Journal articles on the topic 'ZIGZAG TYPE NANOTUBE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'ZIGZAG TYPE NANOTUBE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Дадашян, Л. Х., Р. Р. Трофимов, Н. Н. Конобеева, and М. Б. Белоненко. "Предельно короткие импульсы в оптически анизотропной среде, содержащей углеродные нанотрубки с металлической проводимостью." Оптика и спектроскопия 130, no. 12 (2022): 1861. http://dx.doi.org/10.21883/os.2022.12.54092.49-22.
Full textDadashyan L.H., Trofimov R.R., Konobeeva N.N., and Belonenko M.B. "Extremely short pulses in an anisotropic optical medium containing carbon nanotubes with metal conduction." Optics and Spectroscopy 130, no. 12 (2022): 1587. http://dx.doi.org/10.21883/eos.2022.12.55246.49-22.
Full textMalysheva, Lyuba. "Effects of chirality in the electron transmission through step-like potential in zigzag, armchair, and (2m,m) carbon nanotubes." Low Temperature Physics 48, no. 11 (November 2022): 907–13. http://dx.doi.org/10.1063/10.0014581.
Full textTomilin O. B., Rodionova E. V., Rodin E.A., Poklonski N. A., Anikeyev I. I., and Ratkevich S. V. "Dependence of the energy of emission molecular orbitals in short open carbon nanotubes on the electric field." Physics of the Solid State 64, no. 3 (2022): 347. http://dx.doi.org/10.21883/pss.2022.03.53191.201.
Full textGhorbanpour Arani, A., M. Mosayyebi, F. Kolahdouzan, R. Kolahchi, and M. Jamali. "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, no. 13 (September 14, 2016): 2464–78. http://dx.doi.org/10.1177/0954410016667150.
Full textOkuyama, Rin, Wataru Izumida, and Mikio Eto. "Topology in single-wall carbon nanotube of zigzag and armchair type." Journal of Physics: Conference Series 969 (March 2018): 012137. http://dx.doi.org/10.1088/1742-6596/969/1/012137.
Full textKusunoki, Michiko, Toshiyuki Suzuki, and Chizuru Honjo. "Selective Growth of Zigzag-type Carbon Nanotube by Surface Decomposition of SiC." Materia Japan 42, no. 12 (2003): 900. http://dx.doi.org/10.2320/materia.42.900.
Full textZhou, Xin, Haifang Cai, Chunwei Hu, Jiao Shi, Zongli Li, and Kun Cai. "Analogous Diamondene Nanotube Structure Prediction Based on Molecular Dynamics and First-Principle Calculations." Nanomaterials 10, no. 5 (April 28, 2020): 846. http://dx.doi.org/10.3390/nano10050846.
Full textZhao, Yipeng, Huamin Hu, and Gang Ouyang. "Optimizing the photovoltaic effect in one-dimensional single-wall carbon nanotube @ MoS2 van der Waals heteronanotubes." Journal of Applied Physics 132, no. 23 (December 21, 2022): 234304. http://dx.doi.org/10.1063/5.0124128.
Full textSekiguchi, Ryuta, Kei Takahashi, Jun Kawakami, Atsushi Sakai, Hiroshi Ikeda, Aya Ishikawa, Kazuchika Ohta, and Shunji Ito. "Preparation of a Cyclic Polyphenylene Array for a Zigzag-Type Carbon Nanotube Segment." Journal of Organic Chemistry 80, no. 10 (May 6, 2015): 5092–110. http://dx.doi.org/10.1021/acs.joc.5b00485.
Full textGlukhova O. E., Slepchenkov M. M., and Kolesnichenko P. A. "Tunneling current between structural elements of thin graphene/nanotube films." Physics of the Solid State 64, no. 14 (2022): 2450. http://dx.doi.org/10.21883/pss.2022.14.54349.180.
Full textSlepchenkov, Michael M., Pavel V. Barkov, and Olga E. Glukhova. "Electronic and Electrical Properties of Island-Type Hybrid Structures Based on Bi-Layer Graphene and Chiral Nanotubes: Predictive Analysis by Quantum Simulation Methods." Coatings 13, no. 5 (May 22, 2023): 966. http://dx.doi.org/10.3390/coatings13050966.
Full textNiikuni, Hiroaki. "Spectra of Periodic Schrödinger Operators on the Degenerate Zigzag Nanotube with δ Type Vertex Conditions." Integral Equations and Operator Theory 79, no. 4 (May 31, 2014): 477–505. http://dx.doi.org/10.1007/s00020-014-2162-9.
Full textYengejeh, Sadegh Imani, Andreas Öchsner, Seyedeh Alieh Kazemi, and Maksym Rybachuk. "Numerical Analysis of the Structural Stability of Ideal (Defect-Free) and Structurally and Morphologically Degenerated Homogeneous, Linearly- and Angle-Adjoined Nanotubes and Cylindrical Fullerenes Under Axial Loading Using Finite Element Method." International Journal of Applied Mechanics 10, no. 09 (November 2018): 1850100. http://dx.doi.org/10.1142/s1758825118501004.
Full textKhavryuchenko, Oleksiy V., Gilles H. Peslherbe, and Frank Hagelberg. "Spin Filter Circuit Design Based on a Finite Single-Walled Carbon Nanotube of the Zigzag Type." Journal of Physical Chemistry C 119, no. 7 (February 9, 2015): 3740–45. http://dx.doi.org/10.1021/jp5095799.
Full textГлухова, О. Е., М. М. Слепченков, and П. А. Колесниченко. "Туннельный ток между структурными элементами тонких графен/нанотрубных пленок." Физика твердого тела 63, no. 12 (2021): 2198. http://dx.doi.org/10.21883/ftt.2021.12.51684.180.
Full textMohammadi, Mohsen Doust, and Hewa Y. Abdullah. "DFT Study for Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC2NNT (5,5), and BC2NNT (7,0)." Journal of Computational Biophysics and Chemistry 20, no. 08 (November 24, 2021): 765–83. http://dx.doi.org/10.1142/s2737416521500472.
Full textElmahdy, Atef, Hayam Taha, Mohamed Kamel, and Menna Tarek. "Mechanical bending effects on hydrogen storage of Ni decorated (8, 0) boron nitride nanotube : DFT study." JOURNAL OF ADVANCES IN PHYSICS 16, no. 1 (August 10, 2019): 299–325. http://dx.doi.org/10.24297/jap.v16i1.8389.
Full textWu, Jianbao, Liyuan Jiang, Xiaoyi Li, and Zhixiang Yin. "C2O Nanotubes with Negative Strain Energies and Improvements of Thermoelectric Properties via N-Doping Predicted from First-Principle Calculations." Crystals 13, no. 7 (July 13, 2023): 1097. http://dx.doi.org/10.3390/cryst13071097.
Full textSergeeva, E. S. "Dependence of the Elastic Properties of a Single-Walled Carbon Nanotube on its Chirality." Solid State Phenomena 284 (October 2018): 20–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.20.
Full textTSUJI, NAOTO, SHIGEHIRO TAKAJO, and HIDEO AOKI. "LARGE MAGNETIC MOMENTS GENERATED FROM LOOP CURRENTS IN CARBON NANOTUBE ATTACHED TO ELECTRODES — A THEORETICAL PICTURE." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1198–206. http://dx.doi.org/10.1142/s021797920704263x.
Full textPalacios, Jorge A., and Rajamohan Ganesan. "Dynamic response of single-walled carbon nanotubes based on various shell theories." Journal of Reinforced Plastics and Composites 38, no. 9 (January 15, 2019): 413–25. http://dx.doi.org/10.1177/0731684418824997.
Full textBobenko, Nadezhda, Valeriy Egorushkin, and Alexander Ponomarev. "Hysteresis in Heat Capacity of MWCNTs Caused by Interface Behavior." Nanomaterials 12, no. 18 (September 10, 2022): 3139. http://dx.doi.org/10.3390/nano12183139.
Full textMAJZOOBI, G. H., J. PAYANDEHPEYMAN, and Z. BOLBOLI NOJINI. "AN INVESTIGATION INTO THE TORSIONAL BUCKLING OF CARBON NANOTUBES USING MOLECULAR AND STRUCTURAL MECHANICS." International Journal of Nanoscience 10, no. 04n05 (August 2011): 989–93. http://dx.doi.org/10.1142/s0219581x11008666.
Full textBoroznin, Sergey, Irina Zaporotskova, Natalia Boroznina, Daria Zvonareva, Pavel Zaporotskov, and Evgeniya An. "Study of Oxygen Interaction with Surface of Boron-Containing Nanotubes." NBI Technologies, no. 4 (December 2021): 25–33. http://dx.doi.org/10.15688/nbit.jvolsu.2021.4.4.
Full textFülep, Dávid, Ibolya Zsoldos, and István László. "Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures." Materials Science Forum 885 (February 2017): 216–21. http://dx.doi.org/10.4028/www.scientific.net/msf.885.216.
Full textCosta Paura, Edson Nunes, Wiliam F. da Cunha, Luiz Fernando Roncaratti, João B. L. Martins, Geraldo M. e Silva, and Ricardo Gargano. "CO2 adsorption on single-walled boron nitride nanotubes containing vacancy defects." RSC Advances 5, no. 35 (2015): 27412–20. http://dx.doi.org/10.1039/c4ra17336h.
Full textFan, Cheng Wen, Jhih Hua Huang, Chyan Bin Hwu, and Yu Yang Liu. "Mechanical Properties of Single-Walled Carbon Nanotubes - A Finite Element Approach." Advanced Materials Research 33-37 (March 2008): 937–42. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.937.
Full textUmeno, Yoshitaka, Atsushi Kubo, Chutian Wang, and Hiroyuki Shima. "Diameter-Change-Induced Transition in Buckling Modes of Defective Zigzag Carbon Nanotubes." Nanomaterials 12, no. 15 (July 29, 2022): 2617. http://dx.doi.org/10.3390/nano12152617.
Full textChen, Xuan-Wen, Ke-Shan Chu, Rong-Jing Wei, Zhen-Lin Qiu, Chun Tang, and Yuan-Zhi Tan. "Phenylene segments of zigzag carbon nanotubes synthesized by metal-mediated dimerization." Chemical Science 13, no. 6 (2022): 1636–40. http://dx.doi.org/10.1039/d1sc05459g.
Full textHerrera-Carbajal, Alejandro, Ventura Rodríguez-Lugo, Juan Hernández-Ávila, and Ariadna Sánchez-Castillo. "A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon–germanium nanotubes." Physical Chemistry Chemical Physics 23, no. 23 (2021): 13075–86. http://dx.doi.org/10.1039/d1cp00519g.
Full textBarilka, A. G., and R. M. Balabai. "The Flow Behavior of Organic Liquids Inside Carbon Nanotubes." Фізика і хімія твердого тіла 17, no. 3 (September 15, 2016): 329–35. http://dx.doi.org/10.15330/pcss.17.3.329-335.
Full textDu, Jiguang, Xiyuan Sun, and Gang Jiang. "Adsorption of the Ir4 cluster on single-wall carbon nanotubes: the zigzag types are more suitable." RSC Advances 5, no. 74 (2015): 60286–93. http://dx.doi.org/10.1039/c5ra09523a.
Full textSaenko, Nikita S., and Albert M. Ziatdinov. "Multi-Walled Carbon Nanotubes Synthesized by Methane Pyrolysis: Structure and Magnetic Properties." Solid State Phenomena 213 (March 2014): 60–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.60.
Full textTerauchi, M., M. Tanaka, K. Suzuki, A. Ogino, and K. Kimura. "Production of zigzag-type BN nanotubes and BN cones by thermal annealing." Chemical Physics Letters 324, no. 5-6 (July 2000): 359–64. http://dx.doi.org/10.1016/s0009-2614(00)00637-0.
Full textÖzsoy, O., and N. Sünel. "On the electronic band structure of zigzag-type single-walled carbon nanotubes." Czechoslovak Journal of Physics 54, no. 12 (December 2004): 1495–501. http://dx.doi.org/10.1007/s10582-004-1206-9.
Full textMoaied, Mohammed, and Jisang Hong. "Size-Dependent Critical Temperature and Anomalous Optical Dispersion in Ferromagnetic CrI3 Nanotubes." Nanomaterials 9, no. 2 (January 26, 2019): 153. http://dx.doi.org/10.3390/nano9020153.
Full textShailesh, Sarvesh Kumar, B. Tiwari, and K. Yadav. "Green Synthesis, Texture, Electron Diffraction, Thermal and Optical Properties of Cobalt Doped Arginine Carbon Nanotubes." Asian Journal of Chemistry 33, no. 5 (2021): 1120–24. http://dx.doi.org/10.14233/ajchem.2021.22684.
Full textZeighampour, Hamid, Yaghoub Tadi Beni, and Yaser Kiani. "Electric Field Effects on Buckling Analysis of Boron–Nitride Nanotubes Using Surface Elasticity Theory." International Journal of Structural Stability and Dynamics 20, no. 12 (October 10, 2020): 2050137. http://dx.doi.org/10.1142/s0219455420501370.
Full textGhavamian, Ali, and Andreas Öchsner. "Numerical Modeling of the Eigenmodes and Eigenfrequencies of Carbon Nanotubes under the Influence of Defects." Journal of Nano Research 21 (December 2012): 159–64. http://dx.doi.org/10.4028/www.scientific.net/jnanor.21.159.
Full textWu, Jianhua, and Frank Hagelberg. "Interaction between Atomic Lanthanide Impurities and Ultrashort Carbon Nanotubes of the Zigzag Type." Journal of Physical Chemistry C 115, no. 11 (March 2, 2011): 4571–77. http://dx.doi.org/10.1021/jp111927r.
Full textSudorgin, S. A., and N. G. Lebedev. "Differential Thermal EMF of Carbon Zigzag-Type Nanotubes in an External Electric Field." Physics of the Solid State 62, no. 10 (October 2020): 1928–32. http://dx.doi.org/10.1134/s1063783420100327.
Full textKusunoki, M., T. Suzuki, C. Honjo, T. Hirayama, and N. Shibata. "Selective synthesis of zigzag-type aligned carbon nanotubes on SiC (000−1) wafers." Chemical Physics Letters 366, no. 5-6 (December 2002): 458–62. http://dx.doi.org/10.1016/s0009-2614(02)01463-x.
Full textLei, Xiaowen, Toshiaki Natsuki, Jinxing Shi, and Qing-Qing Ni. "Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale." Journal of Nanomaterials 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/805313.
Full textGarcía-Toral, Dolores, Raúl Mendoza-Báez, Ernesto Chigo-Anota, Antonio Flores-Riveros, Víctor M. Vázquez-Báez, Gregorio Hernández Cocoletzi, and Juan Francisco Rivas-Silva. "Structural Stability and Electronic Properties of Boron Phosphide Nanotubes: A Density Functional Theory Perspective." Symmetry 14, no. 5 (May 9, 2022): 964. http://dx.doi.org/10.3390/sym14050964.
Full textUmeno, Yoshitaka, Takayuki Kitamura, and Akihiro Kushima. "Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation." Computational Materials Science 30, no. 3-4 (August 2004): 283–87. http://dx.doi.org/10.1016/j.commatsci.2004.02.018.
Full textThamira, Amin D. Thamira, Ali S. Hasan Hasan, Raheem G. Kadhim Kadhim, Watheq G. Bakheet Bakheet, and Hamid I. Abbood Abbood. "Carbon Nanotubes Sensors for Gases Detection in Oil Industry." Journal of Petroleum Research and Studies 8, no. 3 (May 6, 2021): 25–40. http://dx.doi.org/10.52716/jprs.v8i3.228.
Full textWu, Ai Qing, Qing Gong Song, and Li Yang. "First-Principles Study on Al or/and P Doped SiC Nanotubes." Advanced Materials Research 510 (April 2012): 747–52. http://dx.doi.org/10.4028/www.scientific.net/amr.510.747.
Full textXiang, Yi, and Go Yamamoto. "A Data Mining Approach to Investigate the Carbon Nanotubes Mechanical Properties via High-Throughput Molecular Simulation." Materials Science Forum 1023 (March 2021): 29–36. http://dx.doi.org/10.4028/www.scientific.net/msf.1023.29.
Full textSalmankhani, Azam, Zohre Karami, Amin Hamed Mashhadzadeh, Mohammad Reza Saeb, Vanessa Fierro, and Alain Celzard. "Mechanical Properties of C3N Nanotubes from Molecular Dynamics Simulation Studies." Nanomaterials 10, no. 5 (May 7, 2020): 894. http://dx.doi.org/10.3390/nano10050894.
Full text