Academic literature on the topic 'Zn/Cu based cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zn/Cu based cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zn/Cu based cells"

1

Liu, Congcong, Qiongqiong Lu, Ahmad Omar, and Daria Mikhailova. "A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries." Nanomaterials 11, no. 3 (March 18, 2021): 764. http://dx.doi.org/10.3390/nano11030764.

Full text
Abstract:
Rechargeable aqueous Zn-ion batteries (ZIBs) have gained great attention due to their high safety and the natural abundance of Zn. Unfortunately, the Zn metal anode suffers from dendrite growth due to nonuniform deposition during the plating/stripping process, leading to a sudden failure of the batteries. Herein, Cu coated Zn (Cu–Zn) was prepared by a facile pretreatment method using CuSO4 aqueous solution. The Cu coating transformed into an alloy interfacial layer with a high affinity for Zn, which acted as a nucleation site to guide the uniform Zn nucleation and plating. As a result, Cu–Zn demonstrated a cycling life of up to 1600 h in the symmetric cells and endowed a stable cycling performance with a capacity of 207 mAh g−1 even after 1000 cycles in the full cells coupled with a V2O5-based cathode. This work provides a simple and effective strategy to enable uniform Zn deposition for improved ZIBs.
APA, Harvard, Vancouver, ISO, and other styles
2

Kontonasaki, E., A. Bakopoulou, A. Theocharidou, G. S. Theodorou, L. Papadopoulou, N. Kantiranis, M. Bousnaki, et al. "Effective Cell Growth Potential of Mg-Based Bioceramic Scaffolds towards Targeted Dentin Regeneration." Balkan Journal of Dental Medicine 19, no. 2 (July 1, 2015): 75–85. http://dx.doi.org/10.1515/bjdm-2015-0039.

Full text
Abstract:
SUMMARYNew emerging approaches in tissue engineering include incorporation of metal ions involved in various metabolic processes, such as Cu, Zn, Si into bioceramic scaffolds for enhanced cell growth and differentiation of specific cell types. The aim of the present work was to investigate the attachment, morphology, growth and mineralized tissue formation potential of Dental Pulp Stem Cells (DPSCs) seeded into Mg-based glassceramic scaffolds with incorporated Zn and Cu ions. Bioceramic scaffolds containing Si 60%, Ca 30%, Mg 7.5% and either Zn or Cu 2.5%, sintered at different temperatures were synthesized by the foam replica technique and seeded with DPSCs for up to 21 days. Scanning Electron Microscopy with associated Energy Dispersive Spectroscopy (SEM-EDS) was used to evaluate their ability to support the DPSCs’s attachment and proliferation, while the structure of the seeded scaffolds was investigated by X-Ray Diffraction Analysis (XRD). Zn-doped bioceramic scaffolds promoted the attachment and growth of human DPSCs, while identically fabricated scaffolds doped with Cu showed a cytotoxic behaviour, irrespective of the sintering temperature. A mineralized tissue with apatite-like structure was formed on both Cu-doped scaffolds and only on those Zn-doped scaffolds heat-treated at lower temperatures. Sol-gel derived Zn-doped scaffolds sintered at 890oC support DPSC growth and apatite-like tissue formation, which renders them as promising candidates towards dental tissue regeneration.
APA, Harvard, Vancouver, ISO, and other styles
3

Lafond, Alain, Léo Choubrac, Catherine Guillot-Deudon, Pierre Fertey, Michel Evain, and Stéphane Jobic. "X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4compound." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 70, no. 2 (March 28, 2014): 390–94. http://dx.doi.org/10.1107/s2052520614003138.

Full text
Abstract:
Cu/Zn disorder in the kesterite Cu2ZnSnS4derivatives used for thin film based solar cells is an important issue for photovoltaic performances. Unfortunately, Cu and Zn cannot be distinguished by conventional laboratory X-ray diffraction. This paper reports on a resonant diffraction investigation of a Cu2ZnSnS4single crystal from a quenched powdered sample. The full disorder of Cu and Zn in thez= 1/4 atomic plane is shown. The structure, namely disordered kesterite, is then described in the I\bar 42m space group.
APA, Harvard, Vancouver, ISO, and other styles
4

Podapangi, Suresh K., Laura Mancini, Jie Xu, Sathy Harshavardhan Reddy, Aldo Di Carlo, Thomas M. Brown, and Gloria Zanotti. "Green Anisole Solvent-Based Synthesis and Deposition of Phthalocyanine Dopant-Free Hole-Transport Materials for Perovskite Solar Cells." Energies 16, no. 9 (April 24, 2023): 3643. http://dx.doi.org/10.3390/en16093643.

Full text
Abstract:
Perovskite Solar Cells (PSCs) have attracted attention due to their low cost, easy solution processability, high efficiency, and scalability. However, the benchmark expensive hole transport material (HTM) 2,2′,7,7′-tetrakis[N, N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-MeOTAD), which is traditionally solution-processed with toxic solvents such as chlorobenzene (CB), dichlorobenzene (DCB), or toluene, is a bottleneck. To address this issue, this work investigates the implementation of Zn(II), Cu(II), or Co(II) tetra-tert-butylphthalocyanines (TBU4-Cu, TBU4-Zn, TBU4-Co), established macrocyclic derivatives whose synthesis and processing inside the devices have been redesigned to be more environmentally sustainable and cost-effective by substituting conventional solvents with greener alternatives such as anisole, propane-1,2-diol, and their mixture, as dopant-free HTMs in planar n-i-p PSCs. The anisole-processed HTMs provided power conversion efficiencies (PCE) up to 12.27% for TBU4-Cu and 11.73% for TBU4-Zn, with better photovoltaic parameters than the corresponding cells made with chlorobenzene for which the best results obtained were, respectively, 12.22% and 10.81%.
APA, Harvard, Vancouver, ISO, and other styles
5

van Hengel, Ingmar A. J., Melissa W. A. M. Tierolf, Lidy E. Fratila-Apachitei, Iulian Apachitei, and Amir A. Zadpoor. "Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review." International Journal of Molecular Sciences 22, no. 7 (April 6, 2021): 3800. http://dx.doi.org/10.3390/ijms22073800.

Full text
Abstract:
Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.
APA, Harvard, Vancouver, ISO, and other styles
6

Caliò, Laura, Jorge Follana-Berná, Samrana Kazim, Morten Madsen, Horst-Günter Rubahn, Ángela Sastre-Santos, and Shahzada Ahmad. "Cu(ii) and Zn(ii) based phthalocyanines as hole selective layers for perovskite solar cells." Sustainable Energy & Fuels 1, no. 10 (2017): 2071–77. http://dx.doi.org/10.1039/c7se00367f.

Full text
Abstract:
Cu and Zn based phthalocyanines with 4-tert-octylphenoxy-substituted functional groups were synthesized and showed high solubility in a range of organic solvents, they were integrated in perovskite solar cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Fagieh, Taghreed M., Helen J. Reid, and Barry L. Sharp. "Determination of Zn, Cu, Fe and Mn in Muscle Cells as Potential Markers of Oxidative Stress by Laser Ablation and Solution Based ICP-MS." International Journal of Chemistry 11, no. 2 (June 26, 2019): 50. http://dx.doi.org/10.5539/ijc.v11n2p50.

Full text
Abstract:
Oxidative stress is imbalance between oxidant and antioxidant levels in living systems. Human cells are protected from reactive oxygen species (ROS) by endogenous enzymatic antioxidants, such as superoxide dismutase (SOD) and catalase. Most of these compounds require particular redox metals in their structures as cofactors to allow them to scavenge the free radicals, in particular Cu, Zn or Mn-with SOD and Fe with catalase. The aim of this study was to quantify these metals in human cells to evaluate their effectiveness as novel biomarkers for measuring oxidative stress. The metals (Zn, Cu, Fe, Mn) were measured in vitro in skeletal muscle cells (C2C12) which were incubated under hypoxia or hyperoxia conditions generated by varying oxygen levels from 1% - 60% for 24 and 48 hours. Two methods were used to perform the analyses. Solution-based inductively coupled plasma mass spectrometry (ICP-MS) was applied to quantify Zn, Cu, Fe and Mn in cell populations, and laser ablation (LA)-ICP-MS was employed to compare their relative levels in individual cells. The data acquired from both techniques were positively correlated confirming the validity of the two approaches. The results showed that the concentration of the measured elements increased dramatically in cells grown at 25% - 60% O2, the most significant increase being in Cu at 60% O2. None showed any increase at 5% - 15% O2, indicating normoxia states. At 1% O2, all elements, except Fe, showed a significant increase and the most remarkable growth was in Mn. Increasing the incubation time to 48 hours had differing effects on the elements. Zn and Cu concentrations were unaffected by increasing incubation time except at 60% O2 where they showed further growth. In contrast, Mn concentration grew sharply for oxygen levels of 30% - 50% with no further effect at 1%, while Fe concentration decreased at 1% O2 and grew steadily for oxygen levels of 5% - 60%. It can be concluded that all four elements were significantly affected by stress conditions applied to cells, but at different rates. Importantly, this paper describes a novel method for estimating oxidative stress in cells based on the determination of redox elements in single cells and cell populations using ICP-MS.
APA, Harvard, Vancouver, ISO, and other styles
8

Taskesen, Teoman, Devendra Pareek, David Nowak, Willi Kogler, Thomas Schnabel, Erik Ahlswede, and Levent Gütay. "Potential of CZTSe Solar Cells Fabricated by an Alloy-Based Processing Strategy." Zeitschrift für Naturforschung A 74, no. 8 (August 27, 2019): 673–82. http://dx.doi.org/10.1515/zna-2019-0136.

Full text
Abstract:
AbstractIn this manuscript, we give an overview of the main insights into our growth procedure for kesterite solar cells and show the possibilities that are provided by this approach. The importance of using Cu–Sn alloy instead of elemental Sn and Cu in the precursor is shown. We discuss how the alloy approach stabilises the composition and helps guide the process along a preferred reaction pathway. A summary of our previously reported findings in the context of our latest results on kesterite solar cells prepared from Cu–Sn alloyed precursors is drawn. The positive impact of an alloy precursor configuration on the formation pathway, process control, and process resilience is demonstrated. Furthermore, a new optimisation strategy for kesterite, based on the reported pathway, is discussed, including a smooth phase transition from Cu-rich to Cu-poor kesterite. Finally, we demonstrate results on buffer optimisation and the application of a promising hybrid buffer configuration of CdS/Zn(O,S), which can reduce the optical losses in the solar cell structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Woo-Jin, Wan Woo Park, Yangdo Kim, Chang Sik Son, and Donghyun Hwang. "The Effect of ALD-Zn(O,S) Buffer Layer on the Performance of CIGSSe Thin Film Solar Cells." Energies 13, no. 2 (January 15, 2020): 412. http://dx.doi.org/10.3390/en13020412.

Full text
Abstract:
In this paper, we report the development of Cd-free buffers using atomic layer deposition (ALD) for Cu(In,Ga)(S,Se)2-based solar cells. The ALD process gives good control of thickness and the S/S +O ratio content of the films. The influence of the growth per cycle (GPC) and the S/(S+O) ratio, and the glass temperature of the atomic layer deposited Zn(O,S) buffer layers on the efficiency of the Cu(In,Ga)(S,Se)2 solar cells were investigated. We present the first results from our work on cadmium-free CIGS solar cells on substrates with an aperture area of 0.4 cm2. These Zn(O,S) layers were deposited by atomic layer deposition at 120 °C with S/Zn ratios of 0.7, and layers of around 30 nm. The Zn(O,S) 20% (Pulse Ratio: H2S/H2O+H2S) process results in a S/Zn ratio of 0.7. We achieved independently certified aperture area efficiencies of 17.1% for 0.4 cm2 cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Fengcan, Kaixuan Xie, Siheng Wu, Chi Zhang, Xiaodie Liao, and Qinghong Wang. "Cu(II)/Polydopamine-Modified Glass Fiber Separators for High-Performance Zinc-Ion Batteries." Batteries 9, no. 7 (July 20, 2023): 387. http://dx.doi.org/10.3390/batteries9070387.

Full text
Abstract:
Much attention has been given to aqueous zinc-ion batteries (ZIBs) due to their features of inherent safety, environmental compatibility, low cost, and fantastic energy density. Nevertheless, chemical corrosion and dendrite growth occurring on Zn anodes during the charge–discharge process, which often cause surface passivation and short circuit of cells, seriously hindering the development of ZIBs. To solve these problems, a Cu(II) and polydopamine co-modified glass fiber (Cu(II)-PDA/GF) is designed as separator. On one hand, the modification of PDA enhances ionic conductivity and the water absorbing capability of a glass fiber separator due to the presence of functional groups. On the other hand, the pre-deposition of Cu on Zn anodes enables the uniform nucleation of Zn during the initial deposition process. Due to the synergistic effect, reversible zinc plating/striping is achieved in symmetric cells, which display a long lifecycle of over 1800 h at the current density of 1 mA cm−2 and with a fixed capacity of 1 mAh cm−2. Moreover, the assembled Zn//V2O5 cells using the Cu(II)-PDA/GF separator also demonstrate improved capacity retention. This study provides a simple and effective separator modification strategy for high-performance and reliable ZIBs, which are conducive to other metal-based energy storage devices.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Zn/Cu based cells"

1

Platzer-Björkman, Charlotte. "Band Alignment Between ZnO-Based and Cu(In,Ga)Se2 Thin Films for High Efficiency Solar Cells." Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6263.

Full text
Abstract:
Thin-film solar cells based on Cu(In,Ga)Se2 contain a thin buffer layer of CdS in their standard configuration. In order to avoid cadmium in the device for environmental reasons, Cd-free alternatives are investigated. In this thesis, ZnO-based films, containing Mg or S, grown by atomic layer deposition (ALD), are shown to be viable alternatives to CdS. The CdS is an n-type semiconductor, which together with the n-type ZnO top-contact layers form the pn-junction with the p-type Cu(In,Ga)Se2. From device modeling it is known that a buffer layer conduction band (CB) position of 0-0.4 eV above that of the Cu(In,Ga)Se2 layer is consistent with high photovoltaic performance. For the Cu(In,Ga)Se2/ZnO interface this position is measured by photoelectron spectroscopy and optical methods to –0.2 eV, resulting in increased interface recombination. By including sulfur into ZnO, a favorable CB position to Cu(In,Ga)Se2 can be obtained for appropriate sulfur contents, and device efficiencies of up to 16.4% are demonstrated in this work. From theoretical calculations and photoelectron spectroscopy measurements, the shift in the valence and conduction bands of Zn(O,S) are shown to be non-linear with respect to the sulfur content, resulting in a large band gap bowing. ALD is a suitable technique for buffer layer deposition since conformal coverage can be obtained even for very thin films and at low deposition temperatures. However, deposition of Zn(O,S) is shown to deviate from an ideal ALD process with much larger sulfur content in the films than expected from the precursor pulsing ratios and with a clear increase of sulfur towards the Cu(In,Ga)Se2 layer. For (Zn,Mg)O, single-phase ZnO-type films are obtained for Mg/(Zn+Mg) < 0.2. In this region, the band gap increases almost linearly with the Mg content resulting in an improved CB alignment at the heterojunction interface with Cu(In,Ga)Se2 and high device efficiencies of up to 14.1%.
APA, Harvard, Vancouver, ISO, and other styles
2

Hildebrandt, Thibaud. "Optimisation des interfaces absorbeur/couche tampon/fenêtre avant dans les cellules solaires à base de Cu(In,Ga)Se2." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066720.

Full text
Abstract:
Le remplacement du CdS dans les cellules solaires à base de Cu(In,Ga)Se2 est un des défis majeurs de la communauté. À ce jour un des matériaux les plus prometteurs est le Zn(S,O,OH) déposée par voie chimique en solution. En raison de la faible vitesse de dépôt du matériau et des phénomènes de métastabilités présents dans les dispositifs formés, il apparaît nécessaire d’optimiser les conditions expérimentales et les interfaces. La 1ère partie de ces travaux a été consacré à l’optimisation des conditions de dépôt des couches minces de Zn(S,O,OH) grâce à l’introduction d’additifs. Il a été possible de souligner l’effet des additifs sur la composition des couches déposées et sur les vitesses de réaction. La 2ème partie de ces travaux a été consacrée à l’optimisation des conditions de dépôt par pulvérisation cathodique de la fenêtre avant (Zn,Mg)O/ZnO :Al permettant une diminution des phénomènes de métastabilité et une limitation de la migration de sodium jusqu’au Zn(S,O,OH). Ces conditions combinées à une variation de la composition de la surface du CIGSe a permis d’obtenir des rendements de photo-conversion supérieurs à ceux des références à base de CdS
The replacement of CdS-based buffer layer in Cu(In,Ga)Se2 solar cells has been one of the main challenges of the research community for the last decade. Today, one of the most promising alternative material is the chemically bath deposited Zn(S,O,OH). Because of its low deposition rate and of metastable behavior, it becomes necessary to proceed to an optimization of experimental conditions and of the various interfaces. The first part of this work has been dedicated to the optimization of the deposition bath thanks to the introduction of new additives. It has been possible to underline the additive effects on both the deposition rate and on the chemical composition of the deposited layers. The second part of this work has been dedicated to the optimization of the (Zn,Mg)O/ZnO:Al window layer. Thanks to an improvement of the sputtering conditions, it has been possible to reduce metastability of the solar cells, and to limit sodium migration up to the Zn(S,O,OH) layer. These optimized conditions combined to the variation of the CIGSe surface composition have allowed us to outperform CdS-based references solar cells
APA, Harvard, Vancouver, ISO, and other styles
3

Lox, Josephine F. L., Zhiya Dang, Anh Mai Lê, Eileen Hollinger, and Vladimir Lesnyak. "Colloidal Cu–Zn–In–S-Based Disk-Shaped Nanocookies." American Chemical Association, 2019. https://tud.qucosa.de/id/qucosa%3A74324.

Full text
Abstract:
We present a colloidal synthesis of quaternary Cu–Zn–In–S (CZIS) nanoplatelets (NPLs) by means of partial cation exchange. Starting with the synthesis of highly monodisperse binary CuS NPLs with lateral dimensions of ∼64 nm and thickness of ∼5 nm, we further performed a cation exchange reaction in which copper was partly replaced by indium, leading to Cu–In–S NPLs. To enhance the stability of the resulting NPLs and to improve their optical properties, we carried out the ZnS shell growth via both the heterogeneous nucleation of ZnS on the NPLs and via partial cation exchange on the surface of the particles. The latter reaction resulted, however, in rather an alloyed than the core/shell structure, whereas the reaction between zinc and sulfur precursors yielded unusual cookie-like hexagonal shaped structure, in which ZnS trigonal extensions grew only on one of the basal planes of the plates along the thickness direction. Upon ZnS growth, the lateral dimensions of the resulting core/shell CZIS/ZnS and alloyed CZIS NPLs distinctly increased to ∼80 and ∼75 nm, respectively. The analysis of the optical properties of the alloyed CZIS NPLs showed photoluminescence (PL) in the range from 780 to 820 nm depending on the reaction time and temperature. This PL signal originated mainly from small nanoparticles formed as a byproduct in the synthesis. In contrast to the alloyed NPLs, PL measurements of the core/shell CZIS/ZnS platelets showed a weak emission in the near-infrared region (PL maximum at approx. 1110 nm), which so far has rarely been reported for the copper chalcogenide-based two-dimensional structures.
APA, Harvard, Vancouver, ISO, and other styles
4

Howard, P. "Precipitation and creep in an Al-Zn-Mg-Cu based alloy." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Yanzhi. "Synthesis, characterization and catalytic application of Ru/Sn-and Cu/Zn-based nanocomposites." [S.l.] : [s.n.], 2006. http://deposit.d-nb.de/cgi-bin/dokserv?idn=98188833X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hreid, Tubshin. "Co-electrodeposition of Cu-Zn-Sn film and synthesis of Cu2ZnSnS4 photovoltaic material." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/94160/12/Tubshin%20Hreid%20Thesis.pdf.

Full text
Abstract:
This work contributes to electrochemical fabrication of Cu-Zn-Sn alloy thin film and synthesis of kesterite Cu2ZnSnS4 film which is a promising new material for sustainable photovoltaic devices. Co-electrodeposition provides a low-cost, time-saving and environmentally friendly approach to fabricate Cu-Zn-Sn film and has a potential application in large scale and high throughput production of Cu2ZnSnS4 material. This work includes identification of critical parameters controlling the formation of homogeneous Cu-Zn-Sn film, investigation of its growth mechanism, precisely controlled synthesis of kesterite Cu2ZnSnS4 film and effects of metal ions concentration on formation of Cu-Zn-Sn film and its application in kesterite Cu2ZnSnS4 solar cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Kühl, Stefanie Verfasser], and Robert [Akademischer Betreuer] [Schlögl. "Synthesis and Characterization of Cu-based Catalysts resulting from Cu,Zn,XHydrotalcite-like Compounds / Stefanie Kühl. Betreuer: Robert Schlögl." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2012. http://d-nb.info/1021219762/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hutchings, K. D. "High throughput combinatorial screening of Cu-Zn-Sn-S thin film libraries for the application of Cu2ZnSnS4 photovoltaic cells." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/8771.

Full text
Abstract:
The naturally occurring mineral of Cu2ZnSnS4 (CZTS) is a promising alternative absorber layer for thin film based photovoltaic devices. It has the remarkable advantage that it consists of abundant, inexpensive and non-toxic elements compared to its crystallographically related and highly successful counterparts: the Cu(In,Ga)(S,Se)2 (CIGSSe) and CuIn(S, Se)2 (CISSe) material systems. Therefore, there is real commercial potential for reduced material costs and improved device efficiencies. A two-stage high throughput combinatorial process for the fabrication of Cu-Zn-Sn-S thin film libraries is presented, which consists of either sequentially stacking or co-depositing Cu,Sn and Zn precursor layers by DC magnetron sputtering followed by a sulphurisation process. Sputtering conditions and target-substrate geometry are developed to give compositionally graded Cu-Zn-Sn precursor layers spanning a wide spatial region around the point of stoichiometry. Conversion into Cu-Zn-Sn-S libraries is achieved by thermally evaporating a uniform layer of sulphur directly onto the metal alloy and annealing the sample at 500 °C in a furnace. Effects of the precursor composition on the structural properties of the films prior to the incorporation of sulphur are investigated. The sulphurised libraries are then studied by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy as a function of composition, to assess the effects on morphology and phase formation. Observations of changes in lattice parameters and crystallinity are clear. The opto-electronic and electrical properties of the CZTS film libraries are measured using photoconductivity and hot point probe techniques, respectively. Changes in the band gap and conductivity type are studied as a function of atomic ratios. Based on high performing compositions, devices have been fabricated with the highest achieving cell at 1.26 %. The observations are discussed in the context of the particular compositions and synthesis conditions, and recommendations are made for further work.
APA, Harvard, Vancouver, ISO, and other styles
9

Hultqvist, Adam. "Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar Cells." Doctoral thesis, Uppsala universitet, Fasta tillståndets elektronik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-133112.

Full text
Abstract:
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell.
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Jiqing. "Graphene-based nanomaterials as electrodes for fuel cells and Zn-air batteries." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/380070.

Full text
Abstract:
In pursuit of solving the foreseeable depletion of fossil energies and environmental pollution caused by combustion of them, great efforts have been devoted to exploring renewable and clean energies, like the solar energy, nuclear energy, and geothermal energy, etc. as well as the technologies in converting these new energies into the form of usable electricity. In this regard, (rechargeable) zinc-air batteries and fuel cells have demonstrated promising potentials due to their large output energy density, power density and more importantly, their environmental compatibility. To consume oxygen molecules at cathode, these devices suffer greatly from the large overpotential and sluggish kinetics from the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Platinum, iridium and other noble metal-based electrocatalysts (NMCs) are conventionally used at the cathode of zinc-air batteries and fuel cells. However, the NMCs are subjected to high cost and insufficient durability. Thus, substituting the NMCs with other earth-abundant elements is currently imperative for the large-scale commercialization of the zinc-air batteries and fuel cells. Within this framework, this thesis attempts to utilize graphene as the building blocks to couple with other active elements, e.g. transition metal ions and nitrogen doped disordered carbon to fabricate advanced electrocatalysts for OER and ORR. A series of synthesizing methods have been developed to synthesize the graphene-based nanocomposites, including room-temperature coordination adsorption, hydrothermal treatment, and high-temperature calcination, etc. The physical features of the resultant nanocomposites have been thoroughly investigated by using XRD, SEM, and TEM. Meanwhile, their electrochemical performances were explored in terms of the potential-current response and the corresponding working durability. Besides, the associated origin of their intrinsic activity has been investigated and discussed. Molecular Ni–/Co–porphyrin multilayers were spontaneously adsorbed on the surface of graphene sheets layer-by-layer via non-covalent forces such as Van der Waals’ force and π-π interactions. It was observed that the electrochemical performance of the nanocomposite could be tuned by controlling the number of the Ni–/Co–porphyrin layers on the surface of graphene. This is ascribed to the counterbalance between the steric hindrance and the content of the active species. Such research work manifested the controllability of the OER/ORR performance at the molecular level and revealed the essential influence between the content of the active sites and the steric hindrance caused by their spatial accommodation. To implement a low-cost and scalable synthesis strategy, carbon black NPs and amorphous CoBi nanoplates were assembled with graphene to build a sandwich-like nanocomposite by use of amphipathicity of graphene oxide. The obtained sandwich-like nanocomposite exhibited excellent ORR/OER performance, which was comparable to the state-of-the-art materials. The performance enhancement towards ORR was assigned to the enlarged accessible active surface area of the nanocomposite catalyst. Without changing the chemical composition of the active species, this work highlighted the significance of the rational design of the geometrical configuration by means of the non-covalent force in an electrocatalyst. The resultant nanocomposite was further assembled in a rechargeable zinc-air battery to demonstrate its practicability. The lack of the high-efficiency and noble metal-free electrocatalyst in the acid media has been an intractable problem for years. To address this issue, a disordered carbon layer impregnated with Co-N on the surface of graphene sheet was fabricated by pyrolysing the hydrothermal product of graphene oxide and cobalt gluconate. The resultant nanocomposite exhibited remarkable activity to ORR in both alkaline and acid media, which was due to the high dispersion of abundant active sites. Moreover, different active working sites in alkaline and acid condition for the obtained material were suggested. This inspired us to investigate different roles of the metal species in the ORR electrocatalysts. For the nitrogen-doped carbon materials, the pyridinic nitrogen doping is believed to possess the highest activity for ORR in alkaline environment. To verify that theory and further enhance the activity of the nitrogen-doped carbon materials, an ultrathin holey carbon layer coupled with graphene nanosheets was prepared. The edge enriched feature makes it easier to form pyridinic nitrogen during the nitrogen doping process. The obtained composite displayed the expected outstanding ORR performance in alkaline media and even surprisingly high activity in acid solution. The rationality of the design of this material was manifested by solving the commonly encountered insufficient charge transfer ability and stability of the holey graphene materials while preserving the high activity in the holey carbon sites. In a nutshell, this thesis contributes to the exploration of the graphene-based OER/ORR electrocatalyst in the aspects of i) tuning the electrochemical activity of the transition metal based electrocatalyst at the molecular level; ii) isolating and highlighting the significance in geometrical configuration of the ORR electrocatalyst with respect to kinetic process; iii) suggesting and verifying the different active sites of the same electrocatalyst tested under different pH values; iv) selectively inducing the formation of the active pyridinic nitrogen species in the ultrathin holey carbon layer coupled on the surface of graphene nanosheet.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Zn/Cu based cells"

1

service), ScienceDirect (Online, ed. Cu(InGa)Se2 based thin film solar cells. London: Academic, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cu(InGa)Se2 Based Thin Film Solar Cells. Elsevier, 2010. http://dx.doi.org/10.1016/c2009-0-17190-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kodigala, Subba Ramaiah. Cu(In1-XGax)Se2 Based Thin Film Solar Cells. Elsevier Science & Technology Books, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zn/Cu based cells"

1

Rasel, Salman Rahman, K. A. Khan, Md Sayed Hossain, Shahinul Islam, M. Hazrat Ali, and Rajada Khatun. "A Study on Zn/Cu-Based Pandan Leaf (Pandanus Amaryllifolius) Electrochemical Cell." In Lecture Notes in Electrical Engineering, 51–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0412-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pokrishevsky, Edward, Jeremy Nan, and Neil R. Cashman. "Induction of Cu/Zn Superoxide Dismutase (SOD1) Aggregation in Living Cells." In Methods in Molecular Biology, 213–24. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8820-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schock, H. W., B. Dimmler, H. Dittrich, J. Kimmerle, and R. Menner. "Heterojunction Solar Cells Based on Cu(Ga, In) Se2 Chalcopyrite Thin Films." In Seventh E.C. Photovoltaic Solar Energy Conference, 465–69. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meng, Hong-Min, Juan Chen, Lingbo Qu, and Zhaohui Li. "Detection of Tetanus Antibody Applying a Cu-Zn-In-S/ZnS Quantum Dot-Based Lateral Flow Immunoassay." In Quantum Dots, 285–92. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wallaeys, B., R. Cornelis, and N. Lameire. "The Trace Elements Br, Co, Cr, Cs, Cu, Fe, Mn, Rb, Se and Zn in Serum, Packed Cells, and Dialysate of CAPD Patients." In Frontiers in Peritoneal Dialysis, 478–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-11784-2_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Zhihui, Baiqing Xiong, Yongan Zhang, Xiwu Li, Baohong Zhu, Hongwei Liu, Feng Wang, and Peiyue Li. "X-ray Diffraction Study on Lattice Constant of Supersaturated Solid Solution for Al Based Binary Alloys and Selected Al-Zn-Mg-Cu Alloys." In ICAA13: 13th International Conference on Aluminum Alloys, 1295–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Zhihui, Baiqing Xiong, Yongan Zhang, Xiwu Li, Baohong Zhu, Hongwei Liu, Feng Wang, and Peiyue Li. "X-Ray Diffraction Study on Lattice Constant of Supersaturated Solid Solution for Al Based Binary Alloys and Selected Al-Zn-Mg-Cu Alloys." In ICAA13 Pittsburgh, 1295–300. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48761-8_199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maurya, Radheshyam, and Madhulika Namdeo. "Superoxide Dismutase: A Key Enzyme for the Survival of Intracellular Pathogens in Host." In Reactive Oxygen Species [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100322.

Full text
Abstract:
Superoxide dismutase (SOD) is a crucial enzyme required to maintain the redox potential of the cells. It plays a vital role in protecting normal cells from reactive oxygen species (ROS) produced during many intracellular pathogens infections. SOD removes excess superoxide radicals (O2−) by converting them to hydrogen peroxide (H2O2) and molecular oxygen (O2). Several superoxide dismutase enzymes have been identified based on the metal ion as a cofactor. Human SOD differs from the intracellular pathogens in having Cu/Zn and Mn as metal cofactors. However, SOD of intracellular pathogens such as Trypanosoma, Leishmania, Plasmodium, and Mycobacterium have iron (Fe) as metal cofactors. Iron Superoxide Dismutase (FeSOD) is an essential enzyme in these pathogens that neutralizes the free radical of oxygen (O−) and prevents the formation of Peroxynitrite anion (ONOO−), helping the pathogens escape from redox-based cytotoxic killing. Moreover, most intracellular bacteria hold MnSOD or FeSOD in their cytoplasm such as Salmonella and Staphylococcus, whereas periplasm of some pathogenic bacteria and fungi are also cofactors with Cu/Zn and identified as CuZnSOD. This chapter will review the various types SOD present in intracellular pathogens and their role in the survival of these pathogens inside their host niche.
APA, Harvard, Vancouver, ISO, and other styles
9

Thakur, Mintu, and Kinkar Biswas. "Biological Importance of Some Functionalized Schiff Base-Metal Complexes." In Recent Trends and The Future of Antimicrobial Agents - Part 2, 101–23. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123975123010008.

Full text
Abstract:
Schiff base ligands or compounds are useful in modern inorganic chemistry. Numerous transition metal-based catalysts have been synthesized with Schiff base scaffolds. The application of such Schiff bases is also found in biological studies. Herein, we have discussed the various synthetic procedures of diversified Schiff base compounds and their metal complexes. The biological activity of those complexes has also been delineated in this chapter with special emphasis. Various metal complexes [Co(II), Ni(II), Cu(II), Zn(II) and Fe(III)] with different Schiff base compounds displayed anti-fungal activity. Similarly, anti-viral activity was seen with Co(II) and Pd(II) metal complexes. Many Schiff base-metal complexes are found, which showed anti-cancer activity against various carcinoma cells like HpG2, MCF-7, A549, HCT116, Caco-2 and PC-3. Similarly, the transition metal complexes (generally 1st and 2 nd row) of Schiff bases also exhibited good anti-bacterial activity against various bacterial strains. The ionic-liquid-tagged Schiff bases have also been found to be good anti-microbial agents.
APA, Harvard, Vancouver, ISO, and other styles
10

Schmidbaur, H., and A. Schier. "Synthesis Based on Polyborylmethanes." In Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au), 1. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-003-00558.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Zn/Cu based cells"

1

Khan, Md Kamrul Alam, Md Siddikur Rahman, Tanmoy Das, Muhammad Najebul Ahmed, Kaushik Nandan Saha, and Shuva Paul. "Investigation on parameters performance of Zn/Cu electrodes of PKL, AVL, Tomato and Lemon juice based electrochemical cells: A comparative study." In 2017 3rd International Conference on Electrical Information and Communication Technology (EICT). IEEE, 2017. http://dx.doi.org/10.1109/eict.2017.8275150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koivuluoto, H., M. Kylmälahti, and P. Vuoristo. "Properties of Low-Pressure Cold-Sprayed Coatings for Repairing of Casting Defects." In ITSC2011, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0025.

Full text
Abstract:
Abstract Low-pressure cold spraying (LPCS) is a coating technique, in which a portable cold spray system, e.g., DYMET 304K system is used to prepare technical coatings. Usually, compressed air is used as the process gas. The LPCS process is an appropriate method for spraying of metallic-ceramic composite powder materials, e.g., Cu, Ni, Zn, Al with additions of Al2O3 particles in the powder blends. The main functions of the hard ceramic particles are cleaning the nozzle, activating the sprayed surface and peening the coating structure. This method has advantages for example in the field of repairing and restoration applications. For that, repairing casting defects and voids is one interesting application of the process. For these purposes, zinc-based composite materials are recommended for restoration and repairing of corrosion and mechanical damages. In this study, Zn+Al+Al2O3, Zn+Cu+Al2O3 and Zn+Ni+Al2O3 composite materials were investigated. Zinc and aluminum give corrosion resistance by cathodic protection whereas copper and nickel will provide also more mechanical resistance. Coating properties, such as microstructures, open-cell potential behavior and mechanical properties (hardness and adhesion strength) were investigated. The coatings have relatively dense coating structures and for corrosion resistance, zinc gives a cathodic protection for other materials in these composite coatings. Furthermore, mechanical properties are sufficient due to the relatively high hardness and adhesion to the Fe52 steel base material. These coatings have high potential in their use as repair materials for macroscopic casting defects.
APA, Harvard, Vancouver, ISO, and other styles
3

Nakamura, Motoshi, Yamaguchi Kouji, Yoshiyuki Chiba, Hideki Hakuma, Taizo Kobayashi, and Tokio Nakada. "Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hildebrandt, T., N. Loones, M. Bouttemy, J. Vigneron, A. Etcheberry, D. Lincot, and N. Naghavi. "Towards a better understanding of the use of additives in Zn(S,O,OH) deposition bath for high efficiency Cu(In,Ga)Se2-based solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hariskos, Dimitrios, Philip Jackson, Wolfram Hempel, Stefan Paetel, Stefanie Spiering, Richard Menner, Wiltraud Wischmann, and Michael Powalla. "Notice of Removal Method for a high-rate solution deposition of Zn(O,S) buffer layer for high efficiency Cu(In,Ga)Se2-based solar cells." In 2017 IEEE 44th Photovoltaic Specialists Conference (PVSC). IEEE, 2017. http://dx.doi.org/10.1109/pvsc.2017.8366184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naghavi, Negar, Thibaud Hildebrandt, Muriel Bouttemy, Arnaud Etcheberry, and Daniel Lincot. "Impact of the deposition conditions of buffer and windows layers on lowering the metastability effects in Cu(In,Ga)Se2/Zn(S,O)-based solar cell." In SPIE OPTO, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2016. http://dx.doi.org/10.1117/12.2223151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khelfane, A., H. Tarzalt, B. Sebboua, H. Zerrouki, and N. Kesri. "Spray pyrolysis deposition of Cu-ZnO and Zn-SnO2 solar cells." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Xiaofei, Bin Zhou, Deren Yang, and Meng Tao. "Zn as the protective layer for Cu electrode in wafer-Si solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dawson, Mansoor Idrees, Samia Batool, and Raheel Nadeem. "Development of Cu-Zn-Al based shape memory alloy." In 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE). IEEE, 2017. http://dx.doi.org/10.1109/icase.2017.8374258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Emrani, Amin, Tara P. Dhakal, Chien-Yi Peng, and Charles R. Westgate. "CZTS solar cells fabricated by fast sulfurization of sputtered Sn/Zn/Cu precursors under H2S atmosphere." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925389.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Zn/Cu based cells"

1

Dakshinamurthy, S., S. Shetty, I. Bhat, C. Hitchcock, R. Gutmann, G. Charache, and M. Freeman. Fabrication and characterization of GaSb based thermophotovoltaic cells using Zn diffusion from a doped spin-on glass source. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/307843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoyanova-Ivanova, Angelina, Alexander Vasev, Peter Lilov, Violeta Petrova, Yordan Marinov, Antonia Stoyanova, Galia Ivanova, and Valdek Mikli. Conductive Ceramic Based on the Bi-Sr-Ca-Cu-O HTSC System as an Additive to the Zinc Electrode Mass in the Rechargeable Ni-Zn Batteries – Electrochemical Impedance Study. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leybourne, M. I., J. M. Peter, M A Schmidt, D. Layton-Matthews, A. Voinot, and L. Mathieu. Geochemical evidence for a magmatic contribution to the metal budget of the Windy Craggy Cu-Co(±Zn) volcanogenic massive-sulfide deposit, northwestern British Columbia. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328018.

Full text
Abstract:
Volcanogenic massive-sulfide (VMS) deposits may have had metal contributions from magmatic degassing and leaching of footwall rocks. The Windy Craggy Cu-Co-Zn VMS deposit in northwestern British Columbia may include magmatic contributions, based on laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of fluid inclusions (enriched in Sb, Sn, and Bi) and lithogeochemistry. Sulfide-mineral trace-element abundances in the massive-sulfide orebody, underlying stockwork zone, gold zone, and altered and unaltered mafic rock and argillite were analyzed by LA-ICP-MS. Elevated Au, W, As, Bi, Sb, Se, Te, Tl, Ag, Co, and Mo contents occur within the gold and/or stockwork zones. Increasing 'magmatic metals' with increasing Co/Ni values suggest direct magmatic contribution to the deposit. Covariation of Co with these so-called 'magmatic elements' indicates that it, too, may be of magmatic origin, sourced via fluids exsolved from a crystallizing magma; however, evidence from the composition of rocks and sulfide minerals from Windy Craggy and other VMS deposits suggests that there is probably no meaningful distinction between hydrothermal leaching and direct magmatic contributions and that most - if not all - fluids that form VMS deposits should be termed 'magmatic-hydrothermal'.
APA, Harvard, Vancouver, ISO, and other styles
4

Savosko, V., I. Komarova, Yu Lykholat, E. Yevtushenko, and T. Lykholat. Predictive model of heavy metals inputs to soil at Kryvyi Rih District and its use in the training for specialists in the field of Biology. IOP Publishing, 2021. http://dx.doi.org/10.31812/123456789/4511.

Full text
Abstract:
The importance of our research is due to the need to introduce into modern biological education methods of predictive modeling which are based on relevant factual material. Such an actual material may be the entry of natural and anthropic heavy metals into the soil at industrial areas. The object of this work: (i) to work out a predictive model of the total heavy metals inputs to soil at the Kryvyi Rih ore-mining & metallurgical District and (ii) to identify ways to use this model in biological education. Our study areas are located in the Kryvyi Rih District (Dnipropetrovsk region, Central Ukraine). In this work, classical scientific methods (such as analysis and synthesis, induction and deduction, analogy and formalization, abstraction and concretization, classification and modelling) were used. By summary the own research results and available scientific publications, the heavy metals total inputs to soils at Kryvyi Rih District was predicted. It is suggested that the current heavy metals content in soils of this region due to 1) natural and 2) anthropogenic flows, which are segmented into global and local levels. Predictive calculations show that heavy metals inputs to the soil of this region have the following values (mg ⋅ m2/year): Fe – 800-80 000, Mn – 125-520, Zn – 75-360, Ni – 20-30, Cu – 15-50, Pb – 7.5-120, Cd – 0.30-0.70. It is established that anthropogenic flows predominate in Fe and Pb inputs (60-99 %), natural flows predominate in Ni and Cd inputs (55-95 %). While, for Mn, Zn, and Cu inputs the alternate dominance of natural and anthropogenic flows are characterized. It is shown that the predictive model development for heavy metals inputs to soils of the industrial region can be used for efficient biological education (for example in bachelors of biologists training, discipline "Computer modelling in biology").
APA, Harvard, Vancouver, ISO, and other styles
5

Савосько, Василь Миколайович, Ірина Олександрівна Комарова, Юрій Васильович Лихолат, Едуард Олексійович Євтушенко,, and Тетяна Юріївна Лихолат. Predictive Model of Heavy Metals Inputs to Soil at Kryvyi Rih District and its Use in the Training for Specialists in the Field of Biology. IOP Publishing, 2021. http://dx.doi.org/10.31812/123456789/4266.

Full text
Abstract:
The importance of our research is due to the need to introduce into modern biological education methods of predictive modeling which are based on relevant factual material. Such an actual material may be the entry of natural and anthropic heavy metals into the soil at industrial areas. The object of this work: (i) to work out a predictive model of the total heavy metals inputs to soil at the Kryvyi Rih ore-mining & metallurgical District and (ii) to identify ways to use this model in biological education. Our study areas are located in the Kryvyi Rih District (Dnipropetrovsk region, Central Ukraine). In this work, classical scientific methods (such as analysis and synthesis, induction and deduction, analogy and formalization, abstraction and concretization, classification and modelling) were used. By summary the own research results and available scientific publications, the heavy metals total inputs to soils at Kryvyi Rih District was predicted. It is suggested that the current heavy metals content in soils of this region due to 1) natural and 2) anthropogenic flows, which are segmented into global and local levels. Predictive calculations show that heavy metals inputs to the soil of this region have the following values ( mg ∙ m ଶ year ⁄ ): Fe – 800-80 000, Mn – 125-520, Zn – 75-360, Ni – 20-30, Cu – 15-50, Pb – 7.5-120, Cd – 0.30-0.70. It is established that anthropogenic flows predominate in Fe and Pb inputs (60-99 %), natural flows predominate in Ni and Cd inputs (55-95 %). While, for Mn, Zn, and Cu inputs the alternate dominance of natural and anthropogenic flows are characterized. It is shown that the predictive model development for heavy metals inputs to soils of the industrial region can be used for efficient biological education (for example in bachelors of biologists training, discipline “Computer modelling in biology”).
APA, Harvard, Vancouver, ISO, and other styles
6

Knight, R. D., and B. A. Kjarsgaard. Comparative pXRF and Lab ICP-ES/MS methods for mineral resource assessment, Northwest Territories. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331239.

Full text
Abstract:
The Geological Survey of Canada undertook a mineral resource assessment for a proposed national park in northern Canada (~ 33,500 km2) spanning the transition from boreal forest to barren lands tundra. Bedrock geology of this region is complex and includes the Archean Slave Craton, the Archean and Paleoproterozoic Rae domain of the Churchill Province, the Paleoproterozoic Thelon and Taltson magmatic-tectonic zones, and the Paleoproterozoic East Arm sedimentary basin. The area has variable mineral potential for lode gold, kimberlite-hosted diamonds, VMS, vein uranium and copper, SEDEX, as well as other deposit types. A comparison of analytical methods was carried out after processing the field collected samples to acquire both the &amp;lt; 2 mm and for the &amp;lt; 0.063 mm size fractions for 241 surficial sediment (till) samples, collected using a 10 x 10 km grid. Analytical methods comprised: 1) aqua regia followed by ICP-MS analysis, 2) 4-acid hot dissolution followed by ICP-ES/MS analysis, 3) lithium metaborate/tetraborate fusion methods followed by ICP-ES for major elements and ICP-MS for trace elements and, 4) portable XRF on dried, non-sieved sediment samples subjected to a granular segregation processing technique (to produce a clay-silt proxy) for seventeen elements (Ba, Ca, Cr, Cu, Fe, K, Mn, Ni, Pb, Rb, Sr, Th, Ti, U, V, Zn, and Zr) Results indicate that pXRF data do not replicate exactly the laboratory 4-acid and fusion data (in terms of precision and accuracy), but the relationship between the datasets is systematic as displayed in x-y scattergrams. Interpolated single element plots indicate that till samples with anomalies of high and low pXRF concentration levels are synonymous with high and low laboratory-based analytical concentration levels, respectively. The pXRF interpolations thus illustrate the regional geochemical trends, and most importantly, the significant geochemical anomalies in the surficial samples. These results indicate that pXRF spectrometry for a subset of elements is comparable to traditional laboratory methods. pXRF spectrometry also provides the benefit of rapid analysis and data acquisition that has a direct influence on real time sampling designs. This information facilitates efficient and cost-effective field projects (i.e. where used to identify regions of interest for high density sampling), and to prioritize samples to be analyzed using traditional geochemical methods. These tactics should increase the efficiency and success of a mineral exploration and/or environmental sampling programs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography