Academic literature on the topic 'ZnGeP2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnGeP2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ZnGeP2"

1

Voevodin, Vladimir, Svetlana Bereznaya, Yury S. Sarkisov, Nikolay N. Yudin, and Sergey Yu Sarkisov. "Terahertz Generation by Optical Rectification of 780 nm Laser Pulses in Pure and Sc-Doped ZnGeP2 Crystals." Photonics 9, no. 11 (November 16, 2022): 863. http://dx.doi.org/10.3390/photonics9110863.

Full text
Abstract:
Terahertz wave generation through the optical rectification of 780 nm femtosecond laser pulses in ZnGeP2 crystals has been studied. All of the possible interactions of types I and II were analyzed by modeling and experimentally. We demonstrate the possibility of broadband “low-frequency” terahertz generation by an ee–e interaction (with two pumping waves and a generated terahertz wave; all of these had extraordinary polarization in the crystal) and “high-frequency” terahertz generation by an oe–e interaction. The arising possibility of achieving the narrowing of the terahertz generation bandwidth at the oe–e interaction using thicker ZnGeP2 crystals is experimentally confirmed. It has been found that the thermal annealing of as-grown ZnGeP2 crystals and their doping with a 0.01 mass % of Sc reduces the absorption in the “anomalous absorption” region (λ = 0.62–3 μm). The terahertz generation by the oo–e interaction in (110) ZnGeP2:Sc and the as-grown ZnGeP2 crystals of equal thicknesses was compared. It has been found that ZnGeP2:Sc is more efficient for 780 nm femtosecond laser pulses optical rectification.
APA, Harvard, Vancouver, ISO, and other styles
2

Ning, Jing, Rong Dai, Qiao Wu, Lei Zhang, Tingting Shao, and Fuchun Zhang. "Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (October 1, 2021): 1544–53. http://dx.doi.org/10.1166/jno.2021.3110.

Full text
Abstract:
The electronic structure and optical properties of ZnGeP2 crystal were studied using DFT. The electronic structure results showed that ZnGeP2 is a nonlinear optical crystal with a direct wide bandgap. The bandgap was calculated to be 1.99 eV using the HSE06 method, which is exactly equal to the experimental value. The optical properties showed strong absorption and reflection in the ultraviolet region and strong transmittance in the infrared region. The average static refractive index of ZnGeP2 was 2.73, and the static birefractive index was 0.04. The above results indicate that ZnGeP2 is a potential infrared nonlinear optical crystal material.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Xin, Shi Fu Zhu, and Yong Qiang Sun. "Growth of ZnGeP2 Single Crystal by Three-Temperature-Zone Furnace." Advanced Materials Research 179-180 (January 2011): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.945.

Full text
Abstract:
In order to meet the requirements of growing high-quality ZnGeP2, a crystal growth furnace with three-temperature-zone was designed and fabricated based on a conventional vertical two-zone tubular resistance furnace. Appropriate temperature gradients of 12~15°C/cm at the growth interface and stable thermal profile were obtained. A crack-free ZnGeP2 single crystal with size of Φ15mm×30mm was grown successfully in the furnace mentioned above. The as-grown crystal was characterized by X-ray diffraction (XRD) and Infrared (IR) spectrophotometers. It is found that there is a cleavage face of (101) and X-ray multiple diffraction peaks of the {101} faces are observed, The infrared transmission of a ZnGeP2 wafer of 3 mm thickness is about 50% in the region of 3~10μm. These results show the designed crystal growth furnace is suitable for growth of ZnGeP2 crystal, and the as-grown ZnGeP2 crystal has good structural integrity and high quality.
APA, Harvard, Vancouver, ISO, and other styles
4

Pal, S., D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal, and A. S. Verma. "Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors." Chalcogenide Letters 21, no. 1 (January 1, 2024): 1–9. http://dx.doi.org/10.15251/cl.2024.211.1.

Full text
Abstract:
In this paper, we present thermodynamic properties such as heat of formation, heat of fusion and entropy of fusion for chalcopyrite structured solids with the product of ionic charges and nearest neighbour distance d (Å). The heat of formation (∆Hf) of these compounds exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on different straight lines according to the ionic charge product of the compounds. On the basis of this result two simple heat of formation (∆Hf)heat of fusion (∆HF), and heat of formation (∆Hf)entropy of fusion (∆SF), relationship are proposed and used to estimate the heat of fusion (∆HF) and entropy of fusion (∆SF) of these semiconductors. We have applied the proposed relation to AIIBIVC2 V and AI BIIIC2 VI chalcopyrite semiconductor and found a better agreement with the experimental data than the values found by earlier researchers. The results for heat of formation differ from experimental values by the following amounts: 0.3% (CuGaSe2), 6.7% (CuInSe2), 5% (AgInSe2), 5% (ZnGeP2), 6% (ZnGeP2), 0.4% (ZnSnP2), 0.7% (ZnSiAs2), 2.6% (ZnGeAs2), 1.2% (ZnSnAs2), 3.8% (CdGeP2), 6.4% (CdGeAs2), the results for heat of fusion differ from experimental values by the following amounts: 2.6% (CuGaS2), 0.6% (CuInTe2), 6% (ZnGeAs2), 8.8% (ZnSiAs2) and the results for entropy of fusion differ from experimental values by the following amounts: 6% (CuInSe2), 8% (CdSiP2).
APA, Harvard, Vancouver, ISO, and other styles
5

Yudin, Nikolay N., Andrei Khudoley, Mikhail Zinovev, Elena Slyunko, Sergey Podzyvalov, Vladimir Kuznetsov, Gennady Gorodkin, et al. "Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces." Crystals 14, no. 1 (December 27, 2023): 32. http://dx.doi.org/10.3390/cryst14010032.

Full text
Abstract:
Zinc germanium phosphide (ZGP) crystals have garnered significant attention for their nonlinear properties, making them good candidates for powerful mid-IR optical parametric oscillators and second-harmonic generators. A ZnGeP2 single crystal was treated by deep magnetorheological processing (MRP) until an Angstrom level of roughness. The studies presented in this article are devoted to the experimental evaluation of the influence of deep removal (up to 150 μm) from the surface of a ZnGeP2 single crystal by magnetorheological polishing on the parameters of optical breakdown. It was shown that the dependence of the ZnGeP2 laser-induced damage threshold on MRP depth is a smooth monotonically decreasing logarithmic function. The obtained logarithmic dependence indicates the thermal nature of optical breakdown and the dependence of the ZnGeP2 laser-induced damage threshold on the concentration of surface absorbing defects.
APA, Harvard, Vancouver, ISO, and other styles
6

Yudin, Nikolai, Oleg Antipov, Ilya Eranov, Alexander Gribenyukov, Galina Verozubova, Zuotao Lei, Mikhail Zinoviev, et al. "Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates." Crystals 12, no. 5 (May 2, 2022): 652. http://dx.doi.org/10.3390/cryst12050652.

Full text
Abstract:
The ZnGeP2 crystal is a material of choice for powerful mid-IR optical parametric oscillators and amplifiers. In this paper, we present the experimental analysis of the optical damage threshold of ZnGeP2 nonlinear crystals induced by a repetitively-pulsed Ho3+:YAG laser at 2091 nm. Two types of ZnGeP2 crystals grown under different conditions were examined using the laser and holographic techniques. The laser-induced damage threshold (LIDT) determined by the pulse fluence or peak intensity was studied as a function of the pulse repetition rate (PRR) and laser exposure duration. The main crystal structure factor for a higher LIDT was found to be a reduced dislocation density of crystal lattice. The ZnGeP2 nonlinear crystals characterized by the high structural perfection with low density of dislocations and free from twinning and stacking faults were measured to have a 3.5 J/cm2 pulse fluence damage threshold and 10.5 MW/cm2 peak intensity damage threshold at 12 kHz PRR; at 40 kHz PRR the pulse fluence damage threshold increased to over 6 J/cm2, but the peak intensity damage threshold dropped to 5.5 MW/cm2.
APA, Harvard, Vancouver, ISO, and other styles
7

Voevodin, Vladimir I., Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su, and Sergey Yu Sarkisov. "Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy." Photonics 10, no. 7 (July 16, 2023): 827. http://dx.doi.org/10.3390/photonics10070827.

Full text
Abstract:
Terahertz photoconductivity and charge carrier recombination dynamics at two-photon (ZnGeP2) and three-photon (4H-SiC) excitation were studied. Thermally annealed, high-energy electron-irradiated and Sc-doped ZnGeP2 crystals were tested. The terahertz charge carrier mobilities were extracted from both the differential terahertz transmission at a specified photoexcitation condition and the Drude–Smith fitting of the photoconductivity spectra. The determined terahertz charge carrier mobility values are ~453 cm2/V·s for 4H-SiC and ~37 cm2/V·s for ZnGeP2 crystals. The charge carrier lifetimes and the contributions from various recombination mechanisms were determined at different injection levels using the model, which takes into account the influence of bulk and surface Shockley–Read–Hall (SRH) recombination, interband radiative transitions and interband and trap-assisted Auger recombination. It was found that ZnGeP2 possesses short charge carrier lifetimes (a~0.01 ps−1, b~6 × 10−19 cm3·ps−1 and c~7 × 10−40 cm6·ps−1) compared with 4H-SiC (a~0.001 ps−1, b~3 × 10−18 cm3·ps−1 and c~2 × 10−36 cm6·ps−1), i.e., τ~100 ps and τ~1 ns at the limit of relatively low injection, when the contribution from Auger and interband radiative recombination is small. The thermal annealing of as-grown ZnGeP2 crystals and the electron irradiation reduced the charge carrier lifetime, while their doping with 0.01 mass % of Sc increased the charger carrier lifetime and reduced mobility. It was found that the dark terahertz complex conductivity of the measured crystals is not fitted by the Drude–Smith model with reasonable parameters, while their terahertz photoconductivity can be fitted with acceptable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
8

Yudin, Nikolai, Andrei Khudoley, Mikhail Zinoviev, Sergey Podzvalov, Elena Slyunko, Elena Zhuravleva, Maxim Kulesh, Gennadij Gorodkin, Pavel Kumeysha, and Oleg Antipov. "The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2." Crystals 12, no. 1 (January 8, 2022): 83. http://dx.doi.org/10.3390/cryst12010083.

Full text
Abstract:
Magnetorheological processing was applied to polish the working surfaces of single-crystal ZnGeP2, in which a non-aqueous liquid with the magnetic particles of carbonyl iron with the addition of nanodiamonds was used. Samples of a single-crystal ZnGeP2 with an Angstrom level of surface roughness were received. The use of magnetorheological polish allowed the more accurate characterization of the possible structural defects that emerged on the surface of a single crystal and had a size of ~0.5–1.5 μm. The laser-induced damage threshold (LIDT) value at the indicated orders of magnitude of the surface roughness parameters was determined not by the quality of polishing, but by the number of point depressions caused by the physical limitations of the structural configuration of the crystal volume. These results are in good agreement with the assumption made about a significant effect of the concentration of dislocations in a ZnGeP2 crystal on LIDT.
APA, Harvard, Vancouver, ISO, and other styles
9

Yudin, Nikolay, Mikhail Zinoviev, Vladimir Kuznetsov, Elena Slyunko, Sergey Podzvalov, Vladimir Voevodin, Alexey Lysenko, et al. "Effect of Dopants on Laser-Induced Damage Threshold of ZnGeP2." Crystals 13, no. 3 (March 3, 2023): 440. http://dx.doi.org/10.3390/cryst13030440.

Full text
Abstract:
The effect of doping Mg, Se, and Ca by diffusion into ZnGeP2 on the optical damage threshold at a wavelength of 2.1 μm has been studied. It has been shown that diffusion-doping with Mg and Se leads to an increase in the laser-induced damage threshold (LIDT) of a single crystal (monocrystal), ZnGeP2; upon annealing at a temperature of 750 °C, the damage threshold of samples doped with Mg and Se increases by 31% and 21% from 2.2 ± 0.1 J/cm2 to 2.9 ± 0.1 and 2.7 ± 0.1 J/cm2, respectively. When ZnGeP2 is doped with Ca, the opposite trend is observed. It has been suggested that the changes in the LIDT depending on the introduced impurity by diffusion can be explained by the creation of additional energy dissipation channels due to the processes of radiative and fast non-radiative relaxation through impurity energy levels, which further requires experimental confirmation.
APA, Harvard, Vancouver, ISO, and other styles
10

Schnepf, Rekha R., Andrea Crovetto, Prashun Gorai, Anna Park, Megan Holtz, Karen N. Heinselman, Sage R. Bauers, et al. "Reactive phosphine combinatorial co-sputtering of cation disordered ZnGeP2 films." Journal of Materials Chemistry C 10, no. 3 (2022): 870–79. http://dx.doi.org/10.1039/d1tc04695k.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "ZnGeP2"

1

Cheng, Siqi [Verfasser]. "Multi-picosecond Ho:YLF-pumped supercontinuum generation and ZnGeP2-based optical parametric amplifiers in the fingerprint regime / Siqi Cheng." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1229625518/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blanton, Eric Williams. "Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448295996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bekele, Challa Megenassa. "SYNTHESIS AND CHARACTERIZATION OF GaN AND ZnGeN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1165271807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beddelem, Nicole. "Croissance et caractérisation de nitrures ZnGeN2 pour applications optoélectroniques." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0029/document.

Full text
Abstract:
Les nitrures d'éléments II-IV ZnSiN2, ZnGeN2 et ZnSnN2 forment une famille de semi-conducteurs liés aux nitrures d'éléments III (le GaN et ses alliages contenant de l'aluminium ou de l'indium). Ils s'obtiennent par construction en remplaçant l'élément III (Ga) périodiquement par un élément II (Zn) puis par un élément IV (Si, Ge ou Sn), ses voisins de gauche et de droite dans le tableau périodique. La structure cristalline qui en résulte est très proche de celle du GaN wurtzite. Le ZnGeN2 présente un désaccord de maille avec le GaN inférieur à 1%. Sa largeur de bande interdite est de quelques pour cents identique à celle du GaN et le large décalage de bande entre le GaN et le ZnGeN2 permet la formation d'une hétérostructure de type II. Ces données ont ouvert la voie à l'étude théorique de l'intégration des matériaux II-IV-N2 dans les zones actives de LEDs GaN. Ces puits quantiques de type II pourraient contribuer à améliorer les propriétés d'émission à grandes longueurs d'onde (verte et au-delà) des émetteurs à base de GaN. L'alliage ZnSn{x}Ge{1-x}N2 (de x = 0 à x = 1) étant peu connu, l'objectif de la thèse est de réaliser une étude expérimentale du matériau sous forme de couches minces élaborées par pulvérisation cathodique magnétron réactive. Ses propriétés structurales, optiques et électriques sont étudiées au moyen de différentes méthodes d'analyse. Il paraît ainsi possible de moduler son paramètre de maille a (de 3.22 A à 3.41 A) ainsi que la largeur de la bande interdite (de 2.1 eV pour le ZnSnN2 à 3.0 eV pour le ZnGeN2) mais également ses propriétés électriques sur plusieurs ordres de grandeur. L'utilisation de substrats de GaN permet, en outre, une analyse de l'interface entre les deux matériaux et l'étude des effets de quasi-épitaxie
The II-IV-nitrides ZnSiN2, ZnGeN2 and ZnSnN2 represent a semiconductors family close to the III-nitrides (GaN and its aluminum and indium containing alloys). They are obtained by replacing periodically the group III element (Ga) by a group II element (Zn) and by a group IV element (Si, Ge or Sn), its left and right neighbors in the periodic table. The crystalline structure of ZnGeN2 is therefore really close to the one of wurtzite GaN. They show a lattice mismatch smaller than 1 %. The band gap of ZnGeN2 is almost identical to GaN and their large band offset enables the design of a type II heterostructure. These data set the stage for the theoretical study of II-IV-N2 integration into the active zones of GaN LEDs. These type II quantum wells could contribute to enhance the emission properties of GaN-based light emitters at high wavelengths (green and beyond). The ZnSn{x}Ge{1-x}N2 alloy (with x = 0 to x = 1) being rather unknown, the objective of this thesis is the experimental study of sputtered thin films of this material. Its structural, optical and electrical properties are investigated through different analysis methods. It seems possible to adjust its lattice parameter a (from 3.22 A to 3.41 A) as well as its band gap (from 2.1 eV for ZnSnN2 to 3.0 eV for ZnGeN2) but also its electrical properties on several orders of magnitude. The use of GaN substrates enables the investigation of the interface between both materials and quasi-epitaxy effects
APA, Harvard, Vancouver, ISO, and other styles
5

Rolles, Mélanie. "Étude théorique de la faisabilité des LED à base de ZnGeN2." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0206/document.

Full text
Abstract:
Le développement de LED à base de nitrures représente un enjeu important tant sur le plan scientifique qu’industriel et sociétal. De par leur large bande interdite, les matériaux semi-conducteurs à base de nitrures d’éléments III (composés III-N) tels que le GaN et ses alliages sont de très bons candidats pour la réalisation de dispositifs optoélectroniques nouveaux. Néanmoins, ces systèmes présentent bon nombre de limitations, principalement dues à l’évolution des propriétés de l’InGaN lorsque la concentration d’indium augmente. Les effets de contrainte et de polarisation affectent la qualité du matériau et donc l’émission spontanée de la LED en général. De plus, dans un contexte de raréfaction des ressources naturelles, l’utilisation de l’indium, matériau rare et cher, doit se faire de manière raisonnée. Or les systèmes actuels (micro-écran, dispositifs portatifs, ...) requièrent des LED toujours plus puissantes et riches en Indium. Le but est aujourd’hui d’obtenir des LED haute performance, avec un bon rendu de couleurs et surtout à moindre coût en utilisant des matériaux alternatifs. C’est dans ce contexte que s’inscrit ce sujet de thèse qui consiste en l’étude théorique du matériau ZnGeN2 et de son introduction au sein d’une structure LED. L’idée est ici de créer un puits quantique de type II InGaN-ZnGeN2 afin d’augmenter l’efficacité des zones d’actives et ainsi de réaliser des LED pouvant opérer sur une large gamme de longueurs d’ondes allant de l’IR à l’UV. Cette approche permet de diminuer la quantité d’indium dans les LED et ainsi de créer des structures moins onéreuses avec un matériau de meilleure qualité. Le ZnGeN2 dérive des nitrures d’éléments III en remplaçant le groupe III alternativement par un élément du groupe II (Zn) et du groupe IV (Ge). Les énergies de gap et le paramètre de maille de ZnGeN2 sont très proches de ceux du GaN. De plus, les organisations cristallographiques sont similaires et le large décalage de bande entre InGaN et ZnGeN2 autorise la formation d’une hétérostructure du type II InGaN/ZnGeN2. L’insertion d’une couche de ZnGeN2 dans une structure classique de puits quantique GaN/InGaN aboutit à des modifications significatives : le fort confinement des trous dans la couche de ZnGeN2 autorise l’utilisation d’une quantité moindre d’indium dans le puits. Dans le puits quantique de type II InGaN/ZnGeN2 une fine couche d’AlGaN est utilisée comme barrière pour un meilleur confinement. L’ensemble permet d’obtenir un meilleur recouvrement des fonctions d’ondes électron-trou comparé à celui obtenu dans le cas d’une LED classique. Au cours de la thèse nous présenterons les résultats des simulations des différentes structures LED avec puits quantique de type-II. Nous étudierons des structures LED pour des émissions dans le vert et le rouge. Différentes géométries de LED seront développées en faisant varier la position et l’épaisseur de la couche de ZnGeN2. Nous utiliserons ici le logiciel de simulation SILVACO/ATLAS avec le modèle k.p à six bandes pour le calcul de la structure de bandes, qui prend en compte les effets de tension, l’enchevêtrement des bandes de valence ainsi que les polarisations spontanées et piézoélectriques
Nitride LEDs development presents significant scientific and societal issues. The aim is to get low-cost, high efficiency LEDs with accurate color-rending (typically the Color Rending Index has to be higher than 90). Due to their large band gap (from 0.8 to 6.2 eV), III-N materials, as GaN and alloys, are still used for LEDs development. Nevertheless, they present several huge limitations mainly due to the evolution of InGaN properties for higher Indium concentrations. Strain and polarization effects affect then the LED quality through the reduction of the spontaneous emission. New high-performance devices require the development of new materials and the introduction of ZnGeN2 layers could be an alternative solution. We report here on a new green and red-emitting light emitting device (LED) architecture containing only 16% of indium. The structure is based on the use of a new type-II ZnGeN2/In0.16Ga0.84N quantum well. Type II InGaN-ZnGeN2 quantum wells (QWs) were proposed for the improvement of efficiency in active regions and realizing then devices operating in a large wavelength range from UV to IR. The zinc germanium nitride (ZnGeN2) is a new promising semiconductor for optoelectronic devices such as LED or photovoltaic cells due to its large, direct, and adjustable band gap, most particularly considered to overcome the green-gap issue in LED technology. ZnGeN2 derives from the III-nitride elements by replacing the III-group alternatively by a group II (Zn) and a group IV (Ge). Both the energy band gap and the lattice parameters of ZnGeN2 are very close to those of GaN. The crystallographic organizations are similar and the recently predicted large band offset between GaN and ZnGeN2 allows the formation of a type-II InGaN-ZnGeN2 heterostructure. Studies of ZnGeN2 based quantum well behaviors are scarce and no information on the overall electro-optical operation of such LED is available. We simulate here with SILVACO/ATLAS the complete behavior of a green and red LED structures in which the active region is a type-II ZnGeN2/In0.16Ga0.84N quantum well. A thin AlGaN layer is used as a barrier for a better carrier confinement. The position and the thickness of the ZnGeN2 layer are parameters used to examine the luminous and electrical behavior as well as the external quantum efficiency of this LED compared to a standard InGaN-based LED emitting at the same wavelength. Inserting a ZnGeN2 layer in a conventional type-I InGaN QW structure yields significant modifications. The strong confinement of holes in the ZnGeN2 layer allows the use of a lower In-content InGaN QW with uniform In content. We demonstrate a significant enhancement of the spontaneous emission and the possibility to reach both a better quantum efficiency and light output when using the type-II structure. The self-consistent 6-band k.p method is used to perform the band structure calculations, which consider the effect of strain, the valence band mixing, and the spontaneous and piezoelectric polarizations
APA, Harvard, Vancouver, ISO, and other styles
6

Rablău, Corneliu Ioan. "Photoluminescence and optical absorption spectroscopy of infrared materials Cr²+:ZnSe and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1124.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains xv, 200 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 194-200).
APA, Harvard, Vancouver, ISO, and other styles
7

Stevens, Kevin T. "Electron-nuclear double resonance studies of point defects in AgGaSe₂ and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1130.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains ix, 165 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 118-122).
APA, Harvard, Vancouver, ISO, and other styles
8

Shea, Lauren Elizabeth. "ZnGa2 O4 and ZnGa2 O4: Mn2+ for potential use in vacuum fluorescent displays." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40552.

Full text
Abstract:
Zinc gallate and Mn2+ -activated zinc gallate were identified as potential low-voltage cathodoluminescent phosphors for use in vacuum fluorescent displays. The stability of these oxide phosphors in high-vacuum and absence of corrosive gas emission under electron bombardment, offer advantages over commonly used sulfide phosphors. A low-voltage cathodoluminescence spectrophotometer was _ developed for phosphor characterization. Sample brightness was measured as a function of anode voltage (10-300 VDC). The effects of activator concentration, phosphor layer thickness, deposition process, and internal pressure were examined. From photoluminescence measurements, absorption and emission centers were identified, the role of composition in the luminescence process explained, and host-to-activator, non-radiative energy transfer identified for ZnGa204:Mn2+. Samples of the general composition Znl_xMnxGa204, with x ranging from 0 to 0.03, were synthesized by solid-state reaction techniques using oxide precursors fired in air, followed by reduction firing in 98%N2, 2%H2. The phase-pure ZnGa204 spinel structure of all the compositions was characterized by X-ray diffraction.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Peshek, Timothy John. "Studies in the Growth and Properties of ZnGeN2 and the Thermochemistry of GaN." online version, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=case1207231457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jayatunga, Benthara Hewage Dinushi. "Heterovalent Semiconductors: First-Principles Calculations of the Band Structure of ZnGeGa2N4, and Metalorganic Chemical Vapor Deposition of ZnGeN2 - GaN Alloys and ZnSnN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619087038602758.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "ZnGeP2"

1

N, Dietz, and United States. National Aeronautics and Space Administration., eds. Native defect related optical properties of ZnGeP₂. [Washington, DC: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikolaus, Dietz, and United States. National Aeronautics and Space Administration., eds. Defect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

H, Churnside James, and Wave Propagation Laboratory, eds. Frequency conversion of a COb2s laser with ZnGePb2s. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mason, Paul David. A detailed study of second harmonic generation of carbon dioxide laser radiation in AgGaSe[inferior 2] and ZnGeP[inferior 2]. Birmingham: University of Birmingham, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Final technical report on growth of new materials for solid state laser applications with a supplemental study on the growth of ZnGeP ́by the vertical Bridgman method, September 1, 1986 through March 31, 1991. Stanford, Calif: Board of Trustees of the Leland Stanford Junior University, Center for Materials Research, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

National Aeronautics and Space Administration (NASA) Staff. Growth of New Materials for Solid State Laser Applications. the Growth of Zngep2 by the Vertical Bridgman Method. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frequency conversion of a CO ́laser with ZnGeP. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Defect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "ZnGeP2"

1

Rössler, U. "ZnGeP2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Takayoshi. "Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP2." In Ultrashort Pulse Lasers and Ultrafast Phenomena, 235–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Apollonov, V. V. "Subtraction of the CO2 Laser Radiation Frequencies in a ZnGeP2 Crystal." In High-Energy Molecular Lasers, 421–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33359-5_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chandra, Satish, Deepak Kumar, Rukmani Singh, Ritesh Kumar, and Virendra Kumar. "Physical Properties Resemblance of Optical Material ZnGeN2 with GaN Under Different Higher Pressures." In Lecture Notes in Electrical Engineering, 665–74. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rife, J. C. "Zinc Germanium Phosphide (ZnGeP2)." In Handbook of Optical Constants of Solids, 637–50. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50123-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balčaitis, G., Z. Januškevičius, and A. Sodeika. "On the Nature of Energy Levels in ZnGeP2." In May 16, 491–94. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Levalois, M., and G. Allais. "Etude structurale, par diffraction de R-X, des liaisons dans les semiconducteurs ternaires ZnSiAs2, ZnGeAs2 et ZnSnAs 2." In September 16, 111–18. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495643-011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Levalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In 16 January, 211–22. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112472866-024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In January 16, 211. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112495100-025.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "ZnGeP2"

1

Юдин, Н. Н., А. Л. Худолей, М. М. Зиновьев, А. С. Ольшуков, and А. Ю. Давыдова. "ВЛИЯНИЕ МАГНИТОРИОЛОГИЧЕСКОЙ ПОЛИРОВКИ ZnGeP2 НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.24.64.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KRIVOSHEEVA, A. V., V. L. SHAPOSHNIKOV, V. V. LYSKOUSKI, F. ARNAUD D'AVITAYA, and J. L. LAZZARI. "THE EFFECT OF IMPURITY ON MAGNETIC PROPERTIES OF ZnGeP2 AND ZnGeAs2." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Князькова, А. И. "ИССЛЕДОВАНИЕ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ КРИСТАЛЛОВ ZnGeP2." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.85.51.002.

Full text
Abstract:
В работе исследовались кристаллы ZnGeP2 с разным порогом оптического пробоя. Спектры комбинационного рассеяния кристаллов получены с помощью системы inVia Reflex с длиной волны возбуждения 785 нм. полученные спектры комбинационного рассеяния кристаллов с разным порогом оптического пробоя имеют одинаковые пики на частотах 119.9, 245.5, 326.8 и 387.7 см-1 характерные ZnGeP2 соединению. Отличающиеся пики свидетельствуют о различной лучевой стойкости исследуемых кристаллов.
APA, Harvard, Vancouver, ISO, and other styles
4

Andreev, Yu M., V. G. Voevodin, P. P. Geiko, A. I. Gribenyukov, V. V. Zuev, and V. E. Zuev. "Effective Source of Coherent Radiation Based on CO2 Lasers and ZnGeP2 Frequency Converters." In Laser and Optical Remote Sensing: Instrumentation and Techniques. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.wc13.

Full text
Abstract:
The ZnGeP2 monocrystals have high nonlinear figure of merit, third after Te and CdGeAs2. ZnGeP2 is sufficiently birefringent (B = + 0.04) for three-frequency matching mixing practically all over the transmission range. However, mainly due to low optical transmission of the monocrystals available, the experimental studies of frequency converters (FC) have been limited until recently to approbation of the CO2 laser radiation up-[1] and downconverters [2].
APA, Harvard, Vancouver, ISO, and other styles
5

Allik, Toomas H., Suresh Chandra, Peter G. Schunemann, Peter A. Ketteridge, Ian Lee, Thomas M. Pollak, Evan P. Chicklis Sanders, and J. Andrew Hutchinson. "3.5 pm Pumped NCPM ZnGeP2 OPO." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schunemann, P. G., P. A. Budni, L. Pomeranz, M. G. Knights, T. M. Pollak, and E. P. Chicklis. "Improved ZnGeP2 for High-Power OPO’s." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/assl.1997.pc6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Зиновьев, М. М., Н. Н. Юдин, И. О. Дорофеев, С. Н. Подзывалов, and Е. С. Слюнько. "ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ОПТИЧЕСКОЙ ПРОЧНОСТИ МОНОКРИСТАЛЛА ZnGeP2." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.42.91.002.

Full text
Abstract:
В работе показано увеличение пороговой плотности энергии лазерного излучения на длине волны 2091 нм при уменьшении температуры от 0ºС до -60ºС до достижения оптического пробоя образца монокристалла ZnGeP2 (ZGP). При снижении температуры от 0º до -60º С наблюдается резкое увеличение пороговой плотности энергии с 1,6 до 2,6 Дж/см2, при диаметре лазерного пучка 270 мкм, и с 3,2 до 10,2 Дж/см2 при диаметре 100 мкм (в 1,5 и 3 раза, соответственно).
APA, Harvard, Vancouver, ISO, and other styles
8

Lippert, E., H. Fonnum, G. Rustad, and K. Stenersen. "ZnGeP2 in High Power Optical Parametric Oscillators." In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Budni, P. A., L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis. "10W Mid-IR Holmium Pumped ZnGeP2 OPO." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Hyung R., Jirong Yu, Norman P. Barnes, and Yingxin Bai. "High pulse energy ZnGeP2 singly resonant OPO." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/assp.2004.394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography