To see the other types of publications on this topic, follow the link: Zinc fingers.

Journal articles on the topic 'Zinc fingers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zinc fingers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Keller, A. D., and T. Maniatis. "Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding." Molecular and Cellular Biology 12, no. 5 (May 1992): 1940–49. http://dx.doi.org/10.1128/mcb.12.5.1940-1949.1992.

Full text
Abstract:
The eukaryotic transcriptional repressor PRDI-BF1 contains five zinc fingers of the C2H2 type, and the protein binds specifically to PRDI, a 14-bp regulatory element of the beta interferon gene promoter. We have investigated the amino acid sequence requirements for specific binding to PRDI and found that the five zinc fingers and a short stretch of amino acids N terminal to the first finger are necessary and sufficient for PRDI-specific binding. The contribution of individual zinc fingers to DNA binding was investigated by inserting them in various combinations into another zinc finger-containing DNA-binding protein whose own fingers had been removed. We found that insertion of PRDI-BF1 zinc fingers 1 and 2 confer PRDI-binding activity on the recipient protein. In contrast, the insertion of PRDI-BF1 zinc fingers 2 through 5, the insertion of zinc finger 1 or 2 alone, and the insertion of zinc fingers 1 and 2 in reverse order did not confer PRDI-binding activity. We conclude that the first two PRDI-BF1 zinc fingers together are sufficient for the sequence-specific recognition of PRDI.
APA, Harvard, Vancouver, ISO, and other styles
2

Keller, A. D., and T. Maniatis. "Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding." Molecular and Cellular Biology 12, no. 5 (May 1992): 1940–49. http://dx.doi.org/10.1128/mcb.12.5.1940.

Full text
Abstract:
The eukaryotic transcriptional repressor PRDI-BF1 contains five zinc fingers of the C2H2 type, and the protein binds specifically to PRDI, a 14-bp regulatory element of the beta interferon gene promoter. We have investigated the amino acid sequence requirements for specific binding to PRDI and found that the five zinc fingers and a short stretch of amino acids N terminal to the first finger are necessary and sufficient for PRDI-specific binding. The contribution of individual zinc fingers to DNA binding was investigated by inserting them in various combinations into another zinc finger-containing DNA-binding protein whose own fingers had been removed. We found that insertion of PRDI-BF1 zinc fingers 1 and 2 confer PRDI-binding activity on the recipient protein. In contrast, the insertion of PRDI-BF1 zinc fingers 2 through 5, the insertion of zinc finger 1 or 2 alone, and the insertion of zinc fingers 1 and 2 in reverse order did not confer PRDI-binding activity. We conclude that the first two PRDI-BF1 zinc fingers together are sufficient for the sequence-specific recognition of PRDI.
APA, Harvard, Vancouver, ISO, and other styles
3

GREEN, Andrew, and Bibudhendra SARKAR. "Alteration of zif268 zinc-finger motifs gives rise to non-native zinc-co-ordination sites but preserves wild-type DNA recognition." Biochemical Journal 333, no. 1 (July 1, 1998): 85–90. http://dx.doi.org/10.1042/bj3330085.

Full text
Abstract:
Zinc fingers are among the major structural motifs found in proteins that are involved in eukaryotic gene regulation. Many of these zinc-finger domains are involved in DNA binding. This study investigated whether the zinc-co-ordinating (Cys)2(His)2 motif found in the three zinc fingers of zif268 could be replaced by a (Cys)4 motif while still preserving DNA recognition. (Cys)2(His)2-to-(Cys)4 mutations were generated in each of the three zinc fingers of zif268 individually, as well as in fingers 1 and 3, and fingers 2 and 3 together. Whereas finger 1 and finger 3 tolerate the switch, such an alteration in finger 2 renders the polypeptide incapable of DNA recognition. The protein–DNA interaction was examined in greater detail by using a methylation-interference assay. The mutant polypeptides containing the (Cys)4 motif in fingers 1 or 3 recognize DNA in a manner identical to the wild-type protein, suggesting that the (Cys)4 motif appears to give rise to a properly folded finger. Additional results indicate that a zif268 variant containing a (Cys)2(His)(Ala) arrangement in finger 1 is also capable of DNA recognition in a manner identical to the wild-type polypeptide. This appears to be the first time that such alterations, in the context of an intact DNA-binding domain, have still allowed for specific DNA recognition. Taken together, the work presented here enhances our understanding of the relationship between metal ligation and DNA-binding by zinc fingers.
APA, Harvard, Vancouver, ISO, and other styles
4

Klug, Aaron, and John W. R. Schwabe. "Zinc fingers." FASEB Journal 9, no. 8 (May 1995): 597–604. http://dx.doi.org/10.1096/fasebj.9.8.7768350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rhodes, Daniela, and Aaron Klug. "Zinc Fingers." Scientific American 268, no. 2 (February 1993): 56–65. http://dx.doi.org/10.1038/scientificamerican0293-56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaptein, Robert. "Zinc fingers." Current Opinion in Structural Biology 1, no. 1 (February 1991): 63–70. http://dx.doi.org/10.1016/0959-440x(91)90013-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drummond, I. A., H. D. Rupprecht, P. Rohwer-Nutter, J. M. Lopez-Guisa, S. L. Madden, F. J. Rauscher, and V. P. Sukhatme. "DNA recognition by splicing variants of the Wilms' tumor suppressor, WT1." Molecular and Cellular Biology 14, no. 6 (June 1994): 3800–3809. http://dx.doi.org/10.1128/mcb.14.6.3800-3809.1994.

Full text
Abstract:
The Wilms' tumor suppressor, WT1, is a zinc finger transcriptional regulator which exists as multiple forms owing to alternative mRNA splicing. The most abundant splicing variants contain a nine-nucleotide insertion encoding lysine, threonine, and serine (KTS) in the H-C link region between the third and fourth WT1 zinc fingers which disrupts binding to a previously defined WT1-EGR1 binding site. We have identified WT1[+KTS] binding sites in the insulin-like growth factor II gene and show that WT1[+KTS] represses transcription from the insulin-like growth factor II P3 promoter. The highest affinity WT1[+KTS] DNA binding sites included nucleotide contacts involving all four WT1 zinc fingers. We also found that different subsets of three WT1 zinc fingers could bind to distinct DNA recognition elements. A tumor-associated, WT1 finger 3 deletion mutant was shown to bind to juxtaposed nucleotide triplets for the remaining zinc fingers 1, 2, and 4. The characterization of novel WT1 DNA recognition elements adds a new level of complexity to the potential gene regulatory activity of WT1. The results also present the possibility that altered DNA recognition by the dominant WT1 zinc finger 3 deletion mutant may contribute to tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
8

Drummond, I. A., H. D. Rupprecht, P. Rohwer-Nutter, J. M. Lopez-Guisa, S. L. Madden, F. J. Rauscher, and V. P. Sukhatme. "DNA recognition by splicing variants of the Wilms' tumor suppressor, WT1." Molecular and Cellular Biology 14, no. 6 (June 1994): 3800–3809. http://dx.doi.org/10.1128/mcb.14.6.3800.

Full text
Abstract:
The Wilms' tumor suppressor, WT1, is a zinc finger transcriptional regulator which exists as multiple forms owing to alternative mRNA splicing. The most abundant splicing variants contain a nine-nucleotide insertion encoding lysine, threonine, and serine (KTS) in the H-C link region between the third and fourth WT1 zinc fingers which disrupts binding to a previously defined WT1-EGR1 binding site. We have identified WT1[+KTS] binding sites in the insulin-like growth factor II gene and show that WT1[+KTS] represses transcription from the insulin-like growth factor II P3 promoter. The highest affinity WT1[+KTS] DNA binding sites included nucleotide contacts involving all four WT1 zinc fingers. We also found that different subsets of three WT1 zinc fingers could bind to distinct DNA recognition elements. A tumor-associated, WT1 finger 3 deletion mutant was shown to bind to juxtaposed nucleotide triplets for the remaining zinc fingers 1, 2, and 4. The characterization of novel WT1 DNA recognition elements adds a new level of complexity to the potential gene regulatory activity of WT1. The results also present the possibility that altered DNA recognition by the dominant WT1 zinc finger 3 deletion mutant may contribute to tumorigenesis.
APA, Harvard, Vancouver, ISO, and other styles
9

Heller, Jennifer, Hilde Schjerven, Ju Qiu, Aileen Lee, Stephen Smale, and Liang Zhou. "Selective requirement of Ikaros zinc fingers in Treg and Th17 fate decision. (P1137)." Journal of Immunology 190, no. 1_Supplement (May 1, 2013): 50.11. http://dx.doi.org/10.4049/jimmunol.190.supp.50.11.

Full text
Abstract:
Abstract TGF-β is a common factor important for the differentiation of pro-inflammatory Th17 and anti-inflammatory inducible Treg cells. However, the precise molecular mechanisms underlying the fate decision of differentiating CD4+ T cells in the presence of TGF-β is poorly understood. Here, we show that distinctive N-terminal DNA-binding zinc fingers of Ikaros play essential roles in Treg and Th17 fate decision. Ikaros has a highly conserved DNA-binding domain near the N-terminus with four tandem zinc fingers. Zinc fingers 2 and 3 are required for stable binding to DNA, whereas fingers 1 and 4 appear to be important for differentially modulating binding properties to specific sites at target genes. Our data show that T cells lacking Ikaros zinc finger 4 but not 1 failed to differentiate into Foxp3+ Tregs upon TGF-β stimulation. Instead, TGF-β-skewed Ikaros zinc finger 4 mutant cells displayed aberrant upregulation of Th17-associated cytokines IL-17 and IL-22. IL-17 but not IL-22 upregulation is dependent on transcription factor RORγt. Aryl hydrocarbon receptor, an essential transcription factor required for IL-22 expression, was unexpectedly decreased. Together, our data uncover a novel selective requirement for Ikaros zinc fingers in the differentiation of Treg and Th17 cells and an intricate interplay among various transcription factors in programming Th17/Treg lineages. We are currently examining the role of Ikaros zinc finger 4 in infection and autoimmunity.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yong, Tomoki Kimura, John H. Laity, and Glen K. Andrews. "The Zinc-Sensing Mechanism of Mouse MTF-1 Involves Linker Peptides between the Zinc Fingers." Molecular and Cellular Biology 26, no. 15 (August 1, 2006): 5580–87. http://dx.doi.org/10.1128/mcb.00471-06.

Full text
Abstract:
ABSTRACT Mouse metal response element-binding transcription factor-1 (MTF-1) regulates the transcription of genes in response to a variety of stimuli, including exposure to zinc or cadmium, hypoxia, and oxidative stress. Each of these stresses may increase labile cellular zinc, leading to nuclear translocation, DNA binding, and transcriptional activation of metallothionein genes (MT genes) by MTF-1. Several lines of evidence suggest that the highly conserved six-zinc finger DNA-binding domain of MTF-1 also functions as a zinc-sensing domain. In this study, we investigated the potential role of the peptide linkers connecting the four N-terminal zinc fingers of MTF-1 in their zinc-sensing function. Each of these three linkers is unique, completely conserved among all known vertebrate MTF-1 orthologs, and different from the canonical Cys2His2 zinc finger TGEKP linker sequence. Replacing the RGEYT linker between zinc fingers 1 and 2 with TGEKP abolished the zinc-sensing function of MTF-1, resulting in constitutive DNA binding, nuclear translocation, and transcriptional activation of the MT-I gene. In contrast, swapping the TKEKP linker between fingers 2 and 3 with TGEKP had little effect on the metal-sensing functions of MTF-1, whereas swapping the canonical linker for the shorter TGKT linker between fingers 3 and 4 rendered MTF-1 less sensitive to zinc-dependent activation both in vivo and in vitro. These observations suggest a mechanism by which physiological concentrations of accessible cellular zinc affect MTF-1 activity. Zinc may modulate highly specific, linker-mediated zinc finger interactions in MTF-1, thus affecting its zinc- and DNA-binding activities, resulting in translocation to the nucleus and binding to the MT-I gene promoter.
APA, Harvard, Vancouver, ISO, and other styles
11

Morris, J. F., R. Hromas, and F. J. Rauscher. "Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core." Molecular and Cellular Biology 14, no. 3 (March 1994): 1786–95. http://dx.doi.org/10.1128/mcb.14.3.1786-1795.1994.

Full text
Abstract:
The myeloid zinc finger gene 1, MZF1, encodes a transcription factor which is expressed in hematopoietic progenitor cells that are committed to myeloid lineage differentiation. MZF1 contains 13 C2H2 zinc fingers arranged in two domains which are separated by a short glycine- and proline-rich sequence. The first domain consists of zinc fingers 1 to 4, and the second domain is formed by zinc fingers 5 to 13. We have determined that both sets of zinc finger domains bind DNA. Purified, recombinant MZF1 proteins containing either the first set of zinc fingers or the second set were prepared and used to affinity select DNA sequences from a library of degenerate oligonucleotides by using successive rounds of gel shift followed by PCR amplification. Surprisingly, both DNA-binding domains of MZF1 selected similar DNA-binding consensus sequences containing a core of four or five guanine residues, reminiscent of an NF-kappa B half-site: 1-4, 5'-AGTGGGGA-3'; 5-13, 5'-CGGGnGAGGGGGAA-3'. The full-length MZF1 protein containing both sets of zinc finger DNA-binding domains recognizes synthetic oligonucleotides containing either the 1-4 or 5-13 consensus binding sites in gel shift assays. Thus, we have identified the core DNA consensus binding sites for each of the two DNA-binding domains of a myeloid-specific zinc finger transcription factor. Identification of these DNA-binding sites will allow us to identify target genes regulated by MZF1 and to assess the role of MZF1 as a transcriptional regulator of hematopoiesis.
APA, Harvard, Vancouver, ISO, and other styles
12

Morris, J. F., R. Hromas, and F. J. Rauscher. "Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core." Molecular and Cellular Biology 14, no. 3 (March 1994): 1786–95. http://dx.doi.org/10.1128/mcb.14.3.1786.

Full text
Abstract:
The myeloid zinc finger gene 1, MZF1, encodes a transcription factor which is expressed in hematopoietic progenitor cells that are committed to myeloid lineage differentiation. MZF1 contains 13 C2H2 zinc fingers arranged in two domains which are separated by a short glycine- and proline-rich sequence. The first domain consists of zinc fingers 1 to 4, and the second domain is formed by zinc fingers 5 to 13. We have determined that both sets of zinc finger domains bind DNA. Purified, recombinant MZF1 proteins containing either the first set of zinc fingers or the second set were prepared and used to affinity select DNA sequences from a library of degenerate oligonucleotides by using successive rounds of gel shift followed by PCR amplification. Surprisingly, both DNA-binding domains of MZF1 selected similar DNA-binding consensus sequences containing a core of four or five guanine residues, reminiscent of an NF-kappa B half-site: 1-4, 5'-AGTGGGGA-3'; 5-13, 5'-CGGGnGAGGGGGAA-3'. The full-length MZF1 protein containing both sets of zinc finger DNA-binding domains recognizes synthetic oligonucleotides containing either the 1-4 or 5-13 consensus binding sites in gel shift assays. Thus, we have identified the core DNA consensus binding sites for each of the two DNA-binding domains of a myeloid-specific zinc finger transcription factor. Identification of these DNA-binding sites will allow us to identify target genes regulated by MZF1 and to assess the role of MZF1 as a transcriptional regulator of hematopoiesis.
APA, Harvard, Vancouver, ISO, and other styles
13

Rollins, M. B., S. Del Rio, A. L. Galey, D. R. Setzer, and M. T. Andrews. "Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos." Molecular and Cellular Biology 13, no. 8 (August 1993): 4776–83. http://dx.doi.org/10.1128/mcb.13.8.4776-4783.1993.

Full text
Abstract:
The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.
APA, Harvard, Vancouver, ISO, and other styles
14

Rollins, M. B., S. Del Rio, A. L. Galey, D. R. Setzer, and M. T. Andrews. "Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos." Molecular and Cellular Biology 13, no. 8 (August 1993): 4776–83. http://dx.doi.org/10.1128/mcb.13.8.4776.

Full text
Abstract:
The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.
APA, Harvard, Vancouver, ISO, and other styles
15

Weitzman, Jonathan B. "Designer zinc-fingers." Genome Biology 3 (2002): spotlight—20021111–02. http://dx.doi.org/10.1186/gb-spotlight-20021111-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kaminski, Joseph, and James Bradley Summers. "Delivering zinc fingers." Nature Biotechnology 21, no. 5 (May 2003): 492–93. http://dx.doi.org/10.1038/nbt0503-492b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Huiyu, Xiaomei Chen, Wei Xiong, Fang Liu, and Shiang Huang. "The Regulation of Zinc Finger Proteins by Mirnas Enriched in ALL-Microvesicles." Blood 120, no. 21 (November 16, 2012): 1448. http://dx.doi.org/10.1182/blood.v120.21.1448.1448.

Full text
Abstract:
Abstract Abstract 1448 Microvesicles (MVs) are submicrometric membrane fragments and they can “hijack” membrane components and engulf cytoplasmic contents from their cellular origin. MVs are enriched in various bioactive molecules of their parental cells, such as proteins, DNA, mRNA and miRNAs. Microvesicles (MVs) released by leukemia cells constitute an important part of the leukemia microenvironment. As a cell-to-cell communication tool, MVs transfer microRNA (miRNA) between cells. MVs miRNAs may also provide an insight in the role of miRNAs playing in the underlying of pathophysiologic processes of various leukemia. We determined the miRNA expression profiles of ALL-derived MVs using Agilent miRNA microarray analysis. The five miRNAs obtained by microarray profiling were validated using real-time PCR. The putative target genes were predicted by bioformation software. We identified 182 and 166 dysregulated miRNAs in MVs derived from Nalm 6 cells and from Jurkat cells, respectively. Both up regulated (123/182 in Nalm 6-MVs and 114/166 in Jurkat- MVs) and down regulated (59/182 in Nalm 6-MVs and 52/166 in Jurkat- MVs) expressions were observed compared with MVs from normal peripheral blood the MVs normal control. When we analyzed those miRNA with bioinformatic tools (TargetScan), we found an interesting phenomenon that presence of 111 zinc fingers genes were regulated by 52 miRNAs, indicating that the ALL-microvesicles were enriched with miRNAs regulating zinc finger proteins. They encompassed zinc fingers and homeoboxes 2, zinc finger, ZZ-type containing 3, zinc finger, SWIM-type containing 1, zinc finger, RAN-binding domain containing 3, zinc finger, NFX1-type containing 1, zinc finger, MYM-type 4, zinc finger, FYVE domain containing 1 and their 5 subtypes; zinc finger, DHHC-type containing16, and other subtypes; zinc finger, CCHC domain containing 14 and 7A, zinc finger, BED-type containing 4; zinc finger protein, X-linked; zinc finger protein, multitype 2; zinc finger protein 81, and their 55 subtypes; zinc finger and SCAN domain containing 18, zinc finger and BTB domain containing 9. ALL-microvesicles were enriched with expression changes of distinct sets of miRNAs regulating zinc finger proteins. This provides clues that genes commonly function together. It is worth noting that 52 miRNA regulating above zinc finger protein genes were up-expressed, suggeting that miRNA regulating zinc fingers were active in ALL-MVs. Zinc finger proteins are important transcriptions in eukaryotes and play roles in regulating gene. Some members of the Zinc finger family have close relationaship with tumour. Zinc finger X-chromosomal protein (Zfx) is a protein that in humans is encoded by the ZFX gene. The level of Zfx expression correlates with aggressiveness and severity in many cancer types, including prostate cancer, breast cancer, gastric tumoural tissues, and leukemia. [1,2]. Zinc finger and homeoboxes 2 (ZHX2) was target gene of miRNA-1260. The role of miRNA are negatively regulated host gene expressions. ZHX2 inhibits HCC cell proliferation by preventing expression of Cyclins A and E, and reduces growth of xenograft tumors. Loss of nuclear ZHX2 might be an early step in the development of HCC[3]. In our study, the miRNA-1260 were 9 fold higher in ALL MVs. In leukeima microenvironment, ALL-MVs may transfer aberantly expressed miRNAs to their target cell lead to abnormally regulated the zinc finger proteins that may play roles in ALL. In this study, we demonstrated that ALL-microvesicles were enriched with expression changes of distinct sets of miRNAs regulating zinc finger proteins. Futhermore, Zinc fingers were active in ALL-MVs and commonly function together. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
18

Witte, M. M., and R. C. Dickson. "The C6 zinc finger and adjacent amino acids determine DNA-binding specificity and affinity in the yeast activator proteins LAC9 and PPR1." Molecular and Cellular Biology 10, no. 10 (October 1990): 5128–37. http://dx.doi.org/10.1128/mcb.10.10.5128-5137.1990.

Full text
Abstract:
LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.
APA, Harvard, Vancouver, ISO, and other styles
19

Witte, M. M., and R. C. Dickson. "The C6 zinc finger and adjacent amino acids determine DNA-binding specificity and affinity in the yeast activator proteins LAC9 and PPR1." Molecular and Cellular Biology 10, no. 10 (October 1990): 5128–37. http://dx.doi.org/10.1128/mcb.10.10.5128.

Full text
Abstract:
LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.
APA, Harvard, Vancouver, ISO, and other styles
20

Schjerven, Hilde, Seth Frietze, Jami McLaughlin, Donghui Cheng, Peggy Farnham, Owen Witte, and Stephen Smale. "Role of Ikaros in hematopoiesis and tumor suppression: Selective functions of individual zinc fingers within the DNA-binding domain of Ikaros. (42.3)." Journal of Immunology 188, no. 1_Supplement (May 1, 2012): 42.3. http://dx.doi.org/10.4049/jimmunol.188.supp.42.3.

Full text
Abstract:
Abstract Ikaros, a C2H2 zinc finger transcription factor, is a critical regulator of hematopoiesis and tumor suppression in the lymphoid lineage. The C2H2 zinc finger is the most prevalent DNA-binding motif in mammals, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, and to investigate in greater depth the role of Ikaros in hematopoiesis and tumor suppression, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling and DNA-binding analysis, reveal that different subsets of fingers within multi-finger transcription factors can modulate binding to different target sequences and regulate distinct target genes and biological functions. These novel mutant strains provide a powerful tool to elucidate Ikaros' role in hematopoiesis and tumor suppression. Furthermore, this study demonstrates that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors.
APA, Harvard, Vancouver, ISO, and other styles
21

Guo, Jianhui, Tiyun Wu, Bradley F. Kane, Donald G. Johnson, Louis E. Henderson, Robert J. Gorelick, and Judith G. Levin. "Subtle Alterations of the Native Zinc Finger Structures Have Dramatic Effects on the Nucleic Acid Chaperone Activity of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein." Journal of Virology 76, no. 9 (May 1, 2002): 4370–78. http://dx.doi.org/10.1128/jvi.76.9.4370-4378.2002.

Full text
Abstract:
ABSTRACT The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.
APA, Harvard, Vancouver, ISO, and other styles
22

Darby, M. K., and K. E. Joho. "Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene." Molecular and Cellular Biology 12, no. 7 (July 1992): 3155–64. http://dx.doi.org/10.1128/mcb.12.7.3155-3164.1992.

Full text
Abstract:
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.
APA, Harvard, Vancouver, ISO, and other styles
23

Darby, M. K., and K. E. Joho. "Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene." Molecular and Cellular Biology 12, no. 7 (July 1992): 3155–64. http://dx.doi.org/10.1128/mcb.12.7.3155.

Full text
Abstract:
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.
APA, Harvard, Vancouver, ISO, and other styles
24

Schulz, T. C., B. Hopwood, P. D. Rathjen, and J. R. Wells. "An unusual arrangement of 13 zinc fingers in the vertebrate gene Z13." Biochemical Journal 311, no. 1 (October 1, 1995): 219–24. http://dx.doi.org/10.1042/bj3110219.

Full text
Abstract:
The zinc finger is a protein domain that imparts specific nucleic acid-binding activity on a wide range of functionally important proteins. In this paper we report the molecular cloning and characterization of a novel murine zinc-finger gene, mZ13. Analysis of mZ13 cDNAs revealed that the gene expresses a 794-amino-acid protein encoded by a 2.7 kb transcript. The protein has an unusual arrangement of 13 zinc fingers into a ‘hand’ of 12 tandem fingers and a single isolated finger near the C-terminus. This structural organization is conserved with the probable chicken homologue, cZ13. mZ13 also contained an additional domain at the N-terminus which has previously been implicated in the regulation of zinc-finger transcription factor DNA-binding, via protein-protein interactions. mZ13 expression was detected in a wide range of murine embryonic and adult tissues. The structural organization of mZ13 and its expression profile suggest that it may function as a housekeeping DNA-binding protein that regulates the expression of specific genes.
APA, Harvard, Vancouver, ISO, and other styles
25

Shastry, B. S. "Transcription factor IIIA (TFIIIA) in the second decade." Journal of Cell Science 109, no. 3 (March 1, 1996): 535–39. http://dx.doi.org/10.1242/jcs.109.3.535.

Full text
Abstract:
Transcription factor IIIA is a very extensively studied eukaryotic gene specific factor. It is a special member of the zinc finger family of nucleic acid binding proteins with multiple functions. Its N-terminal polypeptide (280 amino acid residue containing peptide; finger containing region) carries out sequence specific DNA and RNA binding and the C-terminal peptide (65 amino acid residue containing peptide; non-finger region) is involved in the transactivation process possibly by interacting with other general factors. It is a unique factor in the sense that it binds to two structurally different nucleic acids, DNA and RNA. It accomplishes this function through its zinc fingers, which are arranged into a cluster of nine motifs. Over the past three years there has been considerable interest in determining the structural features of zinc fingers, identifying the fingers that preferentially recognize DNA and RNA, defining the role of metal binding ligands and the linker region in promotor recognition and the role of C-terminal amino acid sequence in the gene activation. This article briefly reviews our current knowledge on this special protein in these areas.
APA, Harvard, Vancouver, ISO, and other styles
26

Blobel, G. A., M. C. Simon, and S. H. Orkin. "Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins." Molecular and Cellular Biology 15, no. 2 (February 1995): 626–33. http://dx.doi.org/10.1128/mcb.15.2.626.

Full text
Abstract:
Totipotent murine embryonic stem (ES) cells can be differentiated in vitro to form embryoid bodies (EBs) containing hematopoietic cells of multiple lineages, including erythroid cells. In vitro erythroid development parallels that which is observed in vivo. ES cells in which the gene for the erythroid transcription factor GATA-1 has been disrupted fail to produce mature erythroid cells either in vivo or in vitro. With the EB in vitro differentiation assay, constructs expressing heterologous GATA-binding proteins were tested for their abilities to correct the developmental defect of GATA-1-deficient ES cells. The results presented here show that the highly divergent chicken GATA-1 can rescue GATA-1 deficiency to an extent similar to that of murine GATA-1 (mGATA-1), as determined by size and morphology of EBs, presence of red cells, and globin gene expression. Furthermore, GATA-3 and GATA-4, which are normally expressed in different tissues, and a protein consisting of the zinc fingers of GATA-1 fused to the herpes simplex virus VP16 transcription activation domain were able to compensate for the GATA-1 defect. Chimeric molecules in which both zinc fingers of mGATA-1 were replaced with the zinc fingers of human GATA-3 or with the single finger of the fungal GATA factor areA, as well as a construct bearing the zinc finger region alone, displayed rescue activity. These results suggest that neither the transcription activation domains of mGATA-1 nor its zinc fingers impart erythroid cell specificity for its action in vivo. Rather, it appears that specificity is mediated through the cis-acting control regions which determine spatial and temporal expression of the GATA-1 gene. Furthermore, our results demonstrate that the zinc finger region may have a biological function in addition to mediating DNA binding.
APA, Harvard, Vancouver, ISO, and other styles
27

Turpin, JA, CA Schaeffer, SJ Terpening, L. Graham, M. Bu, and WG Rice. "Reverse Transcription of Human Immunodeficiency Virus Type 1 is Blocked by Retroviral Zinc Finger Inhibitors." Antiviral Chemistry and Chemotherapy 8, no. 1 (February 1997): 60–69. http://dx.doi.org/10.1177/095632029700800107.

Full text
Abstract:
The Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys zinc fingers of retroviral nucleocapsid (NC) proteins are prime antiviral targets due to conservation of the Cys and His chelating residues and the absolute requirement of these fingers in both early and late phases of retroviral replication. Certain 2,2′-dithiobisbenzamides (DIBAs) chemically modify the Cys residues of the fingers, thereby inhibiting in vitro replication of human immunodeficiency virus type 1 (HIV-1). We examined the consequences of DIBA interaction with cell-free virions and their subsequent ability to initiate new rounds of infection. The DIBAs entered intact virions and chemically modified the p7NC proteins, resulting in extensive disulphide cross-linkage among zinc fingers of adjacent p7NC molecules. Likewise, treatment of Pr55gag-laden pseudovirions, used as a model of virion particles, with DIBAs resulted in Pr55gag cross-linkage. In contrast, monomeric p7NC protein did not form cross-linkages after DIBA treatment, indicating that the retroviral zinc finger proteins must exist in close proximity for cross-linkage to occur. Cross-linkage of p7NC in virions correlated with loss of infectivity and decreased proviral DNA synthesis during acute infection, even though DIBAs did not inhibit virus attachment to host cells or reverse transcriptase enzymatic activity. Thus, DIBA-type molecules impair the ability of HIV-1 virions to initiate reverse transcription through their action on the retroviral zinc finger, thereby blocking further rounds of replication.
APA, Harvard, Vancouver, ISO, and other styles
28

Guo, Jianhui, Tiyun Wu, Jada Anderson, Bradley F. Kane, Donald G. Johnson, Robert J. Gorelick, Louis E. Henderson, and Judith G. Levin. "Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer." Journal of Virology 74, no. 19 (October 1, 2000): 8980–88. http://dx.doi.org/10.1128/jvi.74.19.8980-8988.2000.

Full text
Abstract:
ABSTRACT The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (−) SSDNA and 3′ viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (−) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.
APA, Harvard, Vancouver, ISO, and other styles
29

Belczyk-Ciesielska, Agnieszka, Brigitta Csipak, Bálint Hajdu, Aleksandra Sparavier, Masamitsu N. Asaka, Kyosuke Nagata, Béla Gyurcsik, and Wojciech Bal. "Nickel(ii)-promoted specific hydrolysis of zinc finger proteins." Metallomics 10, no. 8 (2018): 1089–98. http://dx.doi.org/10.1039/c8mt00098k.

Full text
Abstract:
The (S/T)XH sequence in Cys2His2zinc fingers can be hydrolytically cleaved by Ni(ii) ions. This reaction can be applied for purification, inhibition or activation of designed zinc finger fusion proteins.
APA, Harvard, Vancouver, ISO, and other styles
30

Porteus, Matthew H. "Zinc fingers on target." Nature 459, no. 7245 (May 2009): 337–38. http://dx.doi.org/10.1038/459337a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meadows, Lisa. "Zinc fingers and chips." Trends in Genetics 17, no. 10 (October 2001): 563. http://dx.doi.org/10.1016/s0168-9525(01)02500-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kaiming, Cao, Yaping Sheng, Shihui Zheng, Siming Yuan, Guangming Huang, and Yangzhong Liu. "Arsenic trioxide preferentially binds to the ring finger protein PML: understanding target selection of the drug." Metallomics 10, no. 11 (2018): 1564–69. http://dx.doi.org/10.1039/c8mt00202a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gianfrancesco, Olympia, Bethany Geary, Abigail L. Savage, Kimberley J. Billingsley, Vivien J. Bubb, and John P. Quinn. "The Role of SINE-VNTR-Alu (SVA) Retrotransposons in Shaping the Human Genome." International Journal of Molecular Sciences 20, no. 23 (November 27, 2019): 5977. http://dx.doi.org/10.3390/ijms20235977.

Full text
Abstract:
Retrotransposons can alter the regulation of genes both transcriptionally and post-transcriptionally, through mechanisms such as binding transcription factors and alternative splicing of transcripts. SINE-VNTR-Alu (SVA) retrotransposons are the most recently evolved class of retrotransposable elements, found solely in primates, including humans. SVAs are preferentially found at genic, high GC loci, and have been termed “mobile CpG islands”. We hypothesise that the ability of SVAs to mobilise, and their non-random distribution across the genome, may result in differential regulation of certain pathways. We analysed SVA distribution patterns across the human reference genome and identified over-representation of SVAs at zinc finger gene clusters. Zinc finger proteins are able to bind to and repress SVA function through transcriptional and epigenetic mechanisms, and the interplay between SVAs and zinc fingers has been proposed as a major feature of genome evolution. We describe observations relating to the clustering patterns of both reference SVAs and polymorphic SVA insertions at zinc finger gene loci, suggesting that the evolution of this network may be ongoing in humans. Further, we propose a mechanism to direct future research and validation efforts, in which the interplay between zinc fingers and their epigenetic modulation of SVAs may regulate a network of zinc finger genes, with the potential for wider transcriptional consequences.
APA, Harvard, Vancouver, ISO, and other styles
34

Kim, J. G., and L. D. Hudson. "Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene." Molecular and Cellular Biology 12, no. 12 (December 1992): 5632–39. http://dx.doi.org/10.1128/mcb.12.12.5632-5639.1992.

Full text
Abstract:
A novel member of the zinc finger superfamily was cloned by virtue of its binding to cis-regulatory elements of a glia-specific gene, the myelin proteolipid protein (PLP) gene. Named MyTI (myelin transcription factor I), this gene is most highly transcribed in the developing nervous system, where expression precedes induction of its presumptive target, PLP. Low levels of MyTI transcripts can be detected in nonneural tissues only by polymerase chain reaction analysis. Zinc is a necessary cofactor for DNA binding of MyTI, as the zinc-chelating agent 1,10-orthophenanthroline eliminates binding activity. Zinc may stabilize the DNA-binding domain of MyTI by coordinating three cysteine and one histidine residue in a Cys-X5-Cys-X12-His-X4-Cys (C2-HC) arrangement. The MyTI protein has six fingers of the C2-HC class arranged in two widely separated clusters. These two domains of DNA binding can function independently and recognize the same DNA sequence, suggesting that MyTI may contribute to the higher-order structure of a target promoter by simultaneously binding both proximal and distal sites. The six fingers are highly conserved, suggesting that they arose from successive duplication events, while the linker regions diverge in size and sequence. Both amino acid sequence comparisons and secondary-structure predictions indicate that the C2-HC fingers of MyTI do not resemble the zinc-mediated loops of C2-H2 fingers, C2-C2 fingers, or Cx clusters. MyTI may therefore be the prototype of a new structural family of zinc-stabilized DNA binding proteins.
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, J. G., and L. D. Hudson. "Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene." Molecular and Cellular Biology 12, no. 12 (December 1992): 5632–39. http://dx.doi.org/10.1128/mcb.12.12.5632.

Full text
Abstract:
A novel member of the zinc finger superfamily was cloned by virtue of its binding to cis-regulatory elements of a glia-specific gene, the myelin proteolipid protein (PLP) gene. Named MyTI (myelin transcription factor I), this gene is most highly transcribed in the developing nervous system, where expression precedes induction of its presumptive target, PLP. Low levels of MyTI transcripts can be detected in nonneural tissues only by polymerase chain reaction analysis. Zinc is a necessary cofactor for DNA binding of MyTI, as the zinc-chelating agent 1,10-orthophenanthroline eliminates binding activity. Zinc may stabilize the DNA-binding domain of MyTI by coordinating three cysteine and one histidine residue in a Cys-X5-Cys-X12-His-X4-Cys (C2-HC) arrangement. The MyTI protein has six fingers of the C2-HC class arranged in two widely separated clusters. These two domains of DNA binding can function independently and recognize the same DNA sequence, suggesting that MyTI may contribute to the higher-order structure of a target promoter by simultaneously binding both proximal and distal sites. The six fingers are highly conserved, suggesting that they arose from successive duplication events, while the linker regions diverge in size and sequence. Both amino acid sequence comparisons and secondary-structure predictions indicate that the C2-HC fingers of MyTI do not resemble the zinc-mediated loops of C2-H2 fingers, C2-C2 fingers, or Cx clusters. MyTI may therefore be the prototype of a new structural family of zinc-stabilized DNA binding proteins.
APA, Harvard, Vancouver, ISO, and other styles
36

Fu, Fengli, and Daniel F. Voytas. "Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays." Nucleic Acids Research 41, no. D1 (November 29, 2012): D452—D455. http://dx.doi.org/10.1093/nar/gks1167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fu, F., J. D. Sander, M. Maeder, S. Thibodeau-Beganny, J. K. Joung, D. Dobbs, L. Miller, and D. F. Voytas. "Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays." Nucleic Acids Research 37, Database (January 1, 2009): D279—D283. http://dx.doi.org/10.1093/nar/gkn606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sievers, Quinlan L., Georg Petzold, Richard D. Bunker, Aline Renneville, Mikołaj Słabicki, Brian J. Liddicoat, Wassim Abdulrahman, Tarjei Mikkelsen, Benjamin L. Ebert, and Nicolas H. Thomä. "Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN." Science 362, no. 6414 (November 1, 2018): eaat0572. http://dx.doi.org/10.1126/science.aat0572.

Full text
Abstract:
The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys2-His2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.
APA, Harvard, Vancouver, ISO, and other styles
39

GAMSJAEGER, R., C. LIEW, F. LOUGHLIN, M. CROSSLEY, and J. MACKAY. "Sticky fingers: zinc-fingers as protein-recognition motifs." Trends in Biochemical Sciences 32, no. 2 (February 2007): 63–70. http://dx.doi.org/10.1016/j.tibs.2006.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hoffmann, Anke, Elisabetta Ciani, Joel Boeckardt, Florian Holsboer, Laurent Journot, and Dietmar Spengler. "Transcriptional Activities of the Zinc Finger Protein Zac Are Differentially Controlled by DNA Binding." Molecular and Cellular Biology 23, no. 3 (February 1, 2003): 988–1003. http://dx.doi.org/10.1128/mcb.23.3.988-1003.2003.

Full text
Abstract:
ABSTRACT Zac encodes a zinc finger protein that promotes apoptosis and cell cycle arrest and is maternally imprinted. Here, we show that Zac contains transactivation and repressor activities and that these transcriptional activities are differentially controlled by DNA binding. Zac transactivation mapped to two distinct domains. One of these contained multiple repeats of the peptide PLE, which behaved as an autonomous activation unit. More importantly, we identified two related high-affinity DNA-binding sites which were differentially bound by seven Zac C2H2 zinc fingers. Zac bound as a monomer through zinc fingers 6 and 7 to the palindromic DNA element to confer transactivation. In contrast, binding as a monomer to one half-site of the repeat element turned Zac into a repressor. Conversely, Zac dimerization at properly spaced direct and reverse repeat elements enabled transactivation, which strictly correlated with DNA-dependent and -independent contacts of key residues within the recognition helix of zinc finger 7. The later ones support specific functional connections between Zac DNA binding and transcriptional-regulatory surfaces. Both classes of DNA elements were identified in a new Zac target gene and confirmed that the zinc fingers communicate with the transactivation function. Together, our data demonstrate a role for Zac as a transcription factor in addition to its role as coactivator for nuclear receptors and p53.
APA, Harvard, Vancouver, ISO, and other styles
41

Hu, Shao Wei, Meng Zhang, Ling Xue, and Jian Ming Wen. "Regulation Effect of Zinc Fingers and Homeoboxes 2 on Alpha-Fetoprotein in Human Hepatocellular Carcinoma." Gastroenterology Research and Practice 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/101083.

Full text
Abstract:
Aim. To investigate the relationship between alpha-fetoprotein and zinc fingers and homeoboxes 2 in hepatocellular carcinoma.Materials and Methods. The expressions of zinc fingers and homeoboxes 2, nuclear factor-YA, and alpha-fetoprotein mRNA in 63 hepatocellular carcinoma were detected by reverse transcriptase-polymerase chain reaction and compared with the clinical parameters of the patients. Selectively, silence of zinc fingers and homeoboxes 2 in HepG2 cells was detected by RNA interference technique.Results. Alpha-fetoprotein mRNA expression was detected in 60.3% of hepatocellular carcinoma cases. Zinc fingers and homeoboxes 2 mRNA expression (36.5%) was significantly negatively correlated with serum alpha-fetoprotein concentration and mRNA expression. A strong positive correlation was found between zinc fingers and homeoboxes 2 and nuclear factor-YA mRNA expression (42.9%), while the latter was negatively correlated with serum alpha-fetoprotein concentration and mRNA expression. Treatment with zinc fingers and homeoboxes 2 small interfering RNA led to 85% and 83% silence of zinc fingers and homeoboxes 2 mRNA and protein expression and 60% and 61% reduction of nuclear factor-YA mRNA and protein levels in the HepG2 cells, respectively. Downregulation of zinc fingers and homeoboxes 2 also induced a 2.4-fold increase in both alpha-fetoprotein mRNA and protein levels.Conclusions. Zinc fingers and homeoboxes 2 can regulate alpha-fetoprotein expression via the interaction with nuclear factor-YA in human hepatocellular carcinoma and may be used as an adjuvant diagnostic marker for alpha-fetoprotein-negative hepatocellular carcinoma.
APA, Harvard, Vancouver, ISO, and other styles
42

Bredenberg, Johan, and Lennart Nilsson. "Modeling zinc sulfhydryl bonds in zinc fingers." International Journal of Quantum Chemistry 83, no. 3-4 (2001): 230–44. http://dx.doi.org/10.1002/qua.1214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hoffmann, Anke, Thomas Barz, and Dietmar Spengler. "Multitasking C2H2 Zinc Fingers Link Zac DNA Binding to Coordinated Regulation of p300-Histone Acetyltransferase Activity." Molecular and Cellular Biology 26, no. 14 (July 15, 2006): 5544–57. http://dx.doi.org/10.1128/mcb.02270-05.

Full text
Abstract:
ABSTRACT Zac is a C2H2 zinc finger protein that regulates apoptosis and cell cycle arrest through DNA binding and transactivation. The coactivator proteins p300/CBP enhance transactivation through their histone acetyltransferase (HAT) activity by modulating chromatin structure. Here, we show that p300 increases Zac transactivation in a strictly HAT-dependent manner. Whereas the classic recruitment model proposes that coactivation simply depends on the capacity of the activator to recruit the coactivator, we demonstrate that coordinated binding of Zac zinc fingers and C terminus to p300 regulates HAT function by increasing histone and acetyl coenzyme A affinities and catalytic activity. This concerted regulation of HAT function is mediated via the KIX and CH3 domains of p300 in an interdependent manner. Interestingly, Zac zinc fingers 6 and 7 simultaneously play key roles in DNA binding and p300 regulation. Our findings demonstrate, for the first time, that C2H2 zinc fingers can link DNA binding to HAT signaling and suggest a dynamic role for DNA-binding proteins in the enzymatic control of transcription.
APA, Harvard, Vancouver, ISO, and other styles
44

Watson, James A., Raphaël Pantier, Uma Jayachandran, Kashyap Chhatbar, Beatrice Alexander-Howden, Valdeko Kruusvee, Michal Prendecki, Adrian Bird, and Atlanta G. Cook. "Structure of SALL4 zinc finger domain reveals link between AT-rich DNA binding and Okihiro syndrome." Life Science Alliance 6, no. 3 (January 12, 2023): e202201588. http://dx.doi.org/10.26508/lsa.202201588.

Full text
Abstract:
Spalt-like 4 (SALL4) maintains vertebrate embryonic stem cell identity and is required for the development of multiple organs, including limbs. Mutations in SALL4 are associated with Okihiro syndrome, and SALL4 is also a known target of thalidomide. SALL4 protein has a distinct preference for AT-rich sequences, recognised by a pair of zinc fingers at the C-terminus. However, unlike many characterised zinc finger proteins, SALL4 shows flexible recognition with many different combinations of AT-rich sequences being targeted. SALL4 interacts with the NuRD corepressor complex which potentially mediates repression of AT-rich genes. We present a crystal structure of SALL4 C-terminal zinc fingers with an AT-rich DNA sequence, which shows that SALL4 uses small hydrophobic and polar side chains to provide flexible recognition in the major groove. Missense mutations reported in patients that lie within the C-terminal zinc fingers reduced overall binding to DNA but not the preference for AT-rich sequences. Furthermore, these mutations altered association of SALL4 with AT-rich genomic sites, providing evidence that these mutations are likely pathogenic.
APA, Harvard, Vancouver, ISO, and other styles
45

Hart, Marilyn C., Lei Wang, and Douglas E. Coulter. "Comparison of the Structure and Expression of odd-skipped and Two Related Genes That Encode a New Family of Zinc Finger Proteins in Drosophila." Genetics 144, no. 1 (September 1, 1996): 171–82. http://dx.doi.org/10.1093/genetics/144.1.171.

Full text
Abstract:
Abstract The odd-skipped (odd) gene, which was identified on the basis of a pair-rule segmentation phenotype in mutant embryos, is initially expressed in the Drosophila embryo in seven pair-rule stripes, but later exhibits a segment polarity-like pattern for which no phenotypic correlate is apparent. We have molecularly characterized two embryonically expressed odd-cognate genes, sob and bowel (bowl), that encode proteins with highly conserved C2H2 zinc fingers. While the Sob and Bowl proteins each contain five tandem fingers, the Odd protein lacks a fifth (C-terminal) finger and is also less conserved among the four common fingers. Reminiscent of many segmentation gene paralogues, the closely linked odd and sob genes are expressed during embryogenesis in similar striped patterns; in contrast, the less-tightly linked bowlgene is expressed in a distinctly different pattern at the termini of the early embryo. Although our results indicate that odd and sob are more likely than bowl to share overlapping developmental roles, some functional divergence between the Odd and Sob proteins is suggested by the absence of homology outside the zinc fingers, and also by amino acid substitutions in the Odd zinc fingers at positions that appear to be constrained in Sob and Bowl.
APA, Harvard, Vancouver, ISO, and other styles
46

Rice, W. G., D. C. Baker, C. A. Schaeffer, L. Graham, M. Bu, S. Terpening, D. Clanton, et al. "Inhibition of multiple phases of human immunodeficiency virus type 1 replication by a dithiane compound that attacks the conserved zinc fingers of retroviral nucleocapsid proteins." Antimicrobial Agents and Chemotherapy 41, no. 2 (February 1997): 419–26. http://dx.doi.org/10.1128/aac.41.2.419.

Full text
Abstract:
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid p7 protein contains two retrovirus-type zinc finger domains that are required for multiple phases of viral replication. Chelating residues (three Cys residues and one His residue) of the domains are absolutely conserved among all strains of HIV-1 and other retroviruses, and mutations in these residues in noninfectious virions. These properties establish the zinc finger domains as logical targets for antiviral chemotherapy. Selected dithiobis benzamide (R-SS-R) compounds were previously found to inhibit HIV-1 replication by mediating an electrophilic attack on the zinc fingers. Unfortunately, reaction of these disulfide-based benzamides with reducing agents yields two monomeric structures (two R-SH structures) that can dissociated and no longer react with the zinc fingers, suggesting that in vivo reduction would inactivate the compounds. Through an extensive drug discovery program of the National Cancer Institute, a nondissociable tethered dithiane compound (1,2-dithiane-4,5-diol, 1,1-dioxide, cis; NSC 624151) has been identified. This compound specifically attacks the retroviral zinc fingers, but not other antiviral targets. The lead compound demonstrated broad antiretroviral activity, ranging from field isolates and drug-resistant strains of HIV-1 to HIV-2 and simian immunodeficiency virus. The compound directly inactivated HIV-1 virions and blocked production of infectious virus from cells harboring integrated proviral DNA. NSC 624151 provides a scaffold from which medicinal chemists can develop novel compounds for the therapeutic treatment of HIV infection.
APA, Harvard, Vancouver, ISO, and other styles
47

Klug, Aaron. "The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation." Quarterly Reviews of Biophysics 43, no. 1 (February 2010): 1–21. http://dx.doi.org/10.1017/s0033583510000089.

Full text
Abstract:
AbstractA long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically.Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome.The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated.The first example of the power of the method was published in 1994 when a three-finger protein was constructed to block the expression of a human oncogene transformed into a mouse cell line. The same paper also described how a reporter gene was activated by targeting an inserted 9-base pair (bp) sequence, which acts as the promoter. Thus, by fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off or on. It was also suggested that, by combining zinc fingers with other effector or functional domains, e.g. from nucleases or integrases, to form chimaeric proteins, genomes could be manipulated or modified.Several applications of such engineered ZFPs are described here, including some of therapeutic importance, and also their adaptation for breeding improved crop plants.
APA, Harvard, Vancouver, ISO, and other styles
48

Vrana, K. E., M. E. Churchill, T. D. Tullius, and D. D. Brown. "Mapping functional regions of transcription factor TFIIIA." Molecular and Cellular Biology 8, no. 4 (April 1988): 1684–96. http://dx.doi.org/10.1128/mcb.8.4.1684-1696.1988.

Full text
Abstract:
Functional deletion mutants of the trans-acting factor TFIIIA, truncated at both ends of the molecule, have been expressed by in vitro transcription of a cDNA clone and subsequent cell-free translation of the synthetic mRNAs. A region of TFIIIA 19 amino acids or less, near the carboxyl terminus, is critical for maximal transcription and lies outside the DNA-binding domain. The elongated protein can be aligned over the internal control region (ICR) of the Xenopus 5S RNA gene with its carboxyl terminus oriented toward the 5' end of the gene and its amino terminus oriented toward the 3' end of the gene. The nine "zinc fingers" and the linkers that separate them comprise 80% of the protein mass and correspond to the DNA-binding domain of TFIIIA. The zinc fingers near the amino terminus of the protein contribute more to the overall binding energy of the protein to the ICR than do the zinc fingers near the carboxyl end. The most striking feature of TFIIIA is its modular structure. This is demonstrated by the fact that each zinc finger binds to just one of three short nucleotide sequences within the ICR.
APA, Harvard, Vancouver, ISO, and other styles
49

Vrana, K. E., M. E. Churchill, T. D. Tullius, and D. D. Brown. "Mapping functional regions of transcription factor TFIIIA." Molecular and Cellular Biology 8, no. 4 (April 1988): 1684–96. http://dx.doi.org/10.1128/mcb.8.4.1684.

Full text
Abstract:
Functional deletion mutants of the trans-acting factor TFIIIA, truncated at both ends of the molecule, have been expressed by in vitro transcription of a cDNA clone and subsequent cell-free translation of the synthetic mRNAs. A region of TFIIIA 19 amino acids or less, near the carboxyl terminus, is critical for maximal transcription and lies outside the DNA-binding domain. The elongated protein can be aligned over the internal control region (ICR) of the Xenopus 5S RNA gene with its carboxyl terminus oriented toward the 5' end of the gene and its amino terminus oriented toward the 3' end of the gene. The nine "zinc fingers" and the linkers that separate them comprise 80% of the protein mass and correspond to the DNA-binding domain of TFIIIA. The zinc fingers near the amino terminus of the protein contribute more to the overall binding energy of the protein to the ICR than do the zinc fingers near the carboxyl end. The most striking feature of TFIIIA is its modular structure. This is demonstrated by the fact that each zinc finger binds to just one of three short nucleotide sequences within the ICR.
APA, Harvard, Vancouver, ISO, and other styles
50

Chavrier, P., P. Lemaire, O. Revelant, R. Bravo, and P. Charnay. "Characterization of a mouse multigene family that encodes zinc finger structures." Molecular and Cellular Biology 8, no. 3 (March 1988): 1319–26. http://dx.doi.org/10.1128/mcb.8.3.1319-1326.1988.

Full text
Abstract:
The Drosophila segmentation gene Krüppel encodes multiple tandemly repeated units predicted to form DNA-binding zinc fingers. We have isolated 23 bacteriophages, containing nonoverlapping inserts from a mouse genomic DNA library, on the basis of cross-hybridization under nonstringent conditions to a probe corresponding to the Krüppel finger region. Nucleotide sequence analysis of six phage DNAs indicated that they all contained regions with similarity to Krüppel and potentially encoded zinc finger domains. Within these regions, the level of similarity to Krüppel was particularly high between successive fingers. Northern (RNA) blotting analysis suggested that the mouse sequences belonged to different genes, the expression of some of which was modulated during cell differentiation and development. Hybridization experiments suggested that the similarity between some of the genes extended outside of the finger regions. In conclusion, our data suggest that the mouse genome contains a large family of evolutionarily related genes encoding possible trans-acting factors. These genes are likely to play a regulatory role at the transcriptional level.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography