Academic literature on the topic 'ZnO quantum wells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnO quantum wells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ZnO quantum wells"

1

Tchelidze, T., E. Chikoidze, T. Kereselidze, and Y. Dumont. "Excitons in ZnO/Zn1–xMnxO quantum wells." physica status solidi (b) 244, no. 5 (May 2007): 1495–99. http://dx.doi.org/10.1002/pssb.200675116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bataev, M. N., N. G. Filosofov, A. Yu Serov, V. F. Agekyan, C. Morhain, and V. P. Kochereshko. "Excitons in ZnO Quantum Wells." Physics of the Solid State 60, no. 12 (December 2018): 2628–33. http://dx.doi.org/10.1134/s1063783418120077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pieniążek, Agnieszka, Henryk Teisseyre, Dawid Jarosz, Jan Suffczyński, Bartłomiej S. Witkowski, Sławomir Kret, Michał Boćkowski, et al. "Growth and optical properties of ZnO/Zn1−xMgxO quantum wells on ZnO microrods." Nanoscale 11, no. 5 (2019): 2275–81. http://dx.doi.org/10.1039/c8nr07065b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lü, C., and J. L. Cheng. "Spin relaxation inn-type ZnO quantum wells." Semiconductor Science and Technology 24, no. 11 (October 9, 2009): 115010. http://dx.doi.org/10.1088/0268-1242/24/11/115010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, J. A., and C. Jagadish. "Ultrafast spectroscopy of ZnO/ZnMgO quantum wells." Laser & Photonics Review 3, no. 1-2 (February 24, 2009): 85–96. http://dx.doi.org/10.1002/lpor.200810017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bogatu, V., A. Goldenblum, A. Many, and Y. Goldstein. "Surface Quantum Wells in Hydrogen Implanted ZnO." physica status solidi (b) 212, no. 1 (March 1999): 89–96. http://dx.doi.org/10.1002/(sici)1521-3951(199903)212:1<89::aid-pssb89>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bogatu, V., A. Goldenblum, A. Many, and Y. Goldstein. "Surface Quantum Wells in Hydrogen Implanted ZnO." physica status solidi (b) 212, no. 2 (April 1999): 397. http://dx.doi.org/10.1002/(sici)1521-3951(199904)212:2<397::aid-pssb397>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belmoubarik, M., K. Ohtani, and H. Ohno. "Intersubband transitions in ZnO multiple quantum wells." Applied Physics Letters 92, no. 19 (May 12, 2008): 191906. http://dx.doi.org/10.1063/1.2926673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bataev, M. N., N. G. Filosofov, A. Yu Serov, V. F. Agekyan, C. Mohrain, and V. P. Kochereshko. "Erratum to: Excitons in ZnO Quantum Wells." Physics of the Solid State 61, no. 3 (March 2019): 493. http://dx.doi.org/10.1134/s106378341903034x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sato, K., T. Abe, R. Fujinuma, K. Yasuda, T. Yamaguchi, H. Kasada, and K. Ando. "Stark effects of ZnO thin film and ZnO/ZnMgO quantum wells." physica status solidi (c) 9, no. 8-9 (May 14, 2012): 1801–4. http://dx.doi.org/10.1002/pssc.201100592.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "ZnO quantum wells"

1

Mohammed, Ali Mohammed Jassim. "Optical characterisation of non polar nanostructures quantum wells ZnO/(Zn,Mg) O." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS096/document.

Full text
Abstract:
L’oxyde de zinc est un matériau prometteur pour la réalisation de composants optoélectroniques dans la gamme des émetteurs UV. Pour cela il faut développer des hétéro-structures tel que des puits quantiques ZnO/(Zn, Mg)O afin de mieux contrôler les propriétés d’émissions. Ce travail porte sur la caractérisation de telles structures crûes sur le plan A, surface non polaire, de ZnO massif. A partir de mesures de spectroscopie optiques (réflectivité, photoluminescence en excitation continue et photoluminescence résolue en temps) nous avons déterminé les différents phénomènes physiques mis en jeux lors de la recombinaison radiative des porteurs dans ces puits quantiques. Dans un premier temps, nous avons étudié en détail l’émission des photons par les barrières de (Zn, Mg)O. Grace à l’étude en température nous avons montré que l’émission optique de la barrière correspond à la recombinaison de paires électron trou en interactions (excitons) qui sont à basses températures localisées dans des fluctuations de potentiel. Sous l’effet de la température ils se délocalisent et se recombinent comme des exciton libres. L’étude détaillée des déclins temporels de photoluminescence nous à permis de démontrer que nous avions affaire à deux états excitoniques différents qui présentent des dynamiques de recombinaisons différentes. Un modèle est proposé pour rendre compte des différentes observations. La partie principale de ce travail porte sur le comportement des excitons dans le puits quantique. Le résultat majeur de cette étude est la démonstration expérimentale que dans ce cas des complexes excitoniques, ici des trions chargé négativement (exciton en interaction avec un électron libre), se forment à basse température et sont responsable de la luminescence observée. De plus, en variant la densité d’excitation nous avons montré que se former également des bi-excitons (pseudo particule formée de deux exciton en interactions). Le comportement en température de la photoluminescence obtenue dans différente conditions d’excitation à permis de démontrer que sous l’effet de l’énergie thermique les complexes excitoniques se dissociés pour créer des excitons libres. Des mesures en fonction de la polarisation de la lumière émise et de la température ont permis également d’étudier l’état C de l’exciton dans le puits. Les dynamiques de recombinaison des différents complexes excitoniques sont examinées en fonction de la température
The zinc oxide is a promising material for the realization of optoelectronic devices in the blue-UV range. For this, it is necessary to develop hetero-structures such as ZnO / (Zn, Mg) O quantum wells in order to have better control of the properties of emissions. This work concerns the characterization of such structures grown on the A-plane (non-polar surface) of bulk ZnO. From optical spectroscopies measurements (reflectivity, continuous wave and time-resolved photoluminescence) we determined the various physical phenomena involve during the radiative recombination of the carriers in these quantum wells. At first, we studied in detail the emission of photons by the barriers of (Zn, Mg) O. Thanks to the study in temperature we showed that the optical emission of the barrier corresponds to the recombination of electron hole pairs in interactions (excitons), which are at low temperatures localized in the fluctuations of the potential. Under the influence of the temperature they delocalize and recombine as free exciton. From the detailed study of the temporal decays of photoluminescence we can demonstrate that we deal with two different excitonic states, which present different dynamics of recombination. A model is proposed that explain the various observations. The main part of this work concerns the behavior of the excitons in the quantum well. The major result is the experimental demonstration that excitonics complexes are formed at low temperature, negatively charged trion (exciton in interaction with a free electron), in this system and they are responsible for the observed luminescence. Furthermore, by varying the density of excitation we showed that biexcitons are also form (pseudo-particles formed by two excitons in interactions). The behavior in temperature of the photoluminescence obtained in different conditions of excitation demonstrates that under the influence of the thermal energy the exitonic complexes are broken to create free excitons. Measures according to the polarization of the emitted light and the temperature also allowed studying the C state of the exciton in the quantum well. The dynamics of recombination of the various excitonics complexes are examined according to the temperature
APA, Harvard, Vancouver, ISO, and other styles
2

Wen, Xiaoming, and n/a. "Ultrafast spectroscopy of semiconductor nanostructures." Swinburne University of Technology, 2007. http://adt.lib.swin.edu.au./public/adt-VSWT20070426.110438.

Full text
Abstract:
Semiconductor nanostructures exhibit many remarkable electronic and optical properties. The key to designing and utilising semiconductor quantum structures is a physical understanding of the detailed excitation, transport and energy relaxation processes. Thus the nonequilibrium dynamics of semiconductor quantum structures have attracted extensive attention in recent years. Ultrafast spectroscopy has proven to be a versatile and powerful tool for investigating transient phenomena related to the relaxation and transport dynamics in semiconductors. In this thesis, we report investigations into the electronic and optical properties of various semiconductor quantum systems using a variety of ultrafast techniques, including up-conversion photoluminescence, pump-probe, photon echoes and four-wave mixing. The semiconductor quantum systems studied include ZnO/ZnMgO multiple quantum wells with oxygen ion implantation, InGaAs/GaAs self-assembled quantum dots with different doping, InGaAs/InP quantum wells with proton implantation, and silicon quantum dots. The spectra of these semiconductor nanostructures range from the ultraviolet region, through the visible, to the infrared. In the UV region we investigate excitons, biexcitons and oxygen implantation effects in ZnO/ZnMgO multi-quantum wells using four-wave mixing, pump-probe and photoluminescence techniques. Using time-resolved up-conversion photoluminescence, we investigate the relaxation dynamics and state filling effect in InGaAs self-assembled quantum dots with different doping, and the implantation effect in InGaAs/InP quantum wells. Finally, we study the optical properties of silicon quantum dots using time-resolved photoluminescence and photon echo spectroscopy on various time scales, ranging from microseconds to femtoseconds.
APA, Harvard, Vancouver, ISO, and other styles
3

Perillat-Merceroz, Guillaume. "Mécanismes de croissance et défauts cristallins dans les structures à nanofils de ZnO pour les LED." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENI053/document.

Full text
Abstract:
Les nanofils de ZnO à puits quantiques et le dopage p par implantation ionique d'azote sont étudiés pour la fabrication de LED ultra-violettes. Des pyramides de polarité O et des nanofils de polarité Zn sur substrats de saphir et ZnO sont élaborés. La croissance organisée de nanofils sur ZnO de polarité Zn est démontrée. De même, des pyramides ou des nanofils de GaN sont obtenus sur GaN de polarité Ga ou N. Sur saphir, l'élimination des dislocations dans les pyramides sous-jacentes aux nanofils est analysée. Les nanofils sans défauts structuraux permettent l'élaboration de puits quantiques coeur-coquille ZnO/Zn(1-x)MgxO. La relaxation plastique dans les nanofils est étudiée, puis la composition en Mg est optimisée pour l'éviter et atteindre un rendement quantique interne de 54%. Concernant l'implantation, les défauts sont identifiés avant et après recuit. Ils disparaissent en surface, d'où une guérison facilitée des nanofils. Un matériau guéri avec des accepteurs activés n'est pas obtenu
Quantum well ZnO nanowires and p-type doping by nitrogen ion implantation are studied to make ultraviolet light-emitting diodes. O-polar pyramids and Zn-polar nanowires on sapphire and ZnO substrates are grown. Organized growth of nanowires on a masked Zn-polar ZnO is demonstrated. Similarly, GaN pyramids and nanowires are grown on Ga and N-polar GaN respectively. On sapphire, the dislocation elimination in the underlying pyramids is analyzed. Nanowires with no structural defects allow the growth of ZnO / Zn (1-x) Mg x O core-shell quantum wells. Plastic relaxation is studied, and the Mg composition is optimized to avoid it and attain an internal quantum efficiency as high as 54%. Concerning ion implantation, the defects are identified before and after annealing. They disappear in the near-surface, which lead to an easier recovery of nanowires compared to bulk ZnO. However, a recovered material with activated acceptors is not obtained
APA, Harvard, Vancouver, ISO, and other styles
4

Jollivet, Arnaud. "Dispositifs infrarouges à cascade quantique à base de semiconducteurs GaN/AlGaN et ZnO/ZnMgO." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS058/document.

Full text
Abstract:
Ce mémoire de thèse est consacré à l’étude et au développement des hétérostructures semi-conductrices à base de GaN et ZnO. Ces matériaux sont particulièrement prometteurs pour le développement de composants optoélectroniques inter-sous-bandes infrarouges et notamment pour les dispositifs à cascade quantique. Ces semiconducteurs possèdent en effet plusieurs avantages pour la conception de dispositifs à cascade, tels qu’une grande discontinuité de potentiel en bande de conduction et une énergie du phonon LO très élevée. Ces propriétés se traduisent par la possibilité de développer des dispositifs couvrant une gamme spectrale allant du proche-infrarouge au térahertz et offrent la possibilité de réaliser des lasers à cascade quantique térahertz fonctionnant à température ambiante
This manuscript focuses on the study and on the development of semiconductor heterostructures based on GaN and ZnO material. These materials are particularly promising for the development of infrared optoelectronic intersubband devices in particular for quantum cascade devices. These semiconductors own several advantages to design quantum cascade devices such as a large conduction band offset and a large energy of the LO phonon. These properties predict the possibility to develop devices covering a large spectral range from near-infrared to terahertz and offer the possibility to realize terahertz quantum cascade lasers operating at room temperature
APA, Harvard, Vancouver, ISO, and other styles
5

Chieh-Yi, Kuo. "Fabrication and Optical Properties of ZnO Nanocrystal/GaN Quantum Well Based Hybrid Structures." Thesis, Linköpings universitet, Tunnfilmsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81675.

Full text
Abstract:
Optical properties of hybrid structures based on zinc oxide nanocrystals (NCs) and Gallium Nitride quantum well (QW) has been studied. The ZnO NCs thin films on the top of GaN QW structures were fabricated using spin coating. The surface morphology was characterized by scanning electron microscopy (SEM). We have performed temperature dependence time-resolved photoluminescence (TRPL) measurements of the bare AlGaN/GaN QW structures and hybrids, containing ZnO NCs. It was found that at some temperatures the QW PL decay has shorter decay time in the presence of ZnO NCs thin film compared to the bare QW. The effect was stronger for the samples with thinner cap layers. The results are discussed in terms of three models such as exciton nonradiative energy transfer (NRET), tunneling effect, and piezoelectric field influence on the QW exciton energy.
APA, Harvard, Vancouver, ISO, and other styles
6

Shastri, Vasant. "Excitonic and Raman properties of ZnSe/Zn1-xCdxSe strained-layer quantum wells." Ohio : Ohio University, 1991. http://www.ohiolink.edu/etd/view.cgi?ohiou1173325694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stölzel, Marko. "Photolumineszenz von Exzitonen in polaren ZnO/MgZnO-Quantengrabenstrukturen." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-147166.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit dem vertieften Verständnis der Rekombinationsdynamik von polaren ZnO/MgZnO-Quantengraben(QW)-Strukturen zur exakten Bestimmung des unabgeschirmten Grundzustandes und der Analyse der zugrundeliegenden Emissionsprozesse. Dafür werden ausgehend von Beobachtungen an ZnO-Dünnschichten die Eigenschaften von mittels PLD hergestellten QWs unter dem Einfluss des internen elektrischen Feldes mit Hilfe der zeitintegrierten (TI-) und zeitaufgelösten (TR-) Photolumineszenz(PL)-Spektroskopie untersucht. Die Differenz der spontanen und piezoelektrischen Polarisation zwischen ZnO und MgZnO führt zur Ausbildung eines internen elektrischen Feldes und damit zum Auftreten des quantum-confined Stark effect (QCSE). Es wird gezeigt, dass der QCSE durch eine Durchmischung der Grenzflächen stark vermindert wird. Für QWs mit schwachem QCSE ist die Übergangsenergie und Zerfallszeit des Grundzustandes experimentell gut bestimmbar. Bei starkem QCSE müssen jedoch bereits bei geringen Anregungsdichten (1E10 /cm²) Abschirmeffekte berücksichtigt werden. Dadurch ist es sehr schwierig, den unabgeschirmten Grundzustand mittels herkömmlicher experimenteller Methoden mit einem aussagekräftigen Signal-Rausch-Verhältnis zu bestimmen. Es wird gezeigt, dass für QWs mit einer Dicke > 4 nm die Übergangsenergie des unabgeschirmten Grundzustandes nicht durch TI-PL-Messungen bestimmt werden kann. TR-PL-Messungen zeigen energetisch tiefere Übergangsenergien, jedoch ebenfalls nicht den unabgeschirmten Grundzustand. Mit einem eingeführten Modell zur Beschreibung der zeitabhängigen Abschirmung des Grundzustandsniveaus wird die Zerfallszeit für QW-Dicken in einem Bereich von 1 - 10 nm bestimmt. Durch die selbstkonsistente Lösung von Schrödinger- und Poissongleichung werden die Übergangsenergie und Zerfallszeit der Exzitonen im QW in Abhängigkeit der Feldstärke und auch der Ladungsträgerdichte berechnet. Dadurch ist eine exaktere Bestimmung der Feldstärke möglich. Zusätzlich wird durch die vergleichende Untersuchung von QWs unterschiedlicher Dicke, Potentialhöhe und Wachstumsunterlage die spontane und piezoelektrische Polarisation der Materialien experimentell bestimmt. Mittels temperaturabhängiger Messungen wird der Ursprung der Lumineszenz für QW-Dicken > 2 nm der Rekombination freier Exzitonen im QW zugeschrieben. Für dünnere QWs ist der temperaturabhängige Verlauf des PL-Maximums durch Lokalisation der Exzitonen bestimmt.
APA, Harvard, Vancouver, ISO, and other styles
8

Howari, Haidar. "Pulsed laser annealing of CdTe/Cd1-xMnxTe epilayers and pulsed laser emission of ZnS/Zn1-xCdxS quantum well structures." Thesis, University of Hull, 1999. http://hydra.hull.ac.uk/resources/hull:8297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shastri, Vasant K. "Excitonic and Raman properties of ZnSe/Zn 1-xCd xSe strained-layer quantum wells." Ohio University / OhioLINK, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1173325694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sadofiev, Sergey. "Radical-source molecular beam epitaxy of ZnO-based heterostructures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/16054.

Full text
Abstract:
Im Rahmen der Dissertation wurden molekularstrahlepitaktische Verfahren zur Züchtung von Hetero-und Quantenstrukturen auf der Basis der Gruppe II-Oxide entwickelt. Insbesondere wurde ein Wachstumsregime weit entfernt vom thermischen Gleichgewicht etabliert, welches die Mischung von CdO und MgO mit ZnO in phasenreiner Wurtzitstruktur ermöglicht, wobei die Gleichgewichtslöslichkeitsgrenzen dramatisch überschritten werden. In den Mischkristallen kann die Bandlücke kontinuierlich von 2.2 bis 4.4 eV eingestellt werden. Das Wachstum verläuft in einem zweidimensionalen Modus und resultiert in atomar glatten Ober- und Grenzflächen. Ausgeprägte RHEED- Intensitätsoszillationen erlauben die atomlagengenaue Kontrolle der Schichtdicken und somit die Realisierung wohl-defi- nierter Einzel- und Mehrfachquantengrabenstrukturen. Diese zeichnen sich durch eine hohe Photolumineszenzquantenausbeute im gesamten sichtbaren Spektralbereich aus. Laseraktivität kann vom UV bis zum grünen Wellenlängenbereich bei Zimmertemperatur erzielt werden. Das Potenzial dieser Quantenstrukturen in Hinblick auf ihre Anwendung in opto-elektronischen Bauelementen wird diskutiert.
This work focuses on the development of the novel growth approaches for the fabrication of Group II-oxide materials in the form of epitaxial films and heterostructures. It is shown that molecular-beam epitaxial growth far from thermal equilibrium allows one to overcome the standard solubility limit and to alloy ZnO with MgO or CdO in strict wurtzite phase up to mole fractions of several 10 %. In this way, a band-gap range from 2.2 to 4.4 eV can be covered. A clear layerby- layer growth mode controlled by oscillations in reflection high-energy electron diffraction makes it possible to fabricate atomically smooth heterointerfaces and well-defined quantum well structures exhibiting prominent band-gap related light emission in the whole composition range. On appropriately designed structures, laser action from the ultraviolet down to green wavelengths and up to room temperature is achieved. The properties and potential of the "state-of-the-art" materials are discussed in relation to the advantages for their applications in various optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "ZnO quantum wells"

1

Davis, Jeffrey, and Chennupati Jagadish. "ZnO/MgZnO Quantum Wells." In Springer Series in Materials Science, 413–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23521-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klingshirn, C. "7.1.8 Quantum wells and superlattices based on ZnO and its alloys." In Growth and Structuring, 237–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Makino, Takayuki, Yusaburo Segawa, Masashi Kawasaki, and Hideomi Koinuma. "Room-Temperature Stimulated Emission from ZnO Multiple Quantum Wells Grown on Lattice-Matched Substrates." In Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 331–49. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991038.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klingshirn, C. "7.1.7 Quantum wells and superlattices based on ZnS and its alloys." In Growth and Structuring, 235–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamada, Yoichi. "ULTRAVIOLET LASER EMISSION FROM ZnS-BASED QUANTUM WELLS." In Optical Properties of Low–Dimensional Materials, 202–39. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814261388_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"- Optical Properties and Carrier Dynamics of ZnO and ZnO/ZnMgO Multiple Quantum Well Structures." In Handbook of Zinc Oxide and Related Materials, 184–221. CRC Press, 2012. http://dx.doi.org/10.1201/b13068-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwon, Bong-Joon, and Yong-Hoon Cho. "Optical Properties and Carrier Dynamics of ZnO and ZnO/ZnMgO Multiple Quantum Well Structures." In Handbook of Zinc Oxide and Related Materials, 167–203. CRC Press, 2012. http://dx.doi.org/10.1201/b13072-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Seoung-Hwan, Doyeol Ahn, Sam Nyung Yi, Tae Won Kang, and Seung Joo Lee. "Optical Properties of Wurtzite ZnO-based Quantum Well Structures with Piezoelectric and Spontaneous Polarizations." In Computational Studies of New Materials II, 273–300. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814287197_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "ZnO quantum wells"

1

Tchelidze, T., E. Chikoidze, Z. Kvinikadze, and Y. Dumont. "Perspectives of Using ZnO/Zn1−xMnxO Quantum Wells." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

J. S. Hong, S. W. Ryu, W. P. Hong, J. J. Kim, H. M. Kim, and S. H. Park. "Exciton binding energies in wurtzite ZnO/MgZnO quantum wells." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lotin, Andrey A., Oleg A. Novodvorsky, Liubov S. Parshina, Evgeny V. Khaydukov, Dmitry A. Zuev, Olga D. Khramova, and Vladislav Ya Panchenko. "Quantum efficiency increasing and lasing in the quantum wells based on ZnO." In Lasers, Applications, and Technologies, edited by Vladislav Panchenko, Gérard Mourou, and Aleksei M. Zheltikov. SPIE, 2010. http://dx.doi.org/10.1117/12.881484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ou, Po-Chi, Ja-Hon Lin, and Wen-Feng Hsieh. "Optical nonlinear absorption of ZnO/ZnMgO multiple quantum wells at room temperature." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abiyasa, A. P., S. f. Yu, W. j. Fan, and S. p. Lau. "Free-Excitonic Gain in ZnO/MgxZn1-xO Strained Quantum Wells." In 2006 6th International Conference On Numerical Simulation of Optoelectronic Devices. IEEE, 2006. http://dx.doi.org/10.1109/nusod.2006.306738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jollivet, Arnaud, François H. Julien, Borislav Hinkov, Stefano Pirotta, Sophie Derelle, Julien Jaeck, Maria Tchernycheva, et al. "Short infrared wavelength quantum cascade detectors based on non-polar ZnO/ZnMgO quantum wells." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2507768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hierro, Adrián, Miguel Montes Bajo, Maxime Hugues, Jose María Ulloa, Nolwenn Le Biavan, François Julien, Jérôme Faist, Jean-Michel Chauveau, Julen Tamayo-Arriola, and Romain Peretti. "Intersubband transitions and many body effects in ZnMgO/ZnO quantum wells." In Oxide-based Materials and Devices IX, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2018. http://dx.doi.org/10.1117/12.2290640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Le Biavan, Nolwenn, Bo Meng, Miguel Montes Bajo, Julen Tamayo-Arriola, Almudena Torres-Pardo, Denis Lefebvre, Maxime Hugues, Adrián Hierro, Jérôme Faist, and Jean-Michel Chauveau. "Electronic coupling in ZnO asymmetric quantum wells for intersubband cascade devices." In Oxide-based Materials and Devices XI, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2020. http://dx.doi.org/10.1117/12.2547478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Quach, Patrick, Arnaud Jollivet, Nathalie Isac, Adel Bousseksou, Frédéric Ariel, Maria Tchernycheva, François H. Julien, et al. "Intersubband spectroscopy of ZnO/ZnMgO quantum wells grown on m-plane ZnO substrates for quantum cascade device applications (Conference Presentation)." In Oxide-based Materials and Devices VIII, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2017. http://dx.doi.org/10.1117/12.2253868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hierro, Adrian, Miguel Montes Bajo, Julen Tamayo-Arriola, José María Ulloa, Nolwenn Le Biavan, Denis Lefebvre, Maxime Hugues, Jean-Michel Chauveau, and Philippe Vennéguès. "Intersubband absorption at normal incidence by m-plane ZnO/MgZnO quantum wells." In Oxide-based Materials and Devices X, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2509524.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "ZnO quantum wells"

1

Li, T., H. J. Lozykowski, and J. Reno. Electronic states in Cd{sub 1{minus}x}Zn{sub x}Te/CdTe strained layer coupled double quantum wells and their photoluminescence. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/28351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography