Academic literature on the topic 'ZnGeP2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZnGeP2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ZnGeP2"
Voevodin, Vladimir, Svetlana Bereznaya, Yury S. Sarkisov, Nikolay N. Yudin, and Sergey Yu Sarkisov. "Terahertz Generation by Optical Rectification of 780 nm Laser Pulses in Pure and Sc-Doped ZnGeP2 Crystals." Photonics 9, no. 11 (November 16, 2022): 863. http://dx.doi.org/10.3390/photonics9110863.
Full textNing, Jing, Rong Dai, Qiao Wu, Lei Zhang, Tingting Shao, and Fuchun Zhang. "Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (October 1, 2021): 1544–53. http://dx.doi.org/10.1166/jno.2021.3110.
Full textZhao, Xin, Shi Fu Zhu, and Yong Qiang Sun. "Growth of ZnGeP2 Single Crystal by Three-Temperature-Zone Furnace." Advanced Materials Research 179-180 (January 2011): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.945.
Full textPal, S., D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal, and A. S. Verma. "Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors." Chalcogenide Letters 21, no. 1 (January 1, 2024): 1–9. http://dx.doi.org/10.15251/cl.2024.211.1.
Full textYudin, Nikolay N., Andrei Khudoley, Mikhail Zinovev, Elena Slyunko, Sergey Podzyvalov, Vladimir Kuznetsov, Gennady Gorodkin, et al. "Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces." Crystals 14, no. 1 (December 27, 2023): 32. http://dx.doi.org/10.3390/cryst14010032.
Full textYudin, Nikolai, Oleg Antipov, Ilya Eranov, Alexander Gribenyukov, Galina Verozubova, Zuotao Lei, Mikhail Zinoviev, et al. "Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates." Crystals 12, no. 5 (May 2, 2022): 652. http://dx.doi.org/10.3390/cryst12050652.
Full textVoevodin, Vladimir I., Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su, and Sergey Yu Sarkisov. "Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy." Photonics 10, no. 7 (July 16, 2023): 827. http://dx.doi.org/10.3390/photonics10070827.
Full textYudin, Nikolai, Andrei Khudoley, Mikhail Zinoviev, Sergey Podzvalov, Elena Slyunko, Elena Zhuravleva, Maxim Kulesh, Gennadij Gorodkin, Pavel Kumeysha, and Oleg Antipov. "The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2." Crystals 12, no. 1 (January 8, 2022): 83. http://dx.doi.org/10.3390/cryst12010083.
Full textYudin, Nikolay, Mikhail Zinoviev, Vladimir Kuznetsov, Elena Slyunko, Sergey Podzvalov, Vladimir Voevodin, Alexey Lysenko, et al. "Effect of Dopants on Laser-Induced Damage Threshold of ZnGeP2." Crystals 13, no. 3 (March 3, 2023): 440. http://dx.doi.org/10.3390/cryst13030440.
Full textSchnepf, Rekha R., Andrea Crovetto, Prashun Gorai, Anna Park, Megan Holtz, Karen N. Heinselman, Sage R. Bauers, et al. "Reactive phosphine combinatorial co-sputtering of cation disordered ZnGeP2 films." Journal of Materials Chemistry C 10, no. 3 (2022): 870–79. http://dx.doi.org/10.1039/d1tc04695k.
Full textDissertations / Theses on the topic "ZnGeP2"
Cheng, Siqi [Verfasser]. "Multi-picosecond Ho:YLF-pumped supercontinuum generation and ZnGeP2-based optical parametric amplifiers in the fingerprint regime / Siqi Cheng." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1229625518/34.
Full textBlanton, Eric Williams. "Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448295996.
Full textBekele, Challa Megenassa. "SYNTHESIS AND CHARACTERIZATION OF GaN AND ZnGeN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1165271807.
Full textBeddelem, Nicole. "Croissance et caractérisation de nitrures ZnGeN2 pour applications optoélectroniques." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0029/document.
Full textThe II-IV-nitrides ZnSiN2, ZnGeN2 and ZnSnN2 represent a semiconductors family close to the III-nitrides (GaN and its aluminum and indium containing alloys). They are obtained by replacing periodically the group III element (Ga) by a group II element (Zn) and by a group IV element (Si, Ge or Sn), its left and right neighbors in the periodic table. The crystalline structure of ZnGeN2 is therefore really close to the one of wurtzite GaN. They show a lattice mismatch smaller than 1 %. The band gap of ZnGeN2 is almost identical to GaN and their large band offset enables the design of a type II heterostructure. These data set the stage for the theoretical study of II-IV-N2 integration into the active zones of GaN LEDs. These type II quantum wells could contribute to enhance the emission properties of GaN-based light emitters at high wavelengths (green and beyond). The ZnSn{x}Ge{1-x}N2 alloy (with x = 0 to x = 1) being rather unknown, the objective of this thesis is the experimental study of sputtered thin films of this material. Its structural, optical and electrical properties are investigated through different analysis methods. It seems possible to adjust its lattice parameter a (from 3.22 A to 3.41 A) as well as its band gap (from 2.1 eV for ZnSnN2 to 3.0 eV for ZnGeN2) but also its electrical properties on several orders of magnitude. The use of GaN substrates enables the investigation of the interface between both materials and quasi-epitaxy effects
Rolles, Mélanie. "Étude théorique de la faisabilité des LED à base de ZnGeN2." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0206/document.
Full textNitride LEDs development presents significant scientific and societal issues. The aim is to get low-cost, high efficiency LEDs with accurate color-rending (typically the Color Rending Index has to be higher than 90). Due to their large band gap (from 0.8 to 6.2 eV), III-N materials, as GaN and alloys, are still used for LEDs development. Nevertheless, they present several huge limitations mainly due to the evolution of InGaN properties for higher Indium concentrations. Strain and polarization effects affect then the LED quality through the reduction of the spontaneous emission. New high-performance devices require the development of new materials and the introduction of ZnGeN2 layers could be an alternative solution. We report here on a new green and red-emitting light emitting device (LED) architecture containing only 16% of indium. The structure is based on the use of a new type-II ZnGeN2/In0.16Ga0.84N quantum well. Type II InGaN-ZnGeN2 quantum wells (QWs) were proposed for the improvement of efficiency in active regions and realizing then devices operating in a large wavelength range from UV to IR. The zinc germanium nitride (ZnGeN2) is a new promising semiconductor for optoelectronic devices such as LED or photovoltaic cells due to its large, direct, and adjustable band gap, most particularly considered to overcome the green-gap issue in LED technology. ZnGeN2 derives from the III-nitride elements by replacing the III-group alternatively by a group II (Zn) and a group IV (Ge). Both the energy band gap and the lattice parameters of ZnGeN2 are very close to those of GaN. The crystallographic organizations are similar and the recently predicted large band offset between GaN and ZnGeN2 allows the formation of a type-II InGaN-ZnGeN2 heterostructure. Studies of ZnGeN2 based quantum well behaviors are scarce and no information on the overall electro-optical operation of such LED is available. We simulate here with SILVACO/ATLAS the complete behavior of a green and red LED structures in which the active region is a type-II ZnGeN2/In0.16Ga0.84N quantum well. A thin AlGaN layer is used as a barrier for a better carrier confinement. The position and the thickness of the ZnGeN2 layer are parameters used to examine the luminous and electrical behavior as well as the external quantum efficiency of this LED compared to a standard InGaN-based LED emitting at the same wavelength. Inserting a ZnGeN2 layer in a conventional type-I InGaN QW structure yields significant modifications. The strong confinement of holes in the ZnGeN2 layer allows the use of a lower In-content InGaN QW with uniform In content. We demonstrate a significant enhancement of the spontaneous emission and the possibility to reach both a better quantum efficiency and light output when using the type-II structure. The self-consistent 6-band k.p method is used to perform the band structure calculations, which consider the effect of strain, the valence band mixing, and the spontaneous and piezoelectric polarizations
Rablău, Corneliu Ioan. "Photoluminescence and optical absorption spectroscopy of infrared materials Cr²+:ZnSe and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1124.
Full textTitle from document title page. Document formatted into pages; contains xv, 200 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 194-200).
Stevens, Kevin T. "Electron-nuclear double resonance studies of point defects in AgGaSe₂ and ZnGeP₂." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1130.
Full textTitle from document title page. Document formatted into pages; contains ix, 165 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 118-122).
Shea, Lauren Elizabeth. "ZnGa2 O4 and ZnGa2 O4: Mn2+ for potential use in vacuum fluorescent displays." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40552.
Full textMaster of Science
Peshek, Timothy John. "Studies in the Growth and Properties of ZnGeN2 and the Thermochemistry of GaN." online version, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=case1207231457.
Full textJayatunga, Benthara Hewage Dinushi. "Heterovalent Semiconductors: First-Principles Calculations of the Band Structure of ZnGeGa2N4, and Metalorganic Chemical Vapor Deposition of ZnGeN2 - GaN Alloys and ZnSnN2." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619087038602758.
Full textBooks on the topic "ZnGeP2"
N, Dietz, and United States. National Aeronautics and Space Administration., eds. Native defect related optical properties of ZnGeP₂. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textNikolaus, Dietz, and United States. National Aeronautics and Space Administration., eds. Defect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textH, Churnside James, and Wave Propagation Laboratory, eds. Frequency conversion of a COb2s laser with ZnGePb2s. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Find full textMason, Paul David. A detailed study of second harmonic generation of carbon dioxide laser radiation in AgGaSe[inferior 2] and ZnGeP[inferior 2]. Birmingham: University of Birmingham, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Final technical report on growth of new materials for solid state laser applications with a supplemental study on the growth of ZnGeP ́by the vertical Bridgman method, September 1, 1986 through March 31, 1991. Stanford, Calif: Board of Trustees of the Leland Stanford Junior University, Center for Materials Research, 1993.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Growth of New Materials for Solid State Laser Applications. the Growth of Zngep2 by the Vertical Bridgman Method. Independently Published, 2018.
Find full textFrequency conversion of a CO ́laser with ZnGeP. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Find full textDefect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "ZnGeP2"
Rössler, U. "ZnGeP2: force constants." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_55.
Full textKobayashi, Takayoshi. "Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP2." In Ultrashort Pulse Lasers and Ultrafast Phenomena, 235–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-36.
Full textApollonov, V. V. "Subtraction of the CO2 Laser Radiation Frequencies in a ZnGeP2 Crystal." In High-Energy Molecular Lasers, 421–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33359-5_50.
Full textChandra, Satish, Deepak Kumar, Rukmani Singh, Ritesh Kumar, and Virendra Kumar. "Physical Properties Resemblance of Optical Material ZnGeN2 with GaN Under Different Higher Pressures." In Lecture Notes in Electrical Engineering, 665–74. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_66.
Full textRife, J. C. "Zinc Germanium Phosphide (ZnGeP2)." In Handbook of Optical Constants of Solids, 637–50. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50123-0.
Full textBalčaitis, G., Z. Januškevičius, and A. Sodeika. "On the Nature of Energy Levels in ZnGeP2." In May 16, 491–94. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-060.
Full textLevalois, M., and G. Allais. "Etude structurale, par diffraction de R-X, des liaisons dans les semiconducteurs ternaires ZnSiAs2, ZnGeAs2 et ZnSnAs 2." In September 16, 111–18. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495643-011.
Full textLevalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In 16 January, 211–22. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112472866-024.
Full textLevalois, M., and G. Allais. "Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2." In January 16, 211. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112495100-025.
Full textConference papers on the topic "ZnGeP2"
Юдин, Н. Н., А. Л. Худолей, М. М. Зиновьев, А. С. Ольшуков, and А. Ю. Давыдова. "ВЛИЯНИЕ МАГНИТОРИОЛОГИЧЕСКОЙ ПОЛИРОВКИ ZnGeP2 НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.24.64.002.
Full textKRIVOSHEEVA, A. V., V. L. SHAPOSHNIKOV, V. V. LYSKOUSKI, F. ARNAUD D'AVITAYA, and J. L. LAZZARI. "THE EFFECT OF IMPURITY ON MAGNETIC PROPERTIES OF ZnGeP2 AND ZnGeAs2." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0013.
Full textКнязькова, А. И. "ИССЛЕДОВАНИЕ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ КРИСТАЛЛОВ ZnGeP2." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.85.51.002.
Full textAndreev, Yu M., V. G. Voevodin, P. P. Geiko, A. I. Gribenyukov, V. V. Zuev, and V. E. Zuev. "Effective Source of Coherent Radiation Based on CO2 Lasers and ZnGeP2 Frequency Converters." In Laser and Optical Remote Sensing: Instrumentation and Techniques. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.wc13.
Full textAllik, Toomas H., Suresh Chandra, Peter G. Schunemann, Peter A. Ketteridge, Ian Lee, Thomas M. Pollak, Evan P. Chicklis Sanders, and J. Andrew Hutchinson. "3.5 pm Pumped NCPM ZnGeP2 OPO." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc2.
Full textSchunemann, P. G., P. A. Budni, L. Pomeranz, M. G. Knights, T. M. Pollak, and E. P. Chicklis. "Improved ZnGeP2 for High-Power OPO’s." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/assl.1997.pc6.
Full textЗиновьев, М. М., Н. Н. Юдин, И. О. Дорофеев, С. Н. Подзывалов, and Е. С. Слюнько. "ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ОПТИЧЕСКОЙ ПРОЧНОСТИ МОНОКРИСТАЛЛА ZnGeP2." In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.42.91.002.
Full textLippert, E., H. Fonnum, G. Rustad, and K. Stenersen. "ZnGeP2 in High Power Optical Parametric Oscillators." In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781502.
Full textBudni, P. A., L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis. "10W Mid-IR Holmium Pumped ZnGeP2 OPO." In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc1.
Full textLee, Hyung R., Jirong Yu, Norman P. Barnes, and Yingxin Bai. "High pulse energy ZnGeP2 singly resonant OPO." In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/assp.2004.394.
Full text