Academic literature on the topic 'ZnGeP2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnGeP2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ZnGeP2"
Voevodin, Vladimir, Svetlana Bereznaya, Yury S. Sarkisov, Nikolay N. Yudin, and Sergey Yu Sarkisov. "Terahertz Generation by Optical Rectification of 780 nm Laser Pulses in Pure and Sc-Doped ZnGeP2 Crystals." Photonics 9, no. 11 (2022): 863. http://dx.doi.org/10.3390/photonics9110863.
Full textNing, Jing, Rong Dai, Qiao Wu, Lei Zhang, Tingting Shao, and Fuchun Zhang. "Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (2021): 1544–53. http://dx.doi.org/10.1166/jno.2021.3110.
Full textZhao, Xin, Shi Fu Zhu, and Yong Qiang Sun. "Growth of ZnGeP2 Single Crystal by Three-Temperature-Zone Furnace." Advanced Materials Research 179-180 (January 2011): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.945.
Full textPal, S., D. Sharma, M. Chandra, et al. "Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors." Chalcogenide Letters 21, no. 1 (2024): 1–9. http://dx.doi.org/10.15251/cl.2024.211.1.
Full textYudin, Nikolay N., Andrei Khudoley, Mikhail Zinovev, et al. "Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces." Crystals 14, no. 1 (2023): 32. http://dx.doi.org/10.3390/cryst14010032.
Full textYudin, Nikolai, Oleg Antipov, Ilya Eranov, et al. "Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates." Crystals 12, no. 5 (2022): 652. http://dx.doi.org/10.3390/cryst12050652.
Full textVoevodin, Vladimir I., Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su, and Sergey Yu Sarkisov. "Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy." Photonics 10, no. 7 (2023): 827. http://dx.doi.org/10.3390/photonics10070827.
Full textYudin, Nikolai, Andrei Khudoley, Mikhail Zinoviev, et al. "The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2." Crystals 12, no. 1 (2022): 83. http://dx.doi.org/10.3390/cryst12010083.
Full textYudin, Nikolay, Mikhail Zinoviev, Vladimir Kuznetsov, et al. "Effect of Dopants on Laser-Induced Damage Threshold of ZnGeP2." Crystals 13, no. 3 (2023): 440. http://dx.doi.org/10.3390/cryst13030440.
Full textSchnepf, Rekha R., Andrea Crovetto, Prashun Gorai, et al. "Reactive phosphine combinatorial co-sputtering of cation disordered ZnGeP2 films." Journal of Materials Chemistry C 10, no. 3 (2022): 870–79. http://dx.doi.org/10.1039/d1tc04695k.
Full textDissertations / Theses on the topic "ZnGeP2"
Cheng, Siqi [Verfasser]. "Multi-picosecond Ho:YLF-pumped supercontinuum generation and ZnGeP2-based optical parametric amplifiers in the fingerprint regime / Siqi Cheng." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1229625518/34.
Full textBlanton, Eric Williams. "Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448295996.
Full textBekele, Challa Megenassa. "SYNTHESIS AND CHARACTERIZATION OF GaN AND ZnGeN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1165271807.
Full textBeddelem, Nicole. "Croissance et caractérisation de nitrures ZnGeN2 pour applications optoélectroniques." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0029/document.
Full textRolles, Mélanie. "Étude théorique de la faisabilité des LED à base de ZnGeN2." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0206/document.
Full textRablău, Corneliu Ioan. "Photoluminescence and optical absorption spectroscopy of infrared materials Cr²+:ZnSe and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1124.
Full textStevens, Kevin T. "Electron-nuclear double resonance studies of point defects in AgGaSe₂ and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1130.
Full textShea, Lauren Elizabeth. "ZnGa2 O4 and ZnGa2 O4: Mn2+ for potential use in vacuum fluorescent displays." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40552.
Full textPeshek, Timothy John. "Studies in the Growth and Properties of ZnGeN2 and the Thermochemistry of GaN." online version, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=case1207231457.
Full textJayatunga, Benthara Hewage Dinushi. "Heterovalent Semiconductors: First-Principles Calculations of the Band Structure of ZnGeGa2N4, and Metalorganic Chemical Vapor Deposition of ZnGeN2 - GaN Alloys and ZnSnN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619087038602758.
Full textBooks on the topic "ZnGeP2"
N, Dietz, and United States. National Aeronautics and Space Administration., eds. Native defect related optical properties of ZnGeP₂. National Aeronautics and Space Administration, 1994.
Find full textNikolaus, Dietz, and United States. National Aeronautics and Space Administration., eds. Defect characterization in ZnGeP₂ by time-resolved photoluminescence. National Aeronautics and Space Administration, 1995.
Find full textH, Churnside James, and Wave Propagation Laboratory, eds. Frequency conversion of a COb2s laser with ZnGePb2s. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Find full textMason, Paul David. A detailed study of second harmonic generation of carbon dioxide laser radiation in AgGaSe[inferior 2] and ZnGeP[inferior 2]. University of Birmingham, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Final technical report on growth of new materials for solid state laser applications with a supplemental study on the growth of ZnGeP ́by the vertical Bridgman method, September 1, 1986 through March 31, 1991. Board of Trustees of the Leland Stanford Junior University, Center for Materials Research, 1993.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Growth of New Materials for Solid State Laser Applications. the Growth of Zngep2 by the Vertical Bridgman Method. Independently Published, 2018.
Find full textFrequency conversion of a CO ́laser with ZnGeP. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Find full textDefect characterization in ZnGeP₂ by time-resolved photoluminescence. National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "ZnGeP2"
Rössler, U. "ZnGeP2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_55.
Full textKobayashi, Takayoshi. "Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP2." In Ultrashort Pulse Lasers and Ultrafast Phenomena. CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-36.
Full textApollonov, V. V. "Subtraction of the CO2 Laser Radiation Frequencies in a ZnGeP2 Crystal." In High-Energy Molecular Lasers. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33359-5_50.
Full textChandra, Satish, Deepak Kumar, Rukmani Singh, Ritesh Kumar, and Virendra Kumar. "Physical Properties Resemblance of Optical Material ZnGeN2 with GaN Under Different Higher Pressures." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_66.
Full textRife, J. C. "Zinc Germanium Phosphide (ZnGeP2)." In Handbook of Optical Constants of Solids. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50123-0.
Full textBalčaitis, G., Z. Januškevičius, and A. Sodeika. "On the Nature of Energy Levels in ZnGeP2." In May 16. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-060.
Full textLevalois, M., and G. Allais. "Etude structurale, par diffraction de R-X, des liaisons dans les semiconducteurs ternaires ZnSiAs2, ZnGeAs2 et ZnSnAs 2." In September 16. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495643-011.
Full textLevalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In 16 January. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112472866-024.
Full textLevalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In January 16. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112495100-025.
Full textConference papers on the topic "ZnGeP2"
Юдин, Н. Н., А. Л. Худолей, М. М. Зиновьев, А. С. Ольшуков та А. Ю. Давыдова. "ВЛИЯНИЕ МАГНИТОРИОЛОГИЧЕСКОЙ ПОЛИРОВКИ ZnGeP2 НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ". У XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.24.64.002.
Full textKRIVOSHEEVA, A. V., V. L. SHAPOSHNIKOV, V. V. LYSKOUSKI, F. ARNAUD D'AVITAYA, and J. L. LAZZARI. "THE EFFECT OF IMPURITY ON MAGNETIC PROPERTIES OF ZnGeP2 AND ZnGeAs2." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0013.
Full textКнязькова, А. И. "ИССЛЕДОВАНИЕ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ КРИСТАЛЛОВ ZnGeP2". У XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.85.51.002.
Full textAndreev, Yu M., V. G. Voevodin, P. P. Geiko, A. I. Gribenyukov, V. V. Zuev, and V. E. Zuev. "Effective Source of Coherent Radiation Based on CO2 Lasers and ZnGeP2 Frequency Converters." In Laser and Optical Remote Sensing: Instrumentation and Techniques. Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.wc13.
Full textAllik, Toomas H., Suresh Chandra, Peter G. Schunemann, et al. "3.5 pm Pumped NCPM ZnGeP2 OPO." In Advanced Solid State Lasers. OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc2.
Full textSchunemann, P. G., P. A. Budni, L. Pomeranz, M. G. Knights, T. M. Pollak, and E. P. Chicklis. "Improved ZnGeP2 for High-Power OPO’s." In Advanced Solid State Lasers. OSA, 1997. http://dx.doi.org/10.1364/assl.1997.pc6.
Full textЗиновьев, М. М., Н. Н. Юдин, И. О. Дорофеев, С. Н. Подзывалов та Е. С. Слюнько. "ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ОПТИЧЕСКОЙ ПРОЧНОСТИ МОНОКРИСТАЛЛА ZnGeP2". У XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.42.91.002.
Full textLippert, E., H. Fonnum, G. Rustad, and K. Stenersen. "ZnGeP2 in High Power Optical Parametric Oscillators." In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781502.
Full textBudni, P. A., L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis. "10W Mid-IR Holmium Pumped ZnGeP2 OPO." In Advanced Solid State Lasers. OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc1.
Full textLee, Hyung R., Jirong Yu, Norman P. Barnes, and Yingxin Bai. "High pulse energy ZnGeP2 singly resonant OPO." In Advanced Solid-State Photonics. OSA, 2004. http://dx.doi.org/10.1364/assp.2004.394.
Full text