To see the other types of publications on this topic, follow the link: Zn.

Journal articles on the topic 'Zn'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zn.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhu, Zhijun, and Arthur D. Pelton. "Critical assessment and optimization of phase diagrams and thermodynamic properties of RE–Zn systems – Part II – Y–Zn, Eu–Zn, Gd–Zn, Tb–Zn, Dy–Zn, Ho–Zn, Er–Zn, Tm–Zn, Yb–Zn and Lu–Zn." Journal of Alloys and Compounds 641 (August 2015): 261–71. http://dx.doi.org/10.1016/j.jallcom.2015.02.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Zhijun, and Arthur D. Pelton. "Thermodynamic modeling of the Y–Mg–Zn, Gd–Mg–Zn, Tb–Mg–Zn, Dy–Mg–Zn, Ho–Mg–Zn, Er–Mg–Zn, Tm–Mg–Zn and Lu–Mg-Zn systems." Journal of Alloys and Compounds 652 (December 2015): 426–43. http://dx.doi.org/10.1016/j.jallcom.2015.08.214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Zhijun, and Arthur D. Pelton. "Critical assessment and optimization of phase diagrams and thermodynamic properties of RE–Zn systems-part I: Sc–Zn, La–Zn, Ce–Zn, Pr–Zn, Nd–Zn, Pm–Zn and Sm–Zn." Journal of Alloys and Compounds 641 (August 2015): 249–60. http://dx.doi.org/10.1016/j.jallcom.2015.03.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jaenicke, Lothar. "?Homonukleare? Zn-Zn-Bindung: Zn22+." Chemie in unserer Zeit 39, no. 2 (April 2005): 86. http://dx.doi.org/10.1002/ciuz.200590024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spencer, Philip J., Arthur D. Pelton, Youn-Bae Kang, Patrice Chartrand, and Carlton D. Fuerst. "Thermodynamic assessment of the Ca–Zn, Sr–Zn, Y–Zn and Ce–Zn systems." Calphad 32, no. 2 (June 2008): 423–31. http://dx.doi.org/10.1016/j.calphad.2008.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jäger, Gerold, and Frank Drewes. "The metric dimension of Zn×Zn×Zn is ⌊3n/2⌋." Theoretical Computer Science 806 (February 2020): 344–62. http://dx.doi.org/10.1016/j.tcs.2019.05.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HAGI, Hideki, Kohsuke INOKUCHI, Yasunori HAYASHI, and Kei HIGASHI. "Corrosion Process of Zn-Co, Zn-Fe and Zn-Ni Alloy Electroplatings." Tetsu-to-Hagane 73, no. 14 (1987): 1730–37. http://dx.doi.org/10.2355/tetsutohagane1955.73.14_1730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leung, Ka Hin, Siu Lun Ma, and Victor Tan. "Planar Functions from Zn to Zn." Journal of Algebra 224, no. 2 (February 2000): 427–36. http://dx.doi.org/10.1006/jabr.1999.8071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hegde, A. Chitharanjan, K. Venkatakrishna, and N. Eliaz. "Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys." Surface and Coatings Technology 205, no. 7 (December 2010): 2031–41. http://dx.doi.org/10.1016/j.surfcoat.2010.08.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lozenko, V. V., and V. G. Shepelevich. "Grain and subgrain structure of rapidly solidified Zn, Zn-Cd, Zn-Sn, and Zn-Sb foils." Inorganic Materials 43, no. 1 (January 2007): 20–24. http://dx.doi.org/10.1134/s0020168507010062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rahsepar, M., and M. E. Bahrololoom. "Corrosion resistance of Ni/Zn–Fe/Zn and Ni/Zn/Zn–Fe compositionally modulated multilayer coatings." Corrosion Engineering, Science and Technology 46, no. 1 (February 2011): 70–75. http://dx.doi.org/10.1179/147842208x388771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Resa, I. "Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond." Science 305, no. 5687 (August 20, 2004): 1136–38. http://dx.doi.org/10.1126/science.1101356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Singh, Bachcha, and Ashutosh K. Srivastav. "A new route to bimetallic azine-bridged complexes: synthesis and characterization of mononuclear (Mn, Co, Ni, Cu, Zn), homobinuclear (Zn-Zn) and heterobinuclear (Mn-Zn, Co-Zn, Ni-Zn, Cu-Zn) azine-bridged complexes." Transition Metal Chemistry 21, no. 5 (October 1996): 413–17. http://dx.doi.org/10.1007/bf00140782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Choi, J. S., H. J. Lim, J. I. Lee, S. K. Chang, and H. L. Park. "Interstitial Zn Signature in Zn—Diffused InP." physica status solidi (b) 164, no. 2 (April 1, 1991): K69—K72. http://dx.doi.org/10.1002/pssb.2221640231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, X., X. Tian, A. Zhao, J. Cui, and X. Yang. "Effect of Zn supplementation on Zn concentration of wheat grain and Zn fractions in potentially Zn-deficient soil." Cereal Research Communications 40, no. 3 (September 2012): 385–95. http://dx.doi.org/10.1556/crc.40.2012.3.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Volkovich, V. A., D. S. Mal’tsev, E. V. Raguzina, A. S. Dedyukhin, A. V. Shchetinskii, and L. F. Yamshchikov. "Activity of Lanthanum in Zn-Containing Alloys: La–Zn, La–U–Zn, and La–U–Ga–Zn Systems." Russian Metallurgy (Metally) 2019, no. 2 (February 2019): 146–48. http://dx.doi.org/10.1134/s0036029519020290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bhat, Ramesh S., and Vinayak B. Shet. "Development and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co coatings." Surface Engineering 36, no. 4 (October 28, 2019): 429–37. http://dx.doi.org/10.1080/02670844.2019.1680037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vilche, J. R., K. Jüttner, W. J. Lorenz, W. Kautek, W. Paatsch, M. H. Dean, and U. Stimming. "Semiconductor Properties of Passive Films on Zn, Zn‐Co, and Zn‐Ni Substrates." Journal of The Electrochemical Society 136, no. 12 (December 1, 1989): 3773–79. http://dx.doi.org/10.1149/1.2096546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Eliaz, N., K. Venkatakrishna, and A. Chitharanjan Hegde. "Electroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloys." Surface and Coatings Technology 205, no. 7 (December 2010): 1969–78. http://dx.doi.org/10.1016/j.surfcoat.2010.08.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bazhenov, V. E., I. N. Pashkov, M. V. Pikunov, V. V. Cheverikin, and A. A. Anohin. "Interaction of Zn and Zn–4Al, Zn–15Al (wt-%) solder alloys with aluminium." Materials Science and Technology 32, no. 8 (February 16, 2016): 752–59. http://dx.doi.org/10.1179/1743284715y.0000000135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kania, Henryk. "Corrosion Rate of Steel in Liquid Zn, Zn-Bi and Zn-Sn Baths." Coatings 13, no. 6 (May 26, 2023): 993. http://dx.doi.org/10.3390/coatings13060993.

Full text
Abstract:
In the hot dip galvanizing process, steel products are immersed in a liquid zinc bath. The contact of steel with liquid zinc causes the corrosion of the steel as a result of Fe dissolution processes in the liquid. If the dissolution process is carried out in a controlled manner, it results in the formation of a coating. Uncontrolled dissolution leads to the degradation of the steel surface. This article presents the results of research into the influence of Bi and Sn additions to zinc baths on the corrosion of steel in liquid zinc. Corrosion tests were carried out under conditions of kinetic dissolution using the rotating disc method. The kinetic dissolution constants of steel with different Si contents in Zn, Zn-0.5Bi and Zn-2Sn baths were determined. It was found that the addition of Bi and Sn lowers the value of the dissolution constant and may act as an inhibitor of Fe dissolution in liquid zinc. Based on the measurements and the determined value of the dissolution constant, the activation energy of kinetic dissolution was determined. It was found that in the temperature range of 440–480 °C, the addition of Bi and Sn increases the value of dissolution activation energy, which reduces the intensity of Fe transfer to the zinc bath.
APA, Harvard, Vancouver, ISO, and other styles
22

Karahan, I. H., and H. S. Güder. "Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes." Transactions of the IMF 87, no. 3 (May 2009): 155–58. http://dx.doi.org/10.1179/174591909x438875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Behjatian Esfahani, Mohammad, Hossein Moravej, Mohammad Ghaffarzadeh, and Gholam Ali Nehzati Paghaleh. "Comparison the Zn-Threonine, Zn-Methionine, and Zn Oxide on Performance, Egg Quality, Zn Bioavailability, and Zn Content in Egg and Excreta of Laying Hens." Biological Trace Element Research 199, no. 1 (May 4, 2020): 292–304. http://dx.doi.org/10.1007/s12011-020-02141-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ильиных, Н. И., and Л. Е. Ковалев. "Термодинамическое моделирование систем Zn–S и Zn–Se." Расплавы, no. 6 (2020): 636–47. http://dx.doi.org/10.31857/s0235010620060067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Le Ho, Khanh Hy, Lucie Rivier, Bruno Jousselme, Pascale Jégou, Arianna Filoramo, and Stéphane Campidelli. "Zn-porphyrin/Zn-phthalocyanine dendron for SWNT functionalisation." Chemical Communications 46, no. 46 (2010): 8731. http://dx.doi.org/10.1039/c0cc02704a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Freitag, Kerstin, Mariusz Molon, Paul Jerabek, Katharina Dilchert, Christoph Rösler, Rüdiger W. Seidel, Christian Gemel, Gernot Frenking, and Roland A. Fischer. "Zn⋯Zn interactions at nickel and palladium centers." Chemical Science 7, no. 10 (2016): 6413–21. http://dx.doi.org/10.1039/c6sc02106a.

Full text
Abstract:
Zinc–zinc interactions on nickel and palladium centers are highly dependent on the co-ligands. These dependencies are also found for the formation of dihydrogen vs. dihydride complexes and underline the analogy [Zn2Cp*2] ↔ H2.
APA, Harvard, Vancouver, ISO, and other styles
27

Abate, Y., and P. D. Kleiber. "Photodissociation spectroscopy of Zn+(H2O) and Zn+(D2O)." Journal of Chemical Physics 122, no. 8 (February 22, 2005): 084305. http://dx.doi.org/10.1063/1.1847610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hou, Bo-Yu, Mu-Lin Yan, and Yu-Kui Zhou. "Exact solution of Belavin's Zn × Zn symmetric model." Nuclear Physics B 324, no. 3 (October 1989): 715–28. http://dx.doi.org/10.1016/0550-3213(89)90527-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Murthy, S. R., and T. S. Rao. "Magnetostriction of Ni-Zn and Co-Zn ferrites." physica status solidi (a) 90, no. 2 (August 16, 1985): 631–35. http://dx.doi.org/10.1002/pssa.2210900226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lin, Yu‐Po, and J. Robert Selman. "Electrodeposition of Ni‐Zn Alloy: II . Electrocrystallization of Zn, Ni, and Ni‐Zn alloy." Journal of The Electrochemical Society 140, no. 5 (May 1, 1993): 1304–11. http://dx.doi.org/10.1149/1.2220975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mayer, Kerstin, Laura-Alice Jantke, Stephan Schulz, and Thomas F. Fässler. "Retention of the Zn−Zn bond in [Ge9 Zn−ZnGe9 ]6− and Formation of [(Ge9 Zn)−(Ge9 )−(ZnGe9 )]8− and Polymeric 1∞ [−(Ge9 Zn)2− −]1." Angewandte Chemie International Edition 56, no. 9 (January 27, 2017): 2350–55. http://dx.doi.org/10.1002/anie.201610831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mayer, Kerstin, Laura-Alice Jantke, Stephan Schulz, and Thomas F. Fässler. "Retention of the Zn−Zn bond in [Ge9 Zn−ZnGe9 ]6− and Formation of [(Ge9 Zn)−(Ge9 )−(ZnGe9 )]8− and Polymeric 1∞ [−(Ge9 Zn)2− −]1." Angewandte Chemie 129, no. 9 (January 27, 2017): 2390–95. http://dx.doi.org/10.1002/ange.201610831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ye, Dae-Hee, Hyun-Sik Kim, Min-Cheol Kang, Jung-Dae Kim, and Hae-Yong Jeoung. "Electrical Conductivity by Addition of Zn and Cu on Mg-Zn-Cu Alloys." Journal of Korea Foundry Society 34, no. 3 (June 30, 2014): 100–106. http://dx.doi.org/10.7777/jkfs.2014.34.3.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Qing, Yanbo Wang, Funian Mo, Donghong Wang, Guojin Liang, Yuwei Zhao, Qi Yang, Zhaodong Huang, and Chunyi Zhi. "Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure." Advanced Energy Materials 11, no. 14 (February 19, 2021): 2003931. http://dx.doi.org/10.1002/aenm.202003931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Andersson, Laura A., Thomas M. Loehr, Ronald G. Thompson, and Steven H. Strauss. "Influence of symmetry on the vibrational spectra of Zn(TPP), Zn(TPC), and Zn(TPiBC)." Inorganic Chemistry 29, no. 11 (May 1990): 2142–47. http://dx.doi.org/10.1021/ic00336a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

XU, Wei-Hong, Huai LIU, Qi-Fu MA, and Zhi-Ting XIONG. "Root Exudates, Rhizosphere Zn Fractions, and Zn Accumulation of Ryegrass at Different Soil Zn Levels." Pedosphere 17, no. 3 (June 2007): 389–96. http://dx.doi.org/10.1016/s1002-0160(07)60047-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ortiz, Z. I., P. Díaz-Arista, Y. Meas, R. Ortega-Borges, and G. Trejo. "Characterization of the corrosion products of electrodeposited Zn, Zn–Co and Zn–Mn alloys coatings." Corrosion Science 51, no. 11 (November 2009): 2703–15. http://dx.doi.org/10.1016/j.corsci.2009.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhu, Zhijun, and Arthur D. Pelton. "Thermodynamic modeling of the La–Mg–Zn, Pr–Mg–Zn and Sm–Mg–Zn system." Journal of Alloys and Compounds 652 (December 2015): 415–25. http://dx.doi.org/10.1016/j.jallcom.2015.08.213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kitagawa, Masahiko, Sang Tae Lee, Kunio Ichino, and Hiroshi Kobayashi. "Miscibility gap in Zn Sr1 − S, Zn Ca1 − S and Zn Sr1 − Se thin films." Journal of Crystal Growth 159, no. 1-4 (February 1996): 205–9. http://dx.doi.org/10.1016/0022-0248(95)00774-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Janik, Vit, Yongjun Lan, Peter Beentjes, David Norman, Guido Hensen, and Seetharaman Sridhar. "Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel." Metallurgical and Materials Transactions A 47, no. 1 (October 28, 2015): 400–411. http://dx.doi.org/10.1007/s11661-015-3203-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Morales, J. A. "MIXED OXIDES OF Zn/Al, Zn/Al-La AND Zn-Mg/Al: PREPARATION, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY IN DICLOFENAC DEGRADATION." Revista Mexicana de Ingeniería Química 17, no. 3 (July 26, 2018): 941–53. http://dx.doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/morales.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Griffen, D. T., and W. R. Nelson. "Mossbauer spectroscopy of Zn-poor and Zn-rich rhodonite." American Mineralogist 92, no. 8-9 (August 1, 2007): 1486–91. http://dx.doi.org/10.2138/am.2007.2385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hermida-Montero, L. A., I. C. Ruiz-Leyva, F. Paraguay-Delgado, D. Lardizábal-Gutiérrez, L. N. Muñoz-Castellanos, and C. V. Villalba-Bejarano. "Antifungal Evaluation of Zn and Zn-Cu Oxychloride Nanoparticles." Microscopy and Microanalysis 28, S1 (July 22, 2022): 1366–68. http://dx.doi.org/10.1017/s1431927622005578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sugar, Jack, and Arlene Musgrove. "Energy Levels of Zinc, Zn I through Zn XXX." Journal of Physical and Chemical Reference Data 24, no. 6 (November 1995): 1803–72. http://dx.doi.org/10.1063/1.555971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chan, K. S., L. Vines, L. Li, C. Jagadish, B. G. Svensson, and J. Wong-Leung. "Zn precipitation and Li depletion in Zn implanted ZnO." Applied Physics Letters 109, no. 2 (July 11, 2016): 022102. http://dx.doi.org/10.1063/1.4958693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ramanauskas, R., L. Gudaviciute, L. Diaz-Ballote, P. Bartolo-Perez, and P. Quintana. "Corrosion behaviour of chromated Zn and Zn alloy electrodeposits." Surface and Coatings Technology 140, no. 2 (May 2001): 109–15. http://dx.doi.org/10.1016/s0257-8972(01)01030-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Garcia, Eric M., Hosane A. Tarôco, Júlio O. F. Melo, Ana Paula C. M. Silva, and Ione M. F. Oliveira. "Electrochemical recycling of Zn from spent Zn–MnO2 batteries." Ionics 19, no. 11 (September 10, 2013): 1699–703. http://dx.doi.org/10.1007/s11581-013-0997-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhou, Yu-Kui, Mu-Lin Yan, and Bo-Yu Hou. "Algebraic Bethe ansatz of Belavin's Zn×Zn symmetric model." Physics Letters A 133, no. 7-8 (November 1988): 391–94. http://dx.doi.org/10.1016/0375-9601(88)90922-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kumar, Surender, Tukaram Shinde, and Pramod Vasambekar. "Engineering High Permeability: Mn-Zn and Ni-Zn Ferrites." International Journal of Applied Ceramic Technology 12, no. 4 (August 7, 2014): 851–59. http://dx.doi.org/10.1111/ijac.12304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kaya, Hasan, Sevda Engin, U. Böyük, Emin Çadırlı, and Necmettin Maraşlı. "Unidirectional solidification of Zn-rich Zn-Cu hypoperitectic alloy." Journal of Materials Research 24, no. 11 (November 2009): 3422–31. http://dx.doi.org/10.1557/jmr.2009.0415.

Full text
Abstract:
Zn-0.7 wt.% Cu-hypoperitectic alloy was prepared in a graphite crucible under a vacuum atmosphere. Unidirectional solidification of the Zn-0.7 wt.% Cu-hypoperitectic alloy was carried out by using a Bridgman-type directional solidification apparatus under two different conditions: (i) with different temperature gradients (G = 3.85–9.95 K/mm) at a constant growth rate (41.63 μm/s) and (ii) with different growth rate ranges (G = 8.33–435.67 μm/s) at a constant temperature gradient (3.85 K/mm). The microstructures of the directionally solidified Zn-0.7 wt.% Cu-hypoperitectic samples were observed to be a cellular structure. From both transverse and longitudinal sections of the samples, cellular spacing (λ) and cell-tip radius (R) were measured. The effects of solidification-processing parameters (G and V) on the microstructure parameters (λ and R) were obtained by using a linear regression analysis. The present experimental results were also compared with the current theoretical and numerical models and similar previous experimental results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography