Journal articles on the topic 'Zn-air battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zn-air battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chen, Jianping, Bangqing Ni, Jiugang Hu, Zexing Wu, and Wei Jin. "Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries." Journal of Materials Chemistry A 7, no. 39 (2019): 22507–13. http://dx.doi.org/10.1039/c9ta07669g.
Full textKatsaiti, Maria, Evangelos Papadogiannis, Vassilios Dracopoulos, Anastasios Keramidas, and Panagiotis Lianos. "Solar charging of a Zn-air battery." Journal of Power Sources 555 (January 2023): 232384. http://dx.doi.org/10.1016/j.jpowsour.2022.232384.
Full textSong, Dongmei, Changgang Hu, Zijian Gao, Bo Yang, Qingxia Li, Xinxing Zhan, Xin Tong, and Juan Tian. "Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery." Materials 15, no. 17 (August 24, 2022): 5837. http://dx.doi.org/10.3390/ma15175837.
Full textOkobira, Tatsuya, Dang-Trang Nguyen, and Kozo Taguchi. "Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance." International Journal of Applied Electromagnetics and Mechanics 64, no. 1-4 (December 10, 2020): 57–64. http://dx.doi.org/10.3233/jae-209307.
Full textMohamad, A. A. "Zn/gelled 6M KOH/O2 zinc–air battery." Journal of Power Sources 159, no. 1 (September 2006): 752–57. http://dx.doi.org/10.1016/j.jpowsour.2005.10.110.
Full textWang, Yueyang, Jie Liu, Yuping Feng, Ningyuan Nie, Mengmeng Hu, Jiaqi Wang, Guangxing Pan, Jiaheng Zhang, and Yan Huang. "An intrinsically stretchable and compressible Zn–air battery." Chemical Communications 56, no. 35 (2020): 4793–96. http://dx.doi.org/10.1039/d0cc00823k.
Full textDeyab, M. A., and G. Mele. "Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery." Journal of Power Sources 443 (December 2019): 227264. http://dx.doi.org/10.1016/j.jpowsour.2019.227264.
Full textFeng, Yunxiao, Changdong Chen, Yanling Li, Ming La, and Yongjun Han. "Zn/CoP polyhedron as electrocatalyst for water splitting and Zn-air battery." International Journal of Electrochemical Science 18, no. 6 (June 2023): 100153. http://dx.doi.org/10.1016/j.ijoes.2023.100153.
Full textMarsudi, Maradhana Agung, Yuanyuan Ma, Bagas Prakoso, Jayadi Jaya Hutani, Arie Wibowo, Yun Zong, Zhaolin Liu, and Afriyanti Sumboja. "Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries." Catalysts 10, no. 1 (January 1, 2020): 64. http://dx.doi.org/10.3390/catal10010064.
Full textDeiss, E., F. Holzer, and O. Haas. "Modeling of an electrically rechargeable alkaline Zn–air battery." Electrochimica Acta 47, no. 25 (September 2002): 3995–4010. http://dx.doi.org/10.1016/s0013-4686(02)00316-x.
Full textPhuc, Nguyen Huu Huy, Tran Anh Tu, Luu Cam Loc, Cao Xuan Viet, Pham Thi Thuy Phuong, Nguyen Tri, and Le Van Thang. "A Review of Bifunctional Catalysts for Zinc-Air Batteries." Nanoenergy Advances 3, no. 1 (February 2, 2023): 13–47. http://dx.doi.org/10.3390/nanoenergyadv3010003.
Full textFang, Weiguang, Zhiman Bai, Xinxin Yu, Wen Zhang, and Mingzai Wu. "Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn–air batteries." Nanoscale 12, no. 21 (2020): 11746–58. http://dx.doi.org/10.1039/d0nr02376k.
Full textPonnada, Sreekanth, Bhagirath Saini, Rahul Singhal, and Rakesh K. Sharma. "(Digital Presentation) Intercalated Layered TaSi2N4 Electrodes of Zn–Air Battery." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 22. http://dx.doi.org/10.1149/ma2022-02122mtgabs.
Full textMasri, M. N., M. F. M. Nazeri, and A. A. Mohamad. "Sago Gel Polymer Electrolyte for Zinc-Air Battery." Advances in Science and Technology 72 (October 2010): 305–8. http://dx.doi.org/10.4028/www.scientific.net/ast.72.305.
Full textWang, Min, Xiaoxiao Huang, Zhiqian Yu, Pei Zhang, Chunyang Zhai, Hucheng Song, Jun Xu, and Kunji Chen. "A Stable Rechargeable Aqueous Zn–Air Battery Enabled by Heterogeneous MoS2 Cathode Catalysts." Nanomaterials 12, no. 22 (November 18, 2022): 4069. http://dx.doi.org/10.3390/nano12224069.
Full textLiu, Ning, Honglu Hu, Xinxin Xu, and Qiang Wang. "Hybrid battery integrated by Zn-air and Zn-Co3O4 batteries at cell level." Journal of Energy Chemistry 49 (October 2020): 375–83. http://dx.doi.org/10.1016/j.jechem.2020.02.037.
Full textNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga, and Sándor Kéki. "“In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery." Batteries 8, no. 11 (November 3, 2022): 212. http://dx.doi.org/10.3390/batteries8110212.
Full textLee, Sang-Heon, Yong-Joo Jeong, Si-Hyoun Lim, Eun-Ah Lee, Cheol-Woo Yi, and Keon Kim. "The Stable Rechargeability of Secondary Zn-Air Batteries: Is It Possible to Recharge a Zn-Air Battery?" Journal of the Korean Electrochemical Society 13, no. 1 (February 27, 2010): 45–49. http://dx.doi.org/10.5229/jkes.2010.13.1.045.
Full textLiu, Hang, Zhongwen Mai, Xinxin Xu, and Yi Wang. "A Co-MOF-derived oxygen-vacancy-rich Co3O4-based composite as a cathode material for hybrid Zn batteries." Dalton Transactions 49, no. 9 (2020): 2880–87. http://dx.doi.org/10.1039/c9dt04682h.
Full textHan, Li-Na, Li-Bing Lv, Qian-Cheng Zhu, Xiao Wei, Xin-Hao Li, and Jie-Sheng Chen. "Ultra-durable two-electrode Zn–air secondary batteries based on bifunctional titania nanocatalysts: a Co2+ dopant boosts the electrochemical activity." Journal of Materials Chemistry A 4, no. 20 (2016): 7841–47. http://dx.doi.org/10.1039/c6ta02143c.
Full textBera, Raj Kumar, Hongjun Park, and Ryong Ryoo. "Co3O4 nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery." Journal of Materials Chemistry A 7, no. 16 (2019): 9988–96. http://dx.doi.org/10.1039/c9ta01482a.
Full textKecsmár, Gergő, Máté Czagány, Péter Baumli, and Zsolt Dobó. "The influence of different air electrode structures to discharge characteristics in rechargeable Zn-air battery." Analecta Technica Szegedinensia 17, no. 2 (April 27, 2023): 1–8. http://dx.doi.org/10.14232/analecta.2023.2.1-8.
Full textLv, Xiaodong, Ming Chen, Hideo Kimura, Wei Du, and Xiaoyang Yang. "Biomass-Derived Carbon Materials for the Electrode of Metal–Air Batteries." International Journal of Molecular Sciences 24, no. 4 (February 13, 2023): 3713. http://dx.doi.org/10.3390/ijms24043713.
Full textIshihara, T., L. M. Guo, T. Miyano, Y. Inoishi, K. Kaneko, and S. Ida. "Mesoporous La0.6Ca0.4CoO3 perovskites with large surface areas as stable air electrodes for rechargeable Zn–air batteries." Journal of Materials Chemistry A 6, no. 17 (2018): 7686–92. http://dx.doi.org/10.1039/c8ta00426a.
Full textIshihara, Tatsumi, and Yuiko Inoishi. "Air Electrode Property of Doped NiCo2O4 Based Oxide for Rechargeable Zn-Air Battery." ECS Meeting Abstracts MA2020-02, no. 2 (November 23, 2020): 491. http://dx.doi.org/10.1149/ma2020-022491mtgabs.
Full textChang, Chia-Che, Yi-Cheng Lee, Hsiang-Ju Liao, Yu-Ting Kao, Ji-Yao An, and Di-Yan Wang. "Flexible Hybrid Zn–Ag/Air Battery with Long Cycle Life." ACS Sustainable Chemistry & Engineering 7, no. 2 (December 18, 2018): 2860–66. http://dx.doi.org/10.1021/acssuschemeng.8b06328.
Full textSantos, F., A. Urbina, J. Abad, R. López, C. Toledo, and A. J. Fernández Romero. "Environmental and economical assessment for a sustainable Zn/air battery." Chemosphere 250 (July 2020): 126273. http://dx.doi.org/10.1016/j.chemosphere.2020.126273.
Full textAndrade, Tatiana Santos, Vassilios Dracopoulos, Márcio César Pereira, and Panagiotis Lianos. "Unmediated photoelectrochemical charging of a Zn-air battery: The realization of the photoelectrochemical battery." Journal of Electroanalytical Chemistry 878 (December 2020): 114709. http://dx.doi.org/10.1016/j.jelechem.2020.114709.
Full textDilshad, Khaleel Ahmed J., and M. K. Rabinal. "Rationally Designed Zn-Anode and Co3O4-Cathode Nanoelectrocatalysts for an Efficient Zn–Air Battery." Energy & Fuels 35, no. 15 (July 26, 2021): 12588–98. http://dx.doi.org/10.1021/acs.energyfuels.1c01108.
Full textHyun, Suyeon, Apichat Saejio, and Sangaraju Shanmugam. "Pd nanoparticles deposited on Co(OH)2 nanoplatelets as a bifunctional electrocatalyst and their application in Zn–air and Li–O2 batteries." Nanoscale 12, no. 34 (2020): 17858–69. http://dx.doi.org/10.1039/d0nr05403h.
Full textHuang, Jianhang, Zhanhong Yang, Ruijuan Wang, Zheng Zhang, Zhaobin Feng, and Xiaoe Xie. "Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery." Journal of Materials Chemistry A 3, no. 14 (2015): 7429–36. http://dx.doi.org/10.1039/c5ta00279f.
Full textAndrade, Tatiana S., Antero R. S. Neto, Francisco G. E. Nogueira, Luiz C. A. Oliveira, Márcio C. Pereira, and Panagiotis Lianos. "Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode." Catalysts 12, no. 10 (October 15, 2022): 1240. http://dx.doi.org/10.3390/catal12101240.
Full textChristensen, Mathias K., Jette Katja Mathiesen, Søren Bredmose Simonsen, and Poul Norby. "Transformation and migration in secondary zinc–air batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography." Journal of Materials Chemistry A 7, no. 11 (2019): 6459–66. http://dx.doi.org/10.1039/c8ta11554k.
Full textLorca, Sebastián, Florencio Santos, Javier Padilla, J. J. López Cascales, and Antonio J. Fernández Romero. "Importance of Continuous and Simultaneous Monitoring of Both Electrode Voltages during Discharge/Charge Battery Tests: Application to Zn-Based Batteries." Batteries 8, no. 11 (November 7, 2022): 221. http://dx.doi.org/10.3390/batteries8110221.
Full textMeng, Jing, Fangming Liu, Zhenhua Yan, Fangyi Cheng, Fujun Li, and Jun Chen. "Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries." Inorganic Chemistry Frontiers 5, no. 9 (2018): 2167–73. http://dx.doi.org/10.1039/c8qi00404h.
Full textLuo, Xinyi, Zhaoxu Li, Meifang Luo, Chaozhong Guo, Lingtao Sun, Shijian Lan, Ruyue Luo, Lan Huang, Yuan Qin, and Zhongli Luo. "Boosting the primary Zn–air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures." Journal of Materials Chemistry A 8, no. 19 (2020): 9832–42. http://dx.doi.org/10.1039/d0ta02741c.
Full textWang, Yanqiu, Baoying Yu, Kang Liu, Xuetao Yang, Min Liu, Ting-Shan Chan, Xiaoqing Qiu, Jie Li, and Wenzhang Li. "Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal–air batteries." Journal of Materials Chemistry A 8, no. 4 (2020): 2131–39. http://dx.doi.org/10.1039/c9ta12171d.
Full textYang, Jian, Le Chang, Heng Guo, Jiachen Sun, Jingyin Xu, Fei Xiang, Yanning Zhang, et al. "Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries." Journal of Materials Chemistry A 8, no. 3 (2020): 1229–37. http://dx.doi.org/10.1039/c9ta11654k.
Full textWang, Yongxia, Mingjie Wu, Jun Li, Haitao Huang, and Jinli Qiao. "In situ growth of CoP nanoparticles anchored on (N,P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery." Journal of Materials Chemistry A 8, no. 36 (2020): 19043–49. http://dx.doi.org/10.1039/d0ta06435a.
Full textDeng, Jie, Lei Wang, Fangming Jin, and Yun Hang Hu. "Metal-free surface-microporous graphene electrocatalysts from CO2 for rechargeable all-solid-state zinc–air batteries." Journal of Materials Chemistry A 9, no. 16 (2021): 10081–87. http://dx.doi.org/10.1039/d1ta01001h.
Full textWang, Jie, Zexing Wu, Lili Han, Cuijuan Xuan, Jing Zhu, Weiping Xiao, Jianzhong Wu, Huolin L. Xin, and Deli Wang. "A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes." Sustainable Energy & Fuels 1, no. 4 (2017): 823–31. http://dx.doi.org/10.1039/c7se00085e.
Full textZhang, Yijie, Yong Zhao, Muwei Ji, Han-ming Zhang, Minghui Zhang, Hang Zhao, Mengsi Cheng, et al. "Synthesis of Fe3C@porous carbon nanorods via carbonizing Fe complexes for oxygen reduction reaction and Zn–air battery." Inorganic Chemistry Frontiers 7, no. 4 (2020): 889–96. http://dx.doi.org/10.1039/c9qi01544b.
Full textLuo, Xinlei, Ziheng Zheng, Bingxue Hou, Xianpan Xie, and Cheng Cheng Wang. "Facile synthesis of a MOF-derived Co–N–C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn–air batteries." RSC Advances 13, no. 27 (2023): 18888–97. http://dx.doi.org/10.1039/d3ra02191b.
Full textWang, Kun, Zhuohua Mo, Songtao Tang, Mingyang Li, Hao Yang, Bei Long, Yi Wang, Shuqin Song, and Yexiang Tong. "Photo-enhanced Zn–air batteries with simultaneous highly efficient in situ H2O2 generation for wastewater treatment." Journal of Materials Chemistry A 7, no. 23 (2019): 14129–35. http://dx.doi.org/10.1039/c9ta04253a.
Full textWang, Chengcheng, Ziheng Zheng, Zian Chen, Xinlei Luo, Bingxue Hou, Mortaza Gholizadeh, Xiang Gao, Xincan Fan, and Zanxiong Tan. "Enhancement on PrBa0.5Sr0.5Co1.5Fe0.5O5 Electrocatalyst Performance in the Application of Zn-Air Battery." Catalysts 12, no. 7 (July 20, 2022): 800. http://dx.doi.org/10.3390/catal12070800.
Full textTomboc, Gracita M., Peng Yu, Taehyun Kwon, Kwangyeol Lee, and Jinghong Li. "Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery." APL Materials 8, no. 5 (May 1, 2020): 050905. http://dx.doi.org/10.1063/5.0005137.
Full textNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga, and Sándor Kéki. "Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode." Electrochimica Acta 368 (February 2021): 137592. http://dx.doi.org/10.1016/j.electacta.2020.137592.
Full textHe, Yingjie, Drew Aasen, Haoyang Yu, Matthew Labbe, Douglas G. Ivey, and Jonathan G. C. Veinot. "Mn3O4 nanoparticle-decorated hollow mesoporous carbon spheres as an efficient catalyst for oxygen reduction reaction in Zn–air batteries." Nanoscale Advances 2, no. 8 (2020): 3367–74. http://dx.doi.org/10.1039/d0na00428f.
Full textTong, Fanglei, Xize Chen, Shanghai Wei, Jenny Malmström, Joseph Vella, and Wei Gao. "Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery." Journal of Magnesium and Alloys 9, no. 6 (November 2021): 1967–76. http://dx.doi.org/10.1016/j.jma.2021.08.022.
Full textHao, Yongchao, Yuqi Xu, Nana Han, Junfeng Liu, and Xiaoming Sun. "Boosting the bifunctional electrocatalytic oxygen activities of CoOxnanoarrays with a porous N-doped carbon coating and their application in Zn–air batteries." Journal of Materials Chemistry A 5, no. 34 (2017): 17804–10. http://dx.doi.org/10.1039/c7ta03996d.
Full text