Academic literature on the topic 'Zero-Inflated counts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zero-Inflated counts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Zero-Inflated counts"
Preisser, John S., D. Leann Long, and John W. Stamm. "Matching the Statistical Model to the Research Question for Dental Caries Indices with Many Zero Counts." Caries Research 51, no. 3 (2017): 198–208. http://dx.doi.org/10.1159/000452675.
Full textAlam, Morshed, Naim Al Mahi, and Munni Begum. "Zero-Inflated Models for RNA-Seq Count Data." Journal of Biomedical Analytics 1, no. 2 (September 21, 2018): 55–70. http://dx.doi.org/10.30577/jba.2018.v1n2.23.
Full textHan, Bo, and Jian Xu. "Analysis of Crash Counts Using a Multilevel Zero-Inflated Negative Binomial Model." Advanced Materials Research 912-914 (April 2014): 1164–68. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.1164.
Full textMÖller, Tobias A., Christian H. Weiß, and Hee-Young Kim. "Modelling counts with state-dependent zero inflation." Statistical Modelling 20, no. 2 (October 25, 2018): 127–47. http://dx.doi.org/10.1177/1471082x18800514.
Full textPurhadi, Yuliani Setia Dewi, and Luthfatul Amaliana. "Zero Inflated Poisson and Geographically Weighted Zero- Inflated Poisson Regression Model: Application to Elephantiasis (Filariasis) Counts Data." Journal of Mathematics and Statistics 11, no. 2 (February 1, 2015): 52–60. http://dx.doi.org/10.3844/jmssp.2015.52.60.
Full textGhosh, Souparno, Alan E. Gelfand, Kai Zhu, and James S. Clark. "The k-ZIG: Flexible Modeling for Zero-Inflated Counts." Biometrics 68, no. 3 (February 20, 2012): 878–85. http://dx.doi.org/10.1111/j.1541-0420.2011.01729.x.
Full textCantoni, Eva, and Marie Auda. "Stochastic variable selection strategies for zero-inflated models." Statistical Modelling 18, no. 1 (June 30, 2017): 3–23. http://dx.doi.org/10.1177/1471082x17711068.
Full textJang, Jong-Hwan, Junggu Choi, Hyun Woong Roh, Sang Joon Son, Chang Hyung Hong, Eun Young Kim, Tae Young Kim, and Dukyong Yoon. "Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study." JMIR mHealth and uHealth 8, no. 7 (July 23, 2020): e16113. http://dx.doi.org/10.2196/16113.
Full textMaiti, Raju, Atanu Biswas, and Samarjit Das. "Time Series of Zero-Inflated Counts and their Coherent Forecasting." Journal of Forecasting 34, no. 8 (September 30, 2015): 694–707. http://dx.doi.org/10.1002/for.2368.
Full textDENWOOD, M. J., M. J. STEAR, L. MATTHEWS, S. W. J. REID, N. TOFT, and G. T. INNOCENT. "The distribution of the pathogenic nematodeNematodirus battusin lambs is zero-inflated." Parasitology 135, no. 10 (July 14, 2008): 1225–35. http://dx.doi.org/10.1017/s0031182008004708.
Full textDissertations / Theses on the topic "Zero-Inflated counts"
Ibukun, Michael Abimbola. "Modely s Touchardovým rozdělením." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445468.
Full textSoares, Maria João de Sousa. "An avian relative fatality risk index for Iberian species on wind farms based on zero inflated count models." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13866.
Full textClimate change is one of the greatest threats towards humankind and wildlife. This consciousness motivated the search for alternatives that could contribute to mitigate climate change. Betting on renewable energies seems to be a winning strategy adopted worldwide in order to reduce greenhouse gas emissions responsible for global climate alterations and to improve nations’ energy independency. However, nowadays, these energy usages still have negative impacts, mostly on wildlife. Wind energy is even considered the greatest unintended human impact on avifauna. In this context, the aim of this thesis was to increase the knowledge about wind farms impacts on avifauna, which variables influence birds’ fatalities by collision with wind turbines and birds’ vulnerability. Models based on excessive zero counts were tested to understand which variables influence birds’ fatalities assessed on 25 Portuguese wind farms. This allowed to estimate the probability of mortality observation per species. The information obtained was used to build the fatality risk index that also considered the vulnerability factors, which give information of species conservation concern and resilience. Those indexes allow to prioritise the existing and limited conservation efforts on more vulnerable species. Models and indexes are also important for improving knowledge about wind energy impacts on wildlife and what can lead to reduce them, in order to achieve a sustainable and greener future.
As alterações climáticas são uma das maiores ameaças para a Humanidade e para a vida selvagem. A consciência sobre a importância destas questões motivou a procura de alternativas, com intuito de mitigar estas alterações globais, causadas nomeadamente pelos gases de efeitos de estufa. Assim, as energias renováveis apresentam-se como uma possível estratégia vencedora a adotar, de forma a reduzir as emissões destes gases e levar à independência energética. No entanto, o uso destas energias renováveis ainda apresenta impactes negativos, especialmente para os ecossistemas. A energia eólica é inclusivamente considerada uma das maiores causas não intencionais de origem antropogénica para a mortalidade adicional de aves. Neste contexto, esta dissertação tem como os principais objetivos o desenvolvimento do conhecimento relativo aos impactes da energia eólica, quais as variáveis que influenciam a mortalidade de aves respeitante à colisão com as turbinas eólicas assim como as variáveis que afetam a vulnerabilidade das espécies. Foram testados modelos de contagem com excesso de zeros para compreender a influência das variáveis nas observações de mortalidade em 25 parques eólicos portugueses. A partir destes modelos foi possível estimar a probabilidade de observação de mortalidade para cada uma das espécies estudadas, provocada por colisão com eólicas. Esta informação foi ainda utilizada de forma a desenvolver um índice de risco de fatalidade com base nestas estimativas, assim como em fatores elucidativos da vulnerabilidade das espécies, nomeadamente o seu estatuto de conservação e resiliência. Desta forma é então possível direcionar esforços e recursos para a preservação das espécies com maior vulnerabilidade e prioridade de conservação. Este tipo de modelos e índices é ainda fundamental para incrementar o conhecimento sobre os impactes da energia eólica na vida selvagem e para compreender quais as medidas que podem ser tomadas para os reduzir e, assim, garantir um futuro mais verde e sustentável para todas as formas de vida.
Wan, Chung-him, and 溫仲謙. "Analysis of zero-inflated count data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43703719.
Full textWan, Chung-him. "Analysis of zero-inflated count data." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43703719.
Full textRoemmele, Eric S. "A Flexible Zero-Inflated Poisson Regression Model." UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/38.
Full textJansakul, Naratip. "Some aspects of modelling overdispersed and zero-inflated count data." Thesis, University of Exeter, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364435.
Full textThomas, Gustavo. "GAMLSSs with applications to zero inflated and hierarquical data." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-150012/.
Full textOs modelos lineares generalizados para locação, escala e forma (GAMLSS) desenvolvidos por Rigby e Stasinopoulos (2005) são uma ampla classe de modelos de regressão univariados que não pressupõem que a distribuição da variável resposta pertença à família exponencial como os modelos lineares generalizados ou aditivos generalizados, por exemplo. Além do mais, eles permitem que todos os parâmetros da distribuição da variável resposta sejam modelados explicitamente por meio de diferentes conjuntos de variáveis explanatórias. A subclasse semiparamétrica dos GAMLSS, em particular, permite que uma grande variedade de termos paramétricos e não paramétricos sejam incluídos nos preditores dos parâmetros da distribuição assumida para a variável resposta. De forma análoga aos modelos lineares generalizados, os GAMLSSs ligam os preditores aos parâmetros por meio de funções de ligação monótonas, que também podem mudar de acordo com o parâmetro a ser estimado. Esta dissertação descreve a metodologia dos modelos lineares generalizados para locação, escala e forma e apresenta duas aplicações a bancos de dados provenientes de experimentos agrícolas; explorando métodos de estimação, diagnóstico e comparação desse tipo de modelos.
Bhaktha, Nivedita. "Properties of Hurdle Negative Binomial Models for Zero-Inflated and Overdispersed Count data." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543573678017356.
Full textZeileis, Achim, Christian Kleiber, and Simon Jackman. "Regression Models for Count Data in R." Foundation for Open Access Statistics, 2008. http://epub.wu.ac.at/4986/1/Zeileis_etal_2008_JSS_Regression%2DModels%2Dfor%2DCount%2DData%2Din%2DR.pdf.
Full textNian, Gaowei. "A score test of homogeneity in generalized additive models for zero-inflated count data." Kansas State University, 2014. http://hdl.handle.net/2097/18230.
Full textDepartment of Statistics
Wei-Wen Hsu
Zero-Inflated Poisson (ZIP) models are often used to analyze the count data with excess zeros. In the ZIP model, the Poisson mean and the mixing weight are often assumed to depend on covariates through regression technique. In other words, the effect of covariates on Poisson mean or the mixing weight is specified using a proper link function coupled with a linear predictor which is simply a linear combination of unknown regression coefficients and covariates. However, in practice, this predictor may not be linear in regression parameters but curvilinear or nonlinear. Under such situation, a more general and flexible approach should be considered. One popular method in the literature is Zero-Inflated Generalized Additive Models (ZIGAM) which extends the zero-inflated models to incorporate the use of Generalized Additive Models (GAM). These models can accommodate the nonlinear predictor in the link function. For ZIGAM, it is also of interest to conduct inferences for the mixing weight, particularly evaluating whether the mixing weight equals to zero. Many methodologies have been proposed to examine this question, but all of them are developed under classical zero-inflated models rather than ZIGAM. In this report, we propose a generalized score test to evaluate whether the mixing weight is equal to zero under the framework of ZIGAM with Poisson model. Technically, the proposed score test is developed based on a novel transformation for the mixing weight coupled with proportional constraints on ZIGAM, where it assumes that the smooth components of covariates in both the Poisson mean and the mixing weight have proportional relationships. An intensive simulation study indicates that the proposed score test outperforms the other existing tests when the mixing weight and the Poisson mean truly involve a nonlinear predictor. The recreational fisheries data from the Marine Recreational Information Program (MRIP) survey conducted by National Oceanic and Atmospheric Administration (NOAA) are used to illustrate the proposed methodology.
Books on the topic "Zero-Inflated counts"
Maiti, Raju. Modelling and coherent forecasting of zero-inflated time series count data. Ahmedabad: Indian Institute of Management, 2013.
Find full textBuu, Anne, and Runze Li. New Statistical Methods Inspired by Data Collected from Alcohol and Substance Abuse Research. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676001.003.0021.
Full textBook chapters on the topic "Zero-Inflated counts"
Borisov, Alexander, George Runger, Eugene Tuv, and Nuttha Lurponglukana-Strand. "Zero-Inflated Boosted Ensembles for Rare Event Counts." In Advances in Intelligent Data Analysis VIII, 225–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03915-7_20.
Full textZuur, Alain F., Elena N. Ieno, Neil J. Walker, Anatoly A. Saveliev, and Graham M. Smith. "Zero-Truncated and Zero-Inflated Models for Count Data." In Statistics for Biology and Health, 261–93. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-87458-6_11.
Full textAraldi, Alessandro, Alessandro Venerandi, and Giovanni Fusco. "Count Regression and Machine Learning Approach for Zero-Inflated Over-Dispersed Count Data. Application to Micro-Retail Distribution and Urban Form." In Computational Science and Its Applications – ICCSA 2020, 550–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58811-3_40.
Full textStewart Sparks, Ross, and Hossein Hazrati-Marangaloo. "Exponentially Weighted Moving Averages of Counting Processes When the Time between Events Is Weibull Distributed." In Quality Control in Intelligent Manufacturing [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90873.
Full textZhang, Wenbo, Xinwu Qian, and Satish V. Ukkusuri. "Identifying the Temporal Characteristics of Intra-City Movement Using Taxi Geo-Location Data." In Enriching Urban Spaces with Ambient Computing, the Internet of Things, and Smart City Design, 68–88. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0827-4.ch004.
Full textConference papers on the topic "Zero-Inflated counts"
Zhang, Chen, Nan Chen, and Linmiao Zhang. "Time series of multivariate zero-inflated Poisson counts." In 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2016. http://dx.doi.org/10.1109/ieem.2016.7798101.
Full textLu, Liying, Yingzi Fu, Peixiao Chu, and Xiaolin Zhang. "A Bayesian Analysis of Zero-Inflated Count Data: An Application to Youth Fitness Survey." In 2014 Tenth International Conference on Computational Intelligence and Security (CIS). IEEE, 2014. http://dx.doi.org/10.1109/cis.2014.125.
Full textSNEDDON, G., M. T. HASAN, and R. MA. "A UNIFIED APPROACH BETWEEN POPULATION-AVERAGED AND CLUSTER-SPECIFIC ANALYSES FOR MULTILEVEL ZERO-INFLATED COUNT DATA." In Proceedings of Statistics 2011 Canada/IMST 2011-FIM XX. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814417983_0016.
Full text