Journal articles on the topic 'Zwitterionization'

To see the other types of publications on this topic, follow the link: Zwitterionization.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 44 journal articles for your research on the topic 'Zwitterionization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rodriguez-Palomo, A., D. Monopoli, H. Afonso, I. Izquierdo-Barba, and M. Vallet-Regí. "Surface zwitterionization of customized 3D Ti6Al4V scaffolds: a promising alternative to eradicate bone infection." Journal of Materials Chemistry B 4, no. 24 (2016): 4356–65. http://dx.doi.org/10.1039/c6tb00675b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Junyong, Miaomiao Tian, Jingwei Hou, Jing Wang, Jiuyang Lin, Yatao Zhang, Jindun Liu, and Bart Van der Bruggen. "Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane." Journal of Materials Chemistry A 4, no. 5 (2016): 1980–90. http://dx.doi.org/10.1039/c5ta08024j.

Full text
Abstract:
Surface zwitterionization of graphene oxide (GO) was firstly conducted by grafting poly(sulfobetaine methacrylate) (PSBMA) onto the GO surface via reverse atom transfer radical polymerization (RATRP).
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng, Junfeng, Meng Li, Yujian Yao, Xuan Zhang, and Lianjun Wang. "Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water." Journal of Materials Chemistry A 5, no. 26 (2017): 13730–39. http://dx.doi.org/10.1039/c7ta02837g.

Full text
Abstract:
Zwitterionization of multiwalled carbon nanotubes is conducted via atom transfer radical polymerization and ZCNTs obtained are used as an aqueous additive to fabricate thin-film nanocomposite nanofiltration membranes.
APA, Harvard, Vancouver, ISO, and other styles
4

Tripathi, Ravi, Laura Durán Caballero, Ricardo Pérez de Tudela, Christoph Hölzl, and Dominik Marx. "Unveiling Zwitterionization of Glycine in the Microhydration Limit." ACS Omega 6, no. 19 (May 7, 2021): 12676–83. http://dx.doi.org/10.1021/acsomega.1c00869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Sheng-Han, Kyoko Fukazawa, Yuuki Inoue, and Kazuhiko Ishihara. "Photoinduced Surface Zwitterionization for Antifouling of Porous Polymer Substrates." Langmuir 35, no. 5 (June 24, 2018): 1312–19. http://dx.doi.org/10.1021/acs.langmuir.8b01089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mkpuma, Victor Okorie, Navid Reza Moheimani, Kristina Fischer, Agnes Schulze, and Houda Ennaceri. "Membrane surface zwitterionization for an efficient microalgal harvesting: A review." Algal Research 66 (July 2022): 102797. http://dx.doi.org/10.1016/j.algal.2022.102797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, Chen-Hua, Antoine Venault, and Yung Chang. "Facile zwitterionization of polyvinylidene fluoride microfiltration membranes for biofouling mitigation." Journal of Membrane Science 648 (April 2022): 120348. http://dx.doi.org/10.1016/j.memsci.2022.120348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pérez de Tudela, Ricardo, and Dominik Marx. "Water-Induced Zwitterionization of Glycine: Stabilization Mechanism and Spectral Signatures." Journal of Physical Chemistry Letters 7, no. 24 (December 2016): 5137–42. http://dx.doi.org/10.1021/acs.jpclett.6b02247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Li-Jing, Fu Liu, Xue-Min Yu, Ai-Lin Gao, and Li-Xin Xue. "Surface zwitterionization of hemocompatible poly(lactic acid) membranes for hemodiafiltration." Journal of Membrane Science 475 (February 2015): 469–79. http://dx.doi.org/10.1016/j.memsci.2014.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tahara, Keishiro, Tetsufumi Nakakita, Alyona A. Starikova, Takashi Ikeda, Masaaki Abe, and Jun-ichi Kikuchi. "Small anion-assisted electrochemical potential splitting in a new series of bistriarylamine derivatives: organic mixed valency across a urea bridge and zwitterionization." Beilstein Journal of Organic Chemistry 15 (September 24, 2019): 2277–86. http://dx.doi.org/10.3762/bjoc.15.220.

Full text
Abstract:
We report the synthesis of a new bistriarylamine series having a urea bridge and investigate its mixed-valence (MV) states by electrochemical and spectroelectrochemical methods. We found that the supporting electrolytes had unusual effects on potential splitting during electrochemical behavior, in which a smaller counteranion thermodynamically stabilized a MV cation more substantially than did a bulky one. The effects contrary to those reported in conventional MV systems were explained by zwitterionization through hydrogen bonding between the urea bridge and the counteranions, increasing the electronic interactions between two triarylamino units. Furthermore, we clarified the intervalence charge transfer characteristics of the zwitterionic MV state.
APA, Harvard, Vancouver, ISO, and other styles
11

Venault, Antoine, Chia-Yu Chang, Tai-Chun Tsai, Hsiang-Yu Chang, Denis Bouyer, Kueir-Rarn Lee, and Yung Chang. "Surface zwitterionization of PVDF VIPS membranes for oil and water separation." Journal of Membrane Science 563 (October 2018): 54–64. http://dx.doi.org/10.1016/j.memsci.2018.05.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fowler, Peter Matthew Paul T., Gian Vincent Dizon, Lemmuel L. Tayo, Alvin R. Caparanga, James Huang, Jie Zheng, Pierre Aimar, and Yung Chang. "Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) via Dopamine-Assisted Consecutive Immersion Coating." ACS Applied Materials & Interfaces 12, no. 37 (August 21, 2020): 41000–41010. http://dx.doi.org/10.1021/acsami.0c09073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Valverde, Danillo, Zélia Maria da Costa Ludwig, Célia Regina da Costa, Valdemir Ludwig, and Herbert C. Georg. "Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures." Journal of Chemical Physics 148, no. 2 (January 14, 2018): 024305. http://dx.doi.org/10.1063/1.5006645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chen, Sheng-Han, Yung Chang, and Kazuhiko Ishihara. "Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization." Langmuir 33, no. 2 (November 17, 2016): 611–21. http://dx.doi.org/10.1021/acs.langmuir.6b03295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Colilla, Montserrat, Isabel Izquierdo-Barba, and María Vallet-Regí. "The Role of Zwitterionic Materials in the Fight against Proteins and Bacteria." Medicines 5, no. 4 (November 22, 2018): 125. http://dx.doi.org/10.3390/medicines5040125.

Full text
Abstract:
Zwitterionization of biomaterials has been heightened to a potent tool to develop biocompatible materials that are able to inhibit bacterial and non-specific proteins adhesion. This constitutes a major progress in the biomedical field. This manuscript overviews the main functionalization strategies that have been reported up to date to design and develop these advanced biomaterials. On this regard, the recent research efforts that were dedicated to provide their surface of zwitterionic nature are summarized by classifying biomaterials in two main groups. First, we centre on biomaterials in clinical use, concretely bioceramics, and metallic implants. Finally, we revise emerging nanostructured biomaterials, which are receiving growing attention due to their multifunctionality and versatility mainly in the local drug delivery and bone tissue regeneration scenarios.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhang, Chenxu, Jiemei Zhou, Xiangyue Ye, Zhuo Li, and Yong Wang. "Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes." Macromolecules 54, no. 9 (April 19, 2021): 4236–45. http://dx.doi.org/10.1021/acs.macromol.1c00307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dizon, Gian Vincent, Peter Matthew Toribio Fowler, Antoine Venault, Chih-Chen Yeh, Lemmuel L. Tayo, Alvin R. Caparanga, Pierre Aimar, and Yung Chang. "Dopamine-Induced Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) for Constructing Thermostable Bioinert Materials." ACS Biomaterials Science & Engineering 8, no. 4 (March 23, 2022): 1532–43. http://dx.doi.org/10.1021/acsbiomaterials.2c00045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chiang, Yen-Che, Yung Chang, Ching-Jong Chuang, and Ruoh-Chyu Ruaan. "A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes." Journal of Membrane Science 389 (February 2012): 76–82. http://dx.doi.org/10.1016/j.memsci.2011.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dizon, Gian Vincent, Maria Thea Rane Clarin, Antoine Venault, Lemmuel Tayo, Heng-Chieh Chiang, Jie Zheng, Pierre Aimar, and Yung Chang. "A Nondestructive Surface Zwitterionization of Polydimethylsiloxane for the Improved Human Blood-inert Properties." ACS Applied Bio Materials 2, no. 1 (November 26, 2018): 39–48. http://dx.doi.org/10.1021/acsabm.8b00212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lien, Cheng-Chi, Lu-Chen Yeh, Antoine Venault, Shao-Chi Tsai, Chen-Hua Hsu, Gian Vincent Dizon, Yu-Tzu Huang, Akon Higuchi, and Yung Chang. "Controlling the zwitterionization degree of alternate copolymers for minimizing biofouling on PVDF membranes." Journal of Membrane Science 565 (November 2018): 119–30. http://dx.doi.org/10.1016/j.memsci.2018.07.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chou, Ying-Nien, Antoine Venault, Yu-Hsiang Wang, Arunachalam Chinnathambi, Akon Higuchi, and Yung Chang. "Surface zwitterionization on versatile hydrophobic interfaces via a combined copolymerization/self-assembling process." Journal of Materials Chemistry B 6, no. 30 (2018): 4909–19. http://dx.doi.org/10.1039/c8tb01054d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lee, Myoungjin, Heejin Kim, Jiae Seo, Minji Kang, Sunah Kang, Joomyung Jang, Yan Lee, and Ji-Hun Seo. "Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces." Applied Surface Science 427 (January 2018): 517–24. http://dx.doi.org/10.1016/j.apsusc.2017.08.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nazari, Simin, and Amira Abdelrasoul. "Surface zwitterionization of hemodialysismembranesfor hemocompatibility enhancement and protein-mediated anti-adhesion: A critical review." Biomedical Engineering Advances 3 (June 2022): 100026. http://dx.doi.org/10.1016/j.bea.2022.100026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Tingting, Jiulong Yin, Hai Tang, Ze Zhang, Di Liu, Shasha Liu, Zhaozan Xu, and Nanwen Li. "Improved permeability and antifouling performance of Tröger's base polymer-based ultrafiltration membrane via zwitterionization." Journal of Membrane Science 646 (March 2022): 120251. http://dx.doi.org/10.1016/j.memsci.2022.120251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fan, Yu-Jhen, Minh Tan Pham, and Chun-Jen Huang. "Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization." Langmuir 35, no. 5 (August 16, 2018): 1642–51. http://dx.doi.org/10.1021/acs.langmuir.8b01730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nayak, Kanupriya, Anubhav Kumar, and Bijay P. Tripathi. "Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation." Journal of Membrane Science 643 (March 2022): 120038. http://dx.doi.org/10.1016/j.memsci.2021.120038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Chenxu, Congcong Yin, Yanjie Wang, Jiemei Zhou, and Yong Wang. "Simultaneous zwitterionization and selective swelling-induced pore generation of block copolymers for antifouling ultrafiltration membranes." Journal of Membrane Science 599 (April 2020): 117833. http://dx.doi.org/10.1016/j.memsci.2020.117833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Pan, Jianqiang Meng, Mingli Xu, Tao Yuan, Ning Yang, Tian Sun, Yufeng Zhang, Xianshe Feng, and Bowen Cheng. "A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility." Journal of Membrane Science 492 (October 2015): 547–58. http://dx.doi.org/10.1016/j.memsci.2015.06.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sin, Mei-Chan, Pei-Tzu Lou, Chia-He Cho, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, and Yung Chang. "An intuitive thermal-induced surface zwitterionization for versatile, well-controlled haemocompatible organic and inorganic materials." Colloids and Surfaces B: Biointerfaces 127 (March 2015): 54–64. http://dx.doi.org/10.1016/j.colsurfb.2015.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Haiye, Chengfeng Zhang, Jianxiu Wang, Xiaofeng Feng, and Chunju He. "Dual-Mode Antifouling Ability of Thiol–Ene Amphiphilic Conetworks: Minimally Adhesive Coatings via the Surface Zwitterionization." ACS Sustainable Chemistry & Engineering 4, no. 7 (June 3, 2016): 3803–11. http://dx.doi.org/10.1021/acssuschemeng.6b00525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Sheng-Han, Yung Chang, Kueir-Rarn Lee, Ta-Chin Wei, Akon Higuchi, Feng-Ming Ho, Chia-Chun Tsou, Hsin-Tsung Ho, and Juin-Yih Lai. "Hemocompatible Control of Sulfobetaine-Grafted Polypropylene Fibrous Membranes in Human Whole Blood via Plasma-Induced Surface Zwitterionization." Langmuir 28, no. 51 (December 11, 2012): 17733–42. http://dx.doi.org/10.1021/la3036902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jhong, Jheng-Fong, Antoine Venault, Chun-Chung Hou, Sheng-Han Chen, Ta-Chin Wei, Jie Zheng, James Huang, and Yung Chang. "Surface Zwitterionization of Expanded Poly(tetrafluoroethylene) Membranes via Atmospheric Plasma-Induced Polymerization for Enhanced Skin Wound Healing." ACS Applied Materials & Interfaces 5, no. 14 (July 8, 2013): 6732–42. http://dx.doi.org/10.1021/am401669q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Venault, Antoine, Yung Chang, Hui-Shan Yang, Pei-Ying Lin, Yu-Ju Shih, and Akon Higuchi. "Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility." Journal of Membrane Science 454 (March 2014): 253–63. http://dx.doi.org/10.1016/j.memsci.2013.11.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Jianxiu, Ling Liu, Zhihua Qu, Zhiqing Qu, and Chunju He. "Outstanding antifouling performance of poly(vinylidene fluoride) membranes: Novel amphiphilic brushlike copolymer blends and one‐step surface zwitterionization." Journal of Applied Polymer Science 136, no. 24 (March 8, 2019): 47637. http://dx.doi.org/10.1002/app.47637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, Bairui, Fei Huang, Congjie Gao, and Lixin Xue. "The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes." Journal of Membrane Science 641 (January 2022): 119918. http://dx.doi.org/10.1016/j.memsci.2021.119918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yu, Bo-Yi, Jie Zheng, Yung Chang, Mei-Chan Sin, Chih-Hung Chang, Akon Higuchi, and Yi-Ming Sun. "Surface Zwitterionization of Titanium for a General Bio-Inert Control of Plasma Proteins, Blood Cells, Tissue Cells, and Bacteria." Langmuir 30, no. 25 (June 19, 2014): 7502–12. http://dx.doi.org/10.1021/la500917s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Jinbin, Mengxiao Yu, Xuhui Ning, Chen Zhou, Shengyang Yang, and Jie Zheng. "PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Near-IR-Emitting Gold Nanoparticles." Angewandte Chemie International Edition 52, no. 48 (October 9, 2013): 12572–76. http://dx.doi.org/10.1002/anie.201304465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Jinbin, Mengxiao Yu, Xuhui Ning, Chen Zhou, Shengyang Yang, and Jie Zheng. "PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Near-IR-Emitting Gold Nanoparticles." Angewandte Chemie 125, no. 48 (October 9, 2013): 12804–8. http://dx.doi.org/10.1002/ange.201304465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yu, Xin, Yang Yang, Wufang Yang, Xungai Wang, Xin Liu, Feng Zhou, and Yan Zhao. "One-step zwitterionization and quaternization of thick PDMAEMA layer grafted through subsurface-initiated ATRP for robust antibiofouling and antibacterial coating on PDMS." Journal of Colloid and Interface Science 610 (March 2022): 234–45. http://dx.doi.org/10.1016/j.jcis.2021.12.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gaxela, Nelisa Ncumisa, Philiswa Nosizo Nomngongo, and Richard Motlhaletsi Moutloali. "Effect of the Zwitterion, p(MAO-DMPA), on the Internal Structure, Fouling Characteristics, and Dye Rejection Mechanism of PVDF Membranes." Membranes 10, no. 11 (October 31, 2020): 323. http://dx.doi.org/10.3390/membranes10110323.

Full text
Abstract:
The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (1HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes. The effect of the zwitterionization content on membrane performance indicators such as pure water flux, membrane fouling, and dye rejection was investigated. The morphology of the membranes showed that the increase in the zwitterion amount led to a general decrease in pore size with a concomitant increase in the number of membrane surface pores. The surface roughness was not particularly affected by the amount of the additive; however, the internal structure was greatly influenced, leading to varying rejection mechanisms for the larger dye molecule. On the other hand, the wettability of the membranes initially decreased with increasing content to a certain point and then increased as the membrane homogeneity changed at higher zwitterion percentages. Flux and fouling properties were enhanced through the addition of zwitterion compared to the pristine PVDF membrane. The high (>90%) rejection of anionic dye, Congo red, indicated that these membranes behaved as ultrafiltration (UF). In comparison, the cationic dye, rhodamine 6G, was only rejected to <70%, with rejection being predominantly electrostatic-based. This work shows that zwitterion addition imparted good membrane performance to PVDF membranes up to an optimum content whereby membrane homogeneity was compromised, leading to poor performance at its higher loading.
APA, Harvard, Vancouver, ISO, and other styles
41

Skrzypczak, Natalia, and Piotr Przybylski. "Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins." Natural Product Reports, 2022. http://dx.doi.org/10.1039/d2np00002d.

Full text
Abstract:
This report concerns biosyntheses, structural division and mechanism of biological potency in view of conformation and zwitterionization of naphthalenoid ansamycins. These macrolactams are discussed especially in view of antibacterial effects.
APA, Harvard, Vancouver, ISO, and other styles
42

Bui, Hoang Linh, Sheng-Di Huang, Bruce P. Lee, Ming-Ying Lan, and Chun-Jen Huang. "Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach." Colloids and Surfaces B: Biointerfaces, September 2022, 112879. http://dx.doi.org/10.1016/j.colsurfb.2022.112879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chiao, Yu-Hsuan, Hao-Tung Lin, Micah Belle Marie Yap Ang, Yeit Hann Teow, S. Ranil Wickramasinghe, and Yung Chang. "Surface Zwitterionization via Grafting of Epoxylated Sulfobetaine Copolymers onto PVDF Membranes for Improved Permeability and Biofouling Mitigation." Industrial & Engineering Chemistry Research, January 31, 2023. http://dx.doi.org/10.1021/acs.iecr.2c04382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mollahosseini, Arash, and Amira Abdelrasoul. "Zwitterionization of common hemodialysis membranes: assessment of different immobilized structure impact on hydrophilicity and biocompatibility of poly aryl ether sulfone (PAES) and cellulose triacetate (CTA) hemodialysis membranes." Structural Chemistry, May 18, 2022. http://dx.doi.org/10.1007/s11224-022-01940-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography