool used for genome manipulation in different cell types and species. However, as with all new technologies, it still requires improvements. Different factors can affect CRISPR/Cas efficiency in zygotes, which influence the total cost and complexity for creating large-animal models for research. This study evaluated the importance of zygote cell cycle stage between early-injection (within 6 h post activation/fertilization) versus late-injection (14–16 h post activation/fertilization) when the CRISPR/Cas9 components were injected and the inhibition of the homologous recombination (HR) pathway of DNA repair on gene editing, embryo survival and development on embryos produced by fertilization, sperm injection, somatic cell nuclear transfer, and parthenogenetic activation technologies. Injections at the late cell cycle stage decreased embryo survival (measured as the proportion of unlysed embryos) and blastocyst formation (68.2%; 19.3%) compared to early-stage injection (86.3%; 28.8%). However, gene editing was higher in blastocysts from late-(73.8%) vs. early-(63.8%) injected zygotes. Inhibition of the HR repair pathway increased gene editing efficiency by 15.6% in blastocysts from early-injected zygotes without compromising embryo development. Our finding shows that injection at the early cell cycle stage along with HR inhibition improves both zygote viability and gene editing rate in pig blastocysts.
APA, Harvard, Vancouver, ISO, and other styles
5

Rengaraj, Deivendran, Sohyoung Won, Jong Won Han, DongAhn Yoo, Heebal Kim, and Jae Yong Han. "Whole-Transcriptome Sequencing-Based Analysis of DAZL and Its Interacting Genes during Germ Cells Specification and Zygotic Genome Activation in Chickens." International Journal of Molecular Sciences 21, no. 21 (October 31, 2020): 8170. http://dx.doi.org/10.3390/ijms21218170.

Full text
Abstract:
The deleted in azoospermia like (DAZL) is required for germ cells development and maintenance. In chickens, the mRNA and protein of DAZL, a representative maternally inherited germ plasm factor, are detected in the germ plasm of oocyte, zygote, and all stages of the intrauterine embryos. However, it is still insufficient to explain the origin and specification process of chicken germ cells, because the stage at which the zygotic transcription of DAZL occurs and the stage at which the maternal DAZL RNA/protein clears have not yet been fully identified. Moreover, a comprehensive understanding of the expression of DAZL interacting genes during the germ cells specification and development and zygotic genome activation (ZGA) is lacking in chickens. In this study, we identified a set of DAZL interacting genes in chickens using in silico prediction method. Then, we analyzed the whole-transcriptome sequencing (WTS)-based expression of DAZL and its interacting genes in the chicken oocyte, zygote, and Eyal-Giladi and Kochav (EGK) stage embryos (EGK.I to EGK.X). In the results, DAZL transcripts are increased in the zygote (onset of transcription), maintained the increased level until EGK.VI, and decreased from EGK.VIII (possible clearance of maternal RNAs). Among the DAZL interacting genes, most of them are increased either at 1st ZGA or 2nd ZGA, indicating their involvement in germ cells specification and development.
APA, Harvard, Vancouver, ISO, and other styles
6

Dresselhaus, Thomas, and Gerd Jürgens. "Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages." Annual Review of Plant Biology 72, no. 1 (June 17, 2021): 641–76. http://dx.doi.org/10.1146/annurev-arplant-082520-094112.

Full text
Abstract:
Following fertilization in flowering plants (angiosperms), egg and sperm cells unite to form the zygote, which generates an entire new organism through a process called embryogenesis. In this review, we provide a comparative perspective on early zygotic embryogenesis in flowering plants by using the Poaceae maize and rice as monocot grass and crop models as well as Arabidopsis as a eudicot model of the Brassicaceae family. Beginning with the activation of the egg cell, we summarize and discuss the process of maternal-to-zygotic transition in plants, also taking recent work on parthenogenesis and haploid induction into consideration. Aspects like imprinting, which is mainly associated with endosperm development and somatic embryogenesis, are not considered. Controversial findings about the timing of zygotic genome activation as well as maternal versus paternal contribution to zygote and early embryo development are highlighted. The establishment of zygotic polarity, asymmetric division, and apical and basal cell lineages represents another chapter in which we also examine and compare the role of major signaling pathways, cell fate genes, and hormones in early embryogenesis. Except for the model Arabidopsis, little is known about embryopatterning and the establishment of the basic body plan in angiosperms. Using available in situ hybridization, RNA-sequencing, and marker data, we try to compare how and when stem cell niches are established. Finally, evolutionary aspects of plant embryo development are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

de Frutos, C., R. Laguna-Barraza, P. Bermejo-Alvarez, D. Rizos, and A. Gutierrez-Adan. "91 SPERMATOZOA TELOMERE LENGTH DETERMINES EMBRYONIC TELOMERE LENGTH BEFORE EMBRYONIC GENOME ACTIVATION." Reproduction, Fertility and Development 25, no. 1 (2013): 193. http://dx.doi.org/10.1071/rdv25n1ab91.

Full text
Abstract:
A critical issue for species integrity is the existence of a telomere elongation program during embryogenesis that ensures sufficient telomere reserves in mammalian newborns. Two different mechanisms have been reported to act on telomere elongation during early embryogenesis: first, the telomerase, the ribonucleoprotein that adds telomeric repeats onto the chromosome ends, known to be responsible for the telomere lengthening at the morula-blastocyst transition in mice and bovine; second, in laboratory mice strains, mature oocytes increase the length of their relatively short telomeres between the 1-cell and 2-cell stages by a recombination or ALT-like pathway. In contrast, spermatozoa, the terminally differentiated male gametes, exhibit a very long telomere length (TL). The aim of this study was to clarify the potential role of the spermatozoa TL in the telomere lengthening occurring between oocyte and the 2-cell stage. For this purpose, we used 2 mouse species known to differ greatly in their TL [Mus musculus (hybrid C57CBAF1), long TL, and Mus spretus, short TL]. First, we compared relative TL in sperm samples from 5 age-matched males of each species by quantitative real-time PCR, with the numbers of telomere repeats being normalized, to the amount of DNA present in the sample (based on quantification of the Rn18S gene) by the comparative Ct method. Then, 1- and 2-cell embryos were produced by fertilizing Mus musculus oocytes with either Mus musculus or Mus spretus spermatozoa. The TL analysis in oocytes, zygotes, or 2-cell embryos was carried out by absolute quantification of telomere repeats by qPCR and normalized to the highest Ct observed value. Twenty to thirty samples per stage were analyzed, with each sample consisting in 2 matured oocytes, 2 zygotes, or one 2-cell embryo, to allow comparisons between stages. One-way ANOVA was used for statistical analysis. Mus spretus spermatozoa had significantly shorter telomeres than did Mus musculus (1.0 ± 0.1 v. 9.0 ± 1.5, respectively; P ≤ 0.01). The TL increased after fertilization from oocyte to zygote and 2-cell embryo stages in Mus musculus (1.0 ± 0.1, 1.5 ± 0.1, and 2.4 ± 0.2, respectively; P ≤ 0.01). In contrast, no differences were found in the TLs between the 3 stages in Mus spretus hybrids (oocyte: 1.0 ± 0.1; zygote: 1.0 ± 0.1; and 2-cell embryo: 1.0 ± 0.1), indicating that no elongation occurred after fertilization with spermatozoa with short telomeres. Herein, we demonstrated that before embryonic genome activation occurs, spermatozoa TL determines TL of the early embryo, suggesting that spermatozoon telomeres may act as recombination templates for early telomere lengthening right after syngamia.
APA, Harvard, Vancouver, ISO, and other styles
8

Hamm, Danielle C., and Melissa M. Harrison. "Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster." Open Biology 8, no. 12 (December 2018): 180183. http://dx.doi.org/10.1098/rsob.180183.

Full text
Abstract:
The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster . In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.
APA, Harvard, Vancouver, ISO, and other styles
9

Adenot, P. G., Y. Mercier, J. P. Renard, and E. M. Thompson. "Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos." Development 124, no. 22 (November 15, 1997): 4615–25. http://dx.doi.org/10.1242/dev.124.22.4615.

Full text
Abstract:
In the mouse embryo, transcriptional activation begins during S/G2 phase of the first cell cycle when paternal and maternal chromatin are still in separate nuclear entities within the same cytoplasm. At this time, the male pronucleus exhibits greater transcriptional activity than the female pronucleus. Since acetylation of histones in the nucleosome octamer exerts a regulatory influence on gene expression, we investigated changes in histone acetylation during the remodeling of paternal and maternal chromatin from sperm entry through to minor genome activation and mitosis. We found (1) neither mature sperm nor metaphase II maternal chromatin stained for hyperacetylated histone H4; (2) immediately following fertilization, hyperacetylated H4 was associated with paternal but not maternal chromatin while, in parthenogenetically activated oocytes, maternal chromatin became hyperacetylated; (3) in zygotes, differential levels and patterns of hyperacetylated H4 between male and female pronuclei persisted throughout most of G1 with histone deacetylases and acetyltransferases already active at this time; (4) when transcriptional differences are observed in S/G2, male and female pronuclei have equivalent levels of H4 hyperacetylation and DNA replication was not required to attain this equivalence and (5) in contrast to the lack of H4 hyperacetylation on gametic chromatin, chromosomes at the first mitosis showed distinct banding patterns of H4 hyperacetylation. These results suggest that sperm chromatin initially out-competes maternal chromatin for the pool of hyperacetylated H4 in the oocyte, that hyperacetylated H4 participates in the process of histone-protamine exchange in the zygote, and that differences in H4 acetylation in male and female pronuclei during G1 are translated across DNA replication to transcriptional differences in S/G2. Prior to fertilization, neither paternal nor maternal chromatin show memory of H4 hyperacetylation patterns but, by the end of the first cell cycle, before major zygotic genome activation at the 2-cell stage, chromosomes already show hyperacetylated H4 banding patterns.
APA, Harvard, Vancouver, ISO, and other styles
10

Goszczynski, D. E., P. Tinetti, Y. H. Choi, K. Hinrichs, and P. J. Ross. "59 Genome activation in intracytoplasmic sperm injection-derived horse embryos." Reproduction, Fertility and Development 32, no. 2 (2020): 155. http://dx.doi.org/10.1071/rdv32n2ab59.

Full text
Abstract:
During pre-implantation development, embryos go through a critical period of embryonic genome activation (EGA). The timing of EGA is species specific, but little is known in horse embryos. Here, we aimed to characterise EGA in equine embryos produced by intracytoplasmic sperm injection. Embryos were produced by intracytoplasmic sperm injection of oocytes from 3 mares. Two embryos from each mare at each of 8 developmental stages (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst) were individually analysed by RNA-seq. Differential expression was evaluated using binomial Wald tests with an absolute logFC (fold change) threshold of 1 in the DESEqn 2R package. We found that EGA occurred in a two-step fashion. Minor EGA took place during the 2-cell to 4-cell transition, and featured up-regulation of 751 genes and discrete down-regulation of 60 genes in 4-cell embryos compared with 2-cell embryos. Differentially upregulated genes were enriched in gene ontology terms related to transcriptional activator activity, homeobox domains, and nucleosome assembly. Major EGA occurred during the 4-cell to 8-cell transition and included the largest number of differentially expressed genes (n=2,023) between consecutive stages. This period also featured the first massive transcript downregulation (n=816). Upregulated genes were enriched in gene ontology terms related to ribosomal assembly, translation, and RNA modification. Additionally, we observed that the number of intronic sequences was significantly higher from the 4-cell stage onward, indicating active transcription in comparison to oocytes, zygotes, and 2-cell embryos. To evaluate the timing of paternal genome activation, we used whole-genome sequencing data from the parents (average genome coverage of 19×) to quantify allele-specific expression. The average number of informative SNPs in exons, i.e. SNPs with alternative homozygous genotypes from the sire (AA mare - BB sire), was 26 128 per mare, corresponding to 7696 genes. Parental-specific transcript abundance was determined for each embryo, with an average of 1,911±865 informative SNPs detected per sample. Paternal alleles were considered expressed when they reached 10% of the maternal count. Across development, paternal transcripts became appreciable at the 4-cell stage, with 14.15±7.60% of the informative SNPs exhibiting paternal expression, and increased thereafter until reaching a maximum of 96.34% at the blastocyst stage. Overall, this work demonstrates that EGA in horse embryos starts at the 4-cell stage and achieves its main activation at the 8-cell stage. Further analysis will be performed to detail paternal vs. maternal gene expression at the different embryonic stages.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Zygote Genome Activation"

1

Lucas, Tanguy. "Spatio-temporal regulation of hunchback during the zygotic genome activation in Drosophila." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066707.

Full text
Abstract:
Les gradients morphogénétiques contrôlent l'émergence de polarités axiales au cours du développement. Bien que la dynamique d'établissement de ces gradients soit bien comprise, la précision des mécanismes d'activation agissant en aval restent à élucider. Nous abordons cette question avec le gradient de Bicoid qui fournit rapidement une réponse transcriptionnelle robuste dans l'embryon de drosophile. Cette robustesse survient malgré le challenge imposé par de fréquentes mitoses dépourvues de transcription. Un calcul théorique intégrant les paramètres physiques de Bicoid (concentration, diffusion) indique que la mesure précise de concentration de Bicoid ne peut être effectuée à chaque interphase en 5-6mn. Il a donc été proposé que l'acquisition rapide de cette robustesse repose sur une mémorisation de l'état transcriptionnel au cours des divisions. Pour tester cette hypothèse, j'ai adapté à l'embryon de drosophile le système MS2 d'étiquetage des ARN dans les cellules vivantes et démontré qu'il permettait de suivre la dynamique transcriptionnelle dans un organisme pluricellulaire vivant. De manière inattendue, le rapporteur MS2 s'exprime aussi postérieurement ce qui m'a empêché de tester l'hypothèse de mémorisation. J'ai montré que cette expression postérieure est due à la présence de sites de fixation pour le facteur de transcription Zelda dans la cassette MS2. Un nouveau rapporteur MS2, dépourvu de ces sites récapitule l'expression endogène et fournit un outil de choix pour tester l'hypothèse de mémorisation. Ce travail ouvre de nouvelles perspectives pour comprendre la dynamique transcriptionnelle sur laquelle repose l'émergence des patrons d'expression développementaux
Morphogen gradients provide concentration-dependent positional information along polarity axes. Although the dynamics of these gradients is well described, precision and noise in the activation processes acting downstream remain unclear. To address this question, we study the response to the Bicoid gradient that elicits very rapidly a robust transcriptional response in young fly embryos. This robustness occurs despite the challenge imposed by frequent mitoses during which transcription is interrupted suggesting that nuclei measure the Bicoid concentration during the 5-6 mn interphases. Modeling using statistical mechanics and Bicoid physical parameters do not account for accurate measurement of Bicoid concentration in such a short period. It was proposed that rapid robustness of the Bicoid response relies on a memorization process allowing nuclei to recall Bicoid concentration from previous cycles. To understand how the Bicoid system resists to the challenge imposed by mitosis, I have adapted the MS2 RNA-tagging approach to fly embryos and shown that it can be used to quantify transcription dynamics in a living multicellular organism. Unexpectedly, the MS2 reporter was also expressed in the posterior of the embryo making it impossible to directly test the memorization hypothesis. I have shown that this posterior expression is due to binding sites for the transcription factor Zelda unexpectedly localized in the MS2 cassette. A newly engineered MS2 reporter removing those sites faithfully reproduces the endogenous expression providing a powerful tool to test the memory hypothesis. This work opens new avenue to decipher the transcription dynamics underlying pattern formation
APA, Harvard, Vancouver, ISO, and other styles
2

GNOCCHI, ANDREA. "UNDERSTANDING THE IMPACT OF REPLICATION STRESS ON THE EXPRESSION OF EARLY GENES IN MOUSE EMBRYONIC STEM CELLS." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/814703.

Full text
Abstract:
Embryonic stem cells (ESCs) are characterized by a rapid cell cycle, which leads to high replication stress (RS) in otherwise unperturbed conditions. The mechanisms that ESCs adopt to cope with their endogenous RS, however, remain to this day elusive. In our recent work we demonstrated that the activation of the checkpoint kinase ATR in response to RS leads to a broad activation of 2-cells stage specific genes in mouse ESCs. This response relies on the up-regulation of Dux, a transcription factor encoded in a macrosatellite sequence repeated in tandem. Dux is repressed by variant Polycomb repressive complex 1 (vPRC1) in unperturbed ESCs, independently from PRC2 presence. Here we demonstrate that RS causes a major rearrangement of both PRC1 and PRC2 in ESCs nuclei, resulting in a major loss of both repressive marks in correspondence to target promoters. Surprisingly, Dux undergoes an increase in vPRC1 occupancy upon RS in an ATR-dependent manner, possibly due to PRC1 involvement in the replication of highly repeated DNA sequences. More interestingly, Dux activation upon RS requires the presence of PRC2. This result is possibly due to PRC2 proved role in the processing of stalled replication forks, which are the main structure signaling RS. In agreement to this data, also the fork remodeling translocases HLTF and ZRANB3 displayed an effect in Dux activation following RS. Taken together, our results show that the up-regulation of 2-cells genes following RS not only requires ATR activation, but also downstream remodeling processes.
APA, Harvard, Vancouver, ISO, and other styles
3

Stanney, William J. III. "The TALE Factors and Nuclear Factor Y Cooperate to Drive Transcription at Zygotic Genome Activation." eScholarship@UMMS, 2019. https://escholarship.umassmed.edu/gsbs_diss/1045.

Full text
Abstract:
The TALE factors, comprising the pbx and prep/meis gene families, are transcription factors (TFs) vital to the proper formation of anterior anatomical structures during embryonic development. Although best understood as essential cofactors for tissue-specific TFs such as the hox genes during segmentation, the TALE factors also form complexes with nuclear factor Y (NFY) in the early zygote. In zebrafish, Pbx4, Prep1, and NFY are maternally deposited and can access their DNA binding sites in compact chromatin. Our results suggest that TALE/NFY complexes have a unique role in early embryonic development which is distinct from each factor’s independent functions at later stages. To characterize these TALE/NFY complexes, we employed high-throughput transcriptomic and genomic techniques in zebrafish embryos. Using dominant negatives to disrupt the function of each factor, we find that they display similar, but not identical, loss-of-function phenotypes and co-regulate genes involved in transcription regulation and embryonic development. Independently, the TALE factors regulate homeobox genes and NFY governs cilia-related genes. ChIP-seq analysis at zygotic genome activation reveals that the TALE factors occupy DECA sites adjacent to CCAAT boxes near genes expressed early in development and involved with transcription regulation. Finally, DNA elements containing TALE and NFY binding sites drive reporter gene expression in transgenic zebrafish, and disruption of TALE/NFY binding via mutation or dominant negatives eliminates this expression. Taken together, this data suggests that the TALE factors and NFY cooperate to regulate a set of development and transcription control genes in early zygotic development but also have independent roles after gastrulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Meng. "Investigating the mechanisms and the temporal regulation of the first cell polarity establishment in the mouse embryo." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288353.

Full text
Abstract:
Embryonic cells of many species polarise and the cell polarity is often important for the normal developmental progression. In the mouse embryo, the prototype of epithelial cell polarity, namely apico-basal polarisation, become established at the 2.5 days' post-fertilisation, when the embryos are at the 8-cell stage. The formation of apical domain is necessary and sufficient for the first segregation of extra-embryonic and embryonic cell lineages, as well as the following up morphogenetic transitions, such as the blastocyst formation. This study aims to explore the molecular pathways triggering the first cell polarity establishment in the mouse embryo, and to reveal the mechanism that programmes the timing of this event in the mouse embryo. The results showed that cell polarity establishment during the 8-cell stage development can be divided into two major phases: in the first phase actomyosin complex became polarised to the cell-contact free surface; and in the second phase apical proteins recruited to the actomyosin enriched cell-contact free cortex, they further became centralised in the cell-contact free surface, excluding the local actomyosin meshwork, resulting in the formation of actomyosin ring. The activation and assembly of actomyosin meshwork during the first phase, but not its contractility, was essential for apical protein recruitment. Factors responsible for actin cytoskeleton reorganisation included Phospholipase C (PLC) - Protein Kinase C (PKC) pathway components, they directly activated actomyosin in the first phase through the Rho proteins such as RhoA. Further results showed that the apical protein centralisation step required a proximate transcriptional input that was induced by two transcription factors, Tfap2c and Tead4. RNAi and Genetic depletion of these two factors prevented apical protein centralisation and the final apical domain assembly. The protein expression profile indicated that Tfap2c and Tead4 expression, and therefore their activity, were induced by zygotic genome activation. Significantly, overexpression of Tfap2c, Tead4, together with constitutively activated Rho proteins were sufficient to advance the timing of apical domain formation, indicating that the timer of cell polarity establishment at the 8-cell stage is set by the Rho proteins activation, and the zygotic transcriptional accumulation of Tfap2c and Tead4. Together, these results characterised the molecular events during the cell polarity establishment at the 8-cell stage mouse embryo, and identified the timing regulation of this event.
APA, Harvard, Vancouver, ISO, and other styles
5

Wagner, Gabriele [Verfasser], and Peter [Akademischer Betreuer] Becker. "A novel role for the chromatin remodeling ATPase Brg1 during zygotic genome activation in Xenopus / Gabriele Wagner. Betreuer: Peter Becker." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1111505381/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pires, Camilla Valente. "Regulação gênica dos processos iniciais do desenvolvimento de embriões haploides e diploides de Apis mellifera." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-21052014-090558/.

Full text
Abstract:
O desenvolvimento embrionário é o resultado de uma sequência controlada de eventos modulados por sinais ambientais e mecanismos intracelulares. Em Hymenoptera, esse processo tem um caráter especial devido ao sistema de determinação do sexo (Haplodiploide). Neste sistema, os ovos fecundados se desenvolvem em fêmeas (diploides) e os ovos não fecundados em machos (haploides). Assim, eventos importantes, como a ativação do ovo e transição materno-zigótica, eventos iniciais da embriogênese, são elementos-chave para compreender o desenvolvimento de ambos os tipos de embriões. Ativação do ovo é um evento complexo acionado em resposta a estímulos externos, necessários para o início da embriogênese. Em abelhas a ativação ovo ocorre independentemente da fecundação e parece ser desencadeado durante a passagem pelo trato reprodutivo da mãe. Além disso, se o ovócito não for fecundado ele irá se desenvolver em um organismo haploide. No entanto, se o ovo recebe o espermatozóide até 30 minutos depois da ativação, o ovo se desenvolve em um organismo diploide. Em Drosophila, a ativação do ovo é também idependente da fecundação. O estímulo inicial que desencadeia o desenvolvimento é devido tensões mecânicas sofridas pelo ovócito durante a ovulação pela passagem através do trato reprodutivo. Neste modelo, o primeiro sinal de ativação inclui a ativação da via dependente de cálcio. Moléculas maternas que são incorporados no ovócito durante ovogênese, atuam durante a ativação do ovo, bem como no início da embriogênese. Os eventos iniciais da embriogênese também são caracterizados pela ausência de altos níveis de transcrição zigótica. As moléculas depositadas atuam na ativação do ovo, quebrando a dormência da divisão celular permitindo a ocorrência do início do desenvolvimento embrionário. Mas, o embrião em desenvolvimento gradualmente degrada e substitui essas moléculas herdadas da mãe, em um processo conhecido como transição materno-zigótica. Nosso principal objetivo foi o entendimento da comunicação entre as moléculas herdadas e as recém produzidas durante os primeiros passos do desenvolvimento de Apis mellifera. Para alcançar nosso objetivo, 16 bibliotecas de RNAseq (mRNA e miRNA) foram construídas utilizando amostras de RNA total de embriões diploides e haploides de diferentes idades e ovócitos maduros. A análise do transcriptoma mostrou que existem genes diferencialmente expressos entre os dois tipos de embriões já em 1 h de desenvolvimento. Além disso, nossa análise permitiu a identificação de mRNAs e miRNAs maternos e zigóticos, além de processos com que estas moléculas se relacionam. As análises mostraram também que um mesmo miRNA pode atingir diferentes mRNAs em cada tipo de embrião, na mesma fase de desenvolvimento. Além disso, um mesmo gene pode ser diferentemente regulado nos dois tipos de embriões. Por exemplo, broad/GB48272, que é classificado como materno em embriões dipoides é regulado por quatro miRNAs diferentes e em embriões haploides é classificado como zigótico, regulado por apenas um miRNA. Análise das bibliotecas de RNAseq e hibridação in situ mostrou o padrão de expressão de zelda em embriões jovens de abelhas. Zelda é um ativador chave do genoma zigótico em Drosophila e regula eventos importantes na embriogênese se ligando a um motivo conservado, TAGteam. Em A. mellifera, encontramos um motivo TAGteam putativo que tem sido relacionado à transcrição zigótica precoce. Além disso, a hibridização in situ e PCR mostraram três primiRNAs (ame-mir-375-3p, ame-mir-34-5p e ame-mir-263b-5p) que se expressam durante a clivagem. A presença de pri-miRNAs evidenciou a início da transcrição zigótica durante a clivagem. Em suma, podemos dizer que este é o primeiro trabalho em Apis mellifera a descrever os eventos de iniciais do desenvolvimento embrionário comparando embriões haploides e diploides usando os recentes protocolos de bioinformática e os avanços da biologia molecular.
Embryonic development is the result of a precisely controlled sequence of events modulated by environmental signals and intracellular mechanisms. In Hymenoptera, this process takes a special character due the sex-determination system (haplodiploidy). In this system, fertilized eggs develop in females (diploid) and unfertilized eggs in males (haploid). Thus, important events such as egg activation and maternal-zygotic transition, events of the early embryogenesis are key elements to understand the development of both types of embryos. Egg activation is a complex event triggered in response to external stimuli and necessary for the onset of embryogenesis. In honeybees egg activation occurs independently of fertilization and seems to be triggered during the passage through mother\'s reproductive tract. Furthermore, if the egg is not fertilized it will develop into haploid organism. However, if the egg receives the sperm up to 30min after activation, this egg develops into a diploid organism. In Drosophila, the egg activation is also fertilization independent. Initial stimulus that triggers the development is due mechanical stresses suffered by the egg during ovulation and passage through the reproductive tract. In this model, the first activation signal includes activation of calciumdependent pathway. Maternal molecules that are incorporated into the oocyte during ovogenesis, act during egg activation, as well as in early embryogenesis. Early embryogenesis events are also characterized by absence of high levels of zygotic transcription. The deposited molecules drive egg activation, breaking cell division dormancy permitting the beginning of embryonic development. But, the developing embryo gradually degrades and substitutes these mother-inherited molecules, in a process known as mother-to-zygote transition. Our main objective was the understanding of the deep crosstalk among the inherited molecules and the newly ones produced during the first steps of Apis mellifera embryogenesis. To achieve our objective 16 deep sequenced RNA (mRNA, miRNA) libraries were constructed using different age diploid and haploid embryos, and mature oocytes. Genome-wide transcriptome analysis was performed and interactive regulatory networks were constructed. Our analysis permitted the identification of maternal and zygotic mRNAs and miRNAs and related processes. Based on expression profiles of mRNAs and miRNAs in mature oocytes and haploid and diploid embryos of 2, 6 and 18-24 h of development, we constructed integrative regulatory networks (miRNA:mRNA) showing that the same miRNA could target different mRNAs in each type of embryo, in the same phase of development. As example we cite broad/GB48272, which is classified as maternal in diploid embryos and regulated by four different miRNAs. However, in haploid embryos it is zygotic and regulated by only one miRNA. Analysis of RNAseq and in situ hybridization showed the expression pattern of zelda in early honeybee embryos. Zelda is a key activator of Drosophila early zygotic genome and regulates important events in early embryogenesis binding to TAGteam motif. In A. mellifera, we found a putative TAGteam motif that has been implicated in early zygotic transcription. Moreover, in situ hybridization and PCR assay showed three pri-miRNAs (ame-mir-375-3p, ame-mir-34-5p and ame-mir-263b-5p) expressed during cleavage. The presence of pri-miRNAs is the first evidence of early zygotic transcription during cleavage. In short, we could say that this is the first work on Apis mellifera describing the early embryonic developmental events comparing haploid and diploid embryos using modern bioinformatics tools and advanced molecular analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Moravec, Martin. "Analýza pluripotentního programu genové exprese v časných embryích a embryonálních kmenových buňkách." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-310881.

Full text
Abstract:
Pluripotence je schopnost buňky diferencovat do jakéhokoliv buněčného typu. Formuje se během časného embryonálního vývoje u savců a její vznik je spojen s reprogramací genové exprese na globální úrovni. Proces přirozeného vzniku pluripotence není stále zcela pochopen. Pro získání nového pohledu na události, které vedou ke vzniku pluripotence u savců, studovali jsme změny v genové expresi během oocyt-zygotického přechodu u myši. V tomto modelovém systému, oplodněné vajíčko podstoupí reprogramaci, která vede k vytvoření pluripotentních blastomer. Tyto blastomery zakládají samotné embryo. Cílem mé diplomové práce bylo analyzovat aktivaci transkripce během časného vývoje a vyvinout metodu pro monitorování exprese genů v oocytech, časných embryích a embryonálních kmenových buňkách. Metoda využívá kvantitativní PCR a umožnuje změřit expresi až 48 vybraných genů, které slouží jako markery pro maternální degradaci, aktivaci pluripotentního programu a diferenciaci do zárodečných linií. Dále ukazujeme, že náš systém monitoruje dynamiku transkriptomu během oocyt-zygotického přechodu, a získané výsledky jsou srovnatelné s daty naměřenými pomocí jiných metod. Díky našemu bioinformatickému přístupu jsme navíc identifikovali nové oocyt-specifické a zygotické nekódující RNA. Klíčová slova: pluripotence,...
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Zygote Genome Activation"

1

Lee, Kiho, ed. Zygotic Genome Activation. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Kiho. Zygotic Genome Activation: Methods and Protocols. Springer New York, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Kiho. Zygotic Genome Activation: Methods and Protocols. Springer New York, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zygote Genome Activation"

1

Suzuki, Shinnosuke, and Naojiro Minami. "CHD1 Controls Cell Lineage Specification Through Zygotic Genome Activation." In Chromatin Regulation of Early Embryonic Lineage Specification, 15–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63187-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Boyang, and Jörg Grosshans. "Link of Zygotic Genome Activation and Cell Cycle Control." In Methods in Molecular Biology, 11–30. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ranisavljevic, Noémie, Ikuhiro Okamoto, Edith Heard, and Katia Ancelin. "RNA FISH to Study Zygotic Genome Activation in Early Mouse Embryos." In Methods in Molecular Biology, 133–45. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosa, Alessandro, and Ali H. Brivanlou. "Role of MicroRNAs in Zygotic Genome Activation: Modulation of mRNA During Embryogenesis." In Methods in Molecular Biology, 31–43. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bogolyubova, Irina O., and Dmitry S. Bogolyubov. "Detection of RNA Polymerase II in Mouse Embryos During Zygotic Genome Activation Using Immunocytochemistry." In Methods in Molecular Biology, 147–59. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benesova, Veronika, Veronika Kinterova, Jiri Kanka, and Tereza Toralova. "Potential Involvement of SCF-Complex in Zygotic Genome Activation During Early Bovine Embryo Development." In Methods in Molecular Biology, 245–57. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Uh, Kyungjun, and Kiho Lee. "Use of Chemicals to Inhibit DNA Replication, Transcription, and Protein Synthesis to Study Zygotic Genome Activation." In Methods in Molecular Biology, 191–205. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

García-López, Jesús, Eduardo Larriba, and Jesús del Mazo. "Detection and Characterization of Small Noncoding RNAs in Mouse Gametes and Embryos Prior to Zygotic Genome Activation." In Methods in Molecular Biology, 105–20. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6988-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lucchesi, John C. "Stem cells." In Epigenetics, Nuclear Organization & Gene Function, 191–204. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.003.0017.

Full text
Abstract:
The zygote and the very early cells are totipotent because they can produce a whole organism. Later, cells become pluripotent because they can differentiate into different subgroups of tissues. These cells can be extracted as embryonic stem cells (ESCs). Their pluripotent nature is due to the action of the pioneer transcription factors Oct4, Sox2 and Nanog. Multipotent or progenitor stem cells are present in adult organisms where they can differentiate into the various cells present in specific tissues. Differentiation depends on their microenvironment or niche. Differentiation of stem cells requires the silencing of the pluripotency genes and the activation of genes that are characteristic of different cell types. The genome of stem cells exhibits the same features of topological organization that are found in somatic cells. At the onset and throughout differentiation, the topological organization of the ESC genome changes, reflecting the changes in transcriptional activity that underlie the progression of pluripotent cells to multipotent progenitor cells and then to differentiated cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Ko, M. S. H. "Zygotic Genome Activation Revisited." In Current Topics in Developmental Biology, 103–24. Elsevier, 2016. http://dx.doi.org/10.1016/bs.ctdb.2016.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Zygote Genome Activation"

1

Li, Yisi, Michael Zhang, Wei Xie, and Juntao Gao. "DE MERVLs are Enriched Around Two-Cell-Specific Genes During Zygotic Genome Activation in Mouse." In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018. http://dx.doi.org/10.1109/smc.2018.00576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tan, Do Minh, Nguyen Mai Phuong, Cao Hoang Nam, Nguyen Tuan Anh, Nguyen Huu Hoang Minh, Pham Minh Chien, Pham Quoc Dinh, and Nguyen Van Thuan. "THE EFFECT OF HISTONE DEACETYLATION INHIBITORS (HDACI) TREATMENT DURING ZYGOTIC GENE ACTIVATION ON PREIMPLANTATION DEVELOPMENT OF CLONED BOVINE EMBRYOS." In NGHIÊN CỨU VÀ GIẢNG DẠY SINH HỌC Ở VIỆT NAM - BIOLOGICAL RESEARCH AND TEACHING IN VIETNAM. Nhà xuất bản Khoa học tự nhiên và Công nghệ, 2022. http://dx.doi.org/10.15625/vap.2022.0095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography