Academic literature on the topic 'Zeolites characterization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zeolites characterization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Zeolites characterization"
Elysabeth, Tiur, Zulnovri, Gina Ramayanti, Setiadi, and Slamet. "Modification of Lampung and Bayah Natural Zeolite to Enhance the Efficiency of Removal of Ammonia from Wastewater." Asian Journal of Chemistry 31, no. 4 (February 27, 2019): 873–78. http://dx.doi.org/10.14233/ajchem.2019.21810.
Full textBarbosa, Tellys Lins Almeida, and Meiry Gláucia Freire Rodrigues. "Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica." Catalysis Research 03, no. 04 (December 11, 2023): 1–19. http://dx.doi.org/10.21926/cr.2304030.
Full textNuhu, A. A., Z. N. Garba, H. Ibrahim, and S. Abdulrazak. "Physicochemical Characterization of Zeolite Materials Produced from Selected Low-Cost Agricultural Wastes." Journal of Applied Sciences and Environmental Management 28, no. 3 (March 27, 2024): 675–80. http://dx.doi.org/10.4314/jasem.v28i3.7.
Full textHakiki, Muhammad, Muhammad Makiyi, Nuryoto Nuryoto, Rahmayetty Rahmayetty, Indar Kustiningsih, and Teguh Kurniawan. "Pengaruh Lokasi Zeolit Alam Bayah terhadap Adsorpsi Amonium: Studi Kinetika dan Kesetimbangan." Jurnal Teknologi Lingkungan 22, no. 1 (February 3, 2021): 018–28. http://dx.doi.org/10.29122/jtl.v22i1.4403.
Full textReschetilowski, Wladimir. "Catalysis on Zeolites and Zeolite-like Materials II." Catalysts 14, no. 7 (July 17, 2024): 460. http://dx.doi.org/10.3390/catal14070460.
Full textIntang, Ambo, Prahady Susmanto, Muhammad Djoni Bustan, and Sri Haryati. "Characterization of Natural Zeolite Synthesized by Dealumination and Desilication Method." Proceeding of the International Conference on Multidisciplinary Research for Sustainable Innovation 1 (August 12, 2024): 10–18. http://dx.doi.org/10.31098/icmrsi.v1i.778.
Full textAlsawalha, Murad. "Overview of Current and Future Perspectives of Saudi Arabian Natural Clinoptilolite Zeolite: A Case Review." Journal of Chemistry 2019 (March 3, 2019): 1–16. http://dx.doi.org/10.1155/2019/3153471.
Full textPan, M., P. A. Crozier, I. Y. Chan, and S. I. Zones. "High-resolution electron microscopy on SSZ-26 zeolite materials." Proceedings, annual meeting, Electron Microscopy Society of America 49 (August 1991): 1032–33. http://dx.doi.org/10.1017/s0424820100089470.
Full textKamlesh Sahu. "STUDIES ON THE SYNTHESIS AND CHARACTERIZATION OF ZEOLITES AND THEIR APPLICATION AS A CATALYST." International Journal for Research Publication and Seminar 15, no. 3 (September 18, 2024): 357–64. http://dx.doi.org/10.36676/jrps.v15.i3.1518.
Full textBux, Nabi, Sadam Hussain Tumrani, Razium Ali Soomro, and XiaodongJi. "Synthesis of Zeolites from Coal Fly Ash and Their Environmental Application." International Journal of Economic and Environmental Geology 13, no. 2 (June 14, 2022): 58–61. http://dx.doi.org/10.46660/ijeeg.v13i2.32.
Full textDissertations / Theses on the topic "Zeolites characterization"
Simancas, Coloma Jorge. "Synthesis and Characterization of Zeolitic Materials Using Phosphorous Organic Structure Directing Agents." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/171267.
Full text[CA] Les zeolites són materials cristal·lins microporosos amb canals i mides de porus de dimensions moleculars. L'estructura i composició de les zeolites els confereix interessants propietats que permeten la seua aplicació en una àmplia gamma d'aplicacions industrials com adsorció, separació o catàlisi. La síntesi de zeolites és l'etapa més important per al control de l'estructura i composició de les zeolites i, per tant, crítica per a l'optimització de les seues propietats. Aquesta tesi s'ha centrat en la síntesi de zeolites utilitzant compostos que contenen fòsfor (cations fosfoni i aminofosfoni) com a agents directors d'estructura (P-ADE). L'ús de compostos fosforats influeix en la cristal·lització i propietats de les zeolites obtingudes en comparació amb les zeolites obtingudes amb cations d'amoni clàssics. Els compostos fosforats es van triar a causa de la seua diferent química i estabilitat pel que fa als cations d'amoni clàssics utilitzats en la síntesi de zeolites. Aquests aspectes s¿estudiaren amb un estudi comparatiu de diferents cations d'amoni i fosforats. Els compostos de fòsfor utilitzats en aquest treball han donat lloc a noves estructures cristal·lines (ITQ-58 i ITQ-66) i han obert noves vies de síntesi de zeolites ja conegudes (RTH, IWV i DO), ampliant la seua gamma de composicions químiques. La descomposició tèrmica dels P-ADE atrapats dins de les zeolites dona lloc a la for-mació d'espècies de fòsfor extra-xarxa que romanen dins dels canals i cavitats de les zeolites. Aquestes espècies modulen les propietats àcides i d'adsorció dels materials finals depenent dels tractaments post-síntesi. En aquest treball s'ha estudiat una ruta per la incorporació de quantitats controlades de fòsfor durant l'etapa de síntesi. Això ha permés controlar l'adsorció i les propietats àcides en les zeolites de porus petit, el que no es pot aconseguir mitjançant metodologies de post-síntesi.
[EN] Zeolites are microporous crystalline materials with channels and pore openings of molecular dimensions. The structure and composition of zeolites confers them interesting properties that allow their application in a wide range of industrial applications as adsorption, separation or catalysis. The synthesis of zeolites is the most important stage to control the structure and composition of zeolites, and thus, critical to optimize their properties. This thesis has been focused on the synthesis of zeolites using phosphorous containing compounds (phosphonium and aminophosphonium cations) as Organic Structure Directing Agents (P-OSDA). The use of these phosphorous compounds influence the crystallization and properties of the obtained zeolites compared to zeolites obtained with classical ammo-nium cations. Phosphorous compounds were chosen because of their different chemistry and stabil-ity properties respect to classical ammonium cations commonly used in the synthesis of zeo-lites. These aspects were studied in a comparative study with different ammonium and phosphorous cations. The phosphorous compounds used in this work have yielded new crystalline structures (ITQ-58 and ITQ-66) and opened new routes for the synthesis of already known zeolites (RTH, IWV and DON), widening their chemical composition range. The thermal decomposition of the P-OSDAs entrapped inside the zeolites yields to the formation of extra-framework phosphorus species that remain inside the channels and voids of the zeolites. These species modulate the adsorption and acid properties of the final materials depending on the post-synthesis treatments. In this work, a route for the incorporation of controlled amounts of phosphorus during the synthesis stage has been studied. This has allowed to control the adsorption and acid properties in small pores zeolites, which cannot be achieved by post-synthesis methodologies.
I wish to firstly acknowledge the Spanish Government for the necessary funding for the FPI pre-doctoral fellowship (BES-2013-062999). Also, this thesis would not have been possible without the infrastructures provided by the UPV and the CSIC staff, fused into the ITQ. Furthermore, I want to acknowledge the Microscopy Service of the UPV for their support in sample microscopy characterization
Simancas Coloma, J. (2021). Synthesis and Characterization of Zeolitic Materials Using Phosphorous Organic Structure Directing Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171267
TESIS
Kovo, Abdulsalami Sanni. "Development of zeolites and zeolite membranes from Ahoko Nigerian kaolin." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/development-of-zeolites-and-zeolite-membranes-from-ahoko-nigerian-kaolin(3496e1fa-ece8-4781-be3f-a27a103f4c4a).html.
Full textBoruntea, Cristian-Renato. "Design, synthesis and characterization of small-pore zeolites for industrial environmental applications." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/141094.
Full text[CAT] El Projecte d'investigació aquí descrit s'estructura en dos parts. La primera part se centra en la investigació fonamental amb l'objectiu de crear un protocol per a la síntesis de zeolites. La segona part es refereix al disseny, síntesis i caracterització de noves zeolites, particularment útils per a aplicacions DeNOx , però també podria ser útil per a aplicacions MTO. La investigació fonamental suggereix un nou model de preparació de zeolites utilitzant altres zeolites com a llavor. Aquest procés s'anomena transformació zeolita-zeolita o també conversió interzeolita. L'alt rendiment obtingut, la ràpida cristal·lització i la millor utilització i rendiment dels materials de partida s'han tingut en compte per millorar el procés en base a un projecte de doctorat finançat per una empresa. Aquest mètode s'ha il·lustrat utilitzant diverses zeolites com a llavor, entre altres FAU i CHA, per a la preparació de les dues zeolites objectiu: AEI i AFX. A la segona part, la investigació se centra en el disseny de noves zeolites de porus mitjà. S'han seleccionat tres zeolites hipotètiques d'una base de dades de 933.611 estructures. Aquesta selecció s'ha realitzat utilitzant descriptors específicament dissenyats sobre la base de l'aplicabilitat d'aquestes zeolites en processos DeNOx zeolites. A continuació s'han buscat els agents directors d'estructura (ADE) més apropiats, amb l'ajuda de mètodes computacionals, alguns dels quals s'han sintetitzat posteriorment. L'ús d'aquests ADE al gel de síntesi ha permès l'obtenció d'una zeolita la topologia (ERI) ha estat identificada mitjançant anàlisi per PXRD, i la morfologia i mida de vidre (particularment petit) la fan molt adequada per al seu ús com a catalitzador en alguns processos. El treball de síntesi també va revelar l'aparició d'una nova zeolita d'alta densitat, anomenada 'paracelsio-K'. Aquest nou material s'ha obtingut a explorar l'espai de fases que cristal·litzen en utilitzar 1-methyl-DABCO com ADE. La síntesi d'aquesta zeolita té un especial interès perquè el ADE no s'incorpora en els canals de la zeolita, però més aviat influint en la nucleació i cristal·lització. La caracterització va revelar que la composició del material és propera al mineral microcline, estructuralment proper al paracelsio, tots dos feldspats. A diferència dels feldspats el paracelsio-K conté molècules d'aigua al seu interior (1 molècula per cavitat) i pot descriure com el material més simple de la família de les zeolites que conté cadenes del tipus 'doble-cigonyal'. Utilitzant els elements topològics corresponents a aquesta estructura és possible generar estructures zeolítiques ja conegudes, com GIS, APC, MER, PHI, SIV i algunes altres zeolites hipotètiques.
[EN] The research project described herein is structured in two parts. The first part is focused on the fundamental research with the aim of creating a toolbox for zeolite preparation. The second part deal with the design, synthesis and characterization of novel zeolites particular useful for DeNOx applications, but could be also useful for MTO applications. The fundamental research is addressing a novel approach of preparing zeolites by using other zeolites as raw materials. This process is known as zeolite-to-zeolite transformation or interzeolite conversion. The high yield obtained, fast crystallization time and the better utilization of the raw materials (e.g. parent zeolite, organic structure directing agent (OSDA)), are important benefits of interzeolite conversion technic, which answer the objectives formulated for an industrial PhD project. The method has been exemplified by using various raw materials as parent zeolites, such as FAU and CHA for the preparation of two target small pore zeolites AEI and AFX. In the second part the focus has been on the design of novel small pore zeolites. Three hypothetical frameworks have been selected by narrowing down a database containing 933611 structures. The selection has been performed by using the general descriptors for the state-of-the-art DeNOx zeolites (e.g. CHA). This was followed by finding suitable OSDAs for the selected frameworks, by using computational methods. The usage of the theoretically predicted OSDAs in synthesis gels made possible the synthesis of a novel high-silica zeolite. PXRD analysis, revealed that the zeolite has the ERI framework topology. The obtained material has a distinct particle morphology and smaller crystallites, which are key parameters for various catalytic processes. The synthesis work revealed also a novel dense zeolite, named K-paracelsian. The new material has been obtained while exploring the phase space using 1-methyl-DABCO as OSDA. The synthesis of this zeolite is especially interesting in the sense that the OSDA is not being incorporated into the zeolite channels, but rather influencing the nucleation and crystallization. Further characterization revealed a material compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage and can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite frameworks (e.g. GIS, APC, MER, PHI, SIV) and hypothetical zeolite topologies can be constructed.
The authors thank Haldor Topsoe A/S and Innovation Fund Denmark for financial support under the Industrial PhD programme (Case no. 1355-0174B). We thank MINECO of Spain for funding (SEV-2016- 0683 and RTI2018-101033-B-100) and ASIC-UPV for the use of computational facilities. We also thank Prof. M. M. J. Treacy for assistance with the Database of Prospective Zeolite Structures.
Boruntea, C. (2020). Design, synthesis and characterization of small-pore zeolites for industrial environmental applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/141094
TESIS
Bhat, R. N. "Synthesis and characterization of large pore zeolites." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 1991. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2993.
Full textTurbeville, Wayne. "Characterization and reactivity of photochemical systems in zeolites /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487759436326079.
Full textPetushkov, Anton. "Synthesis and characterization of nanocrystalline and mesoporous zeolites." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1057.
Full textNaydenov, Valeri. "Structured molecular sieves : synthesis, modification and characterization /." Luleå, 2003. http://epubl.luth.se/1402-1544/2003/39.
Full textBessa, Raquel de Andrade. "Synthesis and characterization of composite magnetic zeolites using kaolin for softening water." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17007.
Full textThe present work deals about the synthesis and characterization of magnetic zeolites obtained by hydrothermal route using kaolin from Brazilian Northeast as silicon and aluminum source. By means of the X-ray diffraction technique it was possible to identify zeolite LTA and zeolite P1 as major crystalline phases for each synthesis, with low intensity peaks referent to unreacted quartz present in the kaolin used, which is in accordance to the. FTIR spectra; the nanoparticles were identified as magnetite, with low intensity peaks referent to goethite. In scanning electron microscopy, however, it was not possible to morphologically identify these minor components, while the zeolites showed well defined morphologies, presenting unchanged morphology when in the composites form, but with nanoparticles dispersed over their surface, as expected. From transmission electron microscopy it was observed that the nanoparticles were of ca. 50 nm. Magnetic measurements indicated magnetite presence with superior diameter to critical diameter to superparamagnetic particles and remanent magnetization. Thermogravimetric analyses showed for the composites, lower mass loss than compared to the pure zeolites what may be associated to the improvement of its thermal stability. Granulometric distribution indicated nanoparticles agglomeration in variable sizes, while zeolites formed agglomerates of ca. 10 Âm. Water softening was accomplished by using both zeolites, with high efficiency on Ca2+ removal and similar behavior between the zeolite and its respective composite, being the best result observed for zeolite A, with efficiency of 97,95%, reaching equilibrium in the first contact minutes. The dependence on mass studies also showed that zeolite A and its composite presented the best efficiency, whereas zeolite P achieved the same removal levels using corresponding zeolite masses (45 mg). This way, the proposed method for zeolites synthesis proved to be efficient, so that the use of a magnet is capable to attract them, leading their excellent separation from the aqueous medium with its ionic exchange capacity unaffected.
O presente trabalho trata da sÃntese e caracterizaÃÃo de zeÃlitas magnÃticas obtidas por impregnaÃÃo de nanopartÃculas de magnetita a zeÃlitas A e P, sintetizadas por mÃtodo hidrotÃrmico utilizando caulim branco do Nordeste brasileiro como fonte de silÃcio e alumÃnio. Por meio da tÃcnica de difraÃÃo de raios-X foi possÃvel identificar como fases cristalinas majoritÃrias a zeÃlita LTA e P1 para cada sÃntese, com picos de baixa intensidade referentes a quartzo, resistente ao processo tÃrmico de tratamento prÃvio do caulim, bem como nos espectros de infravermelho; as nanopartÃculas foram identificadas como magnetita, havendo ainda indÃcios da presenÃa de goethita em pequena quantidade. Nas anÃlises de microscopia eletrÃnica de varredura, entretanto, nÃo foi possÃvel identificar esses componentes minoritÃrios morfologicamente; enquanto que a morfologia das zeÃlitas mostrou-se bem definida, sem alteraÃÃes apÃs a formaÃÃo dos compÃsitos, apenas com nanopartÃculas espalhadas em sua superfÃcie, como desejado. A partir da microscopia eletrÃnica de transmissÃo, pÃde-se observar melhor a variaÃÃo de tamanho das nanopartÃculas, em mÃdia de 50 nm. Medidas magnÃticas das amostras com essa propriedade indicaram a presenÃa de magnetita com diÃmetro superior ao diÃmetro crÃtico para partÃculas superparamagnÃticas e magnetizaÃÃo remanente. As anÃlises termogravimÃtricas mostraram que a adiÃÃo das nanopartÃculas Ãs zeÃlitas diminuiu sua perda de massa diante do aumento de temperatura e as anÃlises de distribuiÃÃo granulomÃtrica indicaram a aglomeraÃÃo das nanopartÃculas em tamanhos variÃveis, enquanto que as zeÃlitas formaram aglomerados de aproximadamente 10 Âm. Os ensaios de abrandamento de Ãguas mostraram alta eficiÃncia das zeÃlitas em remover Ca2+, com comportamento similar entre a zeÃlita e o seu respectivo compÃsito, encontrando para a zeÃlita A o maior percentual de remoÃÃo, de 97,95 %, atingindo equilÃbrio nos primeiros minutos de aplicaÃÃo. Os estudos de massa tambÃm mostraram a eficiÃncia da zeÃlita A e de seu compÃsito, tendo a zeÃlita P se aproximado dos mesmos nÃveis de remoÃÃo em massas referentes a 45 mg de zeÃlita. Assim, o mÃtodo proposto para sÃntese das zeÃlitas magnÃticas mostrou-se eficiente, de modo que a utilizaÃÃo de um Ãmà à capaz de atraÃ-las facilitando a separaÃÃo do meio apÃs a aplicaÃÃo em meio aquoso e sua capacidade de troca iÃnica nÃo foi afetada.
Rossin, Joseph A. "Synthesis, characterization and reactivity of transition metal containing zeolites." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76271.
Full textPh. D.
Ait, Blal Abdelhafid. "Characterization of diffusion in hierarchical zeolites by infrared spectroscopy." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC233.
Full textThis work aimed at developing and benchmarking a new method of investigation of molecular diffusion in zeolite-based materials. It consists in the hyphenation of gravimetric analysis and infrared spectroscopy. The former allows assessing the diffusion from the gas phase to all the porosity, while IR spectroscopy allows for selective assessment of the diffusion to the zeolite active sites located in the micropores by monitoring the evolution of their coverage by the molecular probe. An original method of data processing, based on the inversion of the integral equations describing the uptake curves or infrared spectra has also been developed. These methods were applied to the characterization of (i) model mechanical mixtures of H-MFI and H-FAU zeolites, (ii) hierarchical H-MFI zeolites obtained by treatment in a fluoride medium, and (iii) model composite catalyst made of Al-MCM-41 and hierarchical H-MFI. Our results show that the relative values of diffusion rates as measured by gravimetry and IR spectroscopy are indicative of the quality of connectivity between meso- and microporous networks, and could thus be used to qualify zeolite-based hierarchical materials
Books on the topic "Zeolites characterization"
Chester, Arthur W., and E. G. Derouane. Zeolite characterization and catalysis: A tutorial. Dordrecht: Springer, 2009.
Find full textJan Cornelis van der Waal. Synthesis, characterization and catalytic application of zeolite titanium beta. Delft: Delft Univ. Press, 1998.
Find full textNaonobu, Katada, Okumura Kazu, and SpringerLink (Online service), eds. Characterization and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity and Loading Properties. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textChester, Arthur W., and E. G. Derouane. Zeolite characterization and catalysis: A tutorial. Dordrecht: Springer, 2009.
Find full textNiwa, Miki, Naonobu Katada, and Kazu Okumura. Characterization and Design of Zeolite Catalysts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12620-8.
Full textLee, W. F. Synthesis and characterization of large zeolite-type crystals. Manchester: UMIST, 1997.
Find full textFreni, Angelo, Belal Dawoud, Lucio Bonaccorsi, Stefanie Chmielewski, Andrea Frazzica, Luigi Calabrese, and Giovanni Restuccia. Characterization of Zeolite-Based Coatings for Adsorption Heat Pumps. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09327-7.
Full textNurhadi, Mukhamad. Laporan penelitian pembuatan dan karakterisasi katalis kromium-zeolit alam Muara Badak untuk perengkahan fraksi minyak bumi =: Preparation and characterization of chromium-Muara Badak natural zeolite catalyst to crack petroleum fraction. Samarinda: Lembaga Penelitian, Universitas Mulawarman, 2002.
Find full textDórea, A. Sequestration in hydrothermally modified zeolite 5A of Kr-85 from reprocessing: Mechanism of fixation and characterization of the product. Luxembourg: Commission of the European Communities, 1988.
Find full textGrassian, Vicki H., and Sarah C. Larsen. Synthesis, characterization and environmental applications of nanocrystalline zeolites. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.18.
Full textBook chapters on the topic "Zeolites characterization"
Thommes, Matthias, Rémy Guillet-Nicolas, and Katie A. Cychosz. "Physical Adsorption Characterization of Mesoporous Zeolites." In Mesoporous Zeolites, 349–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673957.ch11.
Full textZhang, Lei, Adri N. C. van Laak, Petra E. de Jongh, and Krijn P. de Jong. "Textural Characterization of Mesoporous Zeolites." In Zeolites and Catalysis, 237–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630295.ch9.
Full textHasha, Dennis L., Virginia W. Miner, Juan M. Garcés, and Stephen C. Rocke. "Dynamics of Benzene inX-Type Zeolites." In Catalyst Characterization Science, 485–97. Washington, DC: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0288.ch041.
Full textHunger, Michael. "Catalytically Active Sites: Generation and Characterization." In Zeolites and Catalysis, 493–546. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630295.ch17.
Full textWan, Wei, Changhong Xiao, and Xiaodong Zou. "Structural Characterization of Zeolites and Mesoporous Zeolite Materials by Electron Microscopy." In Mesoporous Zeolites, 425–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673957.ch13.
Full textNiwa, Miki, Naonobu Katada, and Kazu Okumura. "Solid Acidity of Zeolites." In Characterization and Design of Zeolite Catalysts, 9–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12620-8_2.
Full textKarge, Hellmut G., Michael Hunger, and Hermann K. Beyer. "Characterization of Zeolites — Infrared and Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffraction." In Catalysis and Zeolites, 198–326. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03764-5_4.
Full textNiwa, Miki, Naonobu Katada, and Kazu Okumura. "Catalytic Reaction on the Palladium-Loaded Zeolites." In Characterization and Design of Zeolite Catalysts, 163–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12620-8_9.
Full textStošić, Dušan, and Aline Auroux. "Characterization of Acid–Base Sites in Zeolites." In Calorimetry and Thermal Methods in Catalysis, 353–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-11954-5_9.
Full textVedrine, Jacques C. "General Overview of the Characterization of Zeolites." In Zeolite Microporous Solids: Synthesis, Structure, and Reactivity, 107–31. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2604-5_6.
Full textConference papers on the topic "Zeolites characterization"
Nyarko, Savanna, Moses J. Eghan, and Elvis K. Tiburu. "LTA zeolites synthesized at different temperatures and evaluating the drug loading capability." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XXII, edited by Yu-Jung Lu and Takuo Tanaka, 67. SPIE, 2024. http://dx.doi.org/10.1117/12.3026507.
Full textKoneti, Siddardha. "Characterization of embryonic zeolites with extra large micropores." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1037.
Full text"Synthesis, Characterization, Kinetic and Thermodynamic Studies of Some Zeolites." In 5th International Conference on Applied Science Energy and Environment. Ishik University, 2018. http://dx.doi.org/10.23918/icasee2018.09.
Full textArmandi, Marco, Barbara Bonelli, and Edoardo Garrone. "Synthesis and Characterization of Mesoporous and Microporous Carbons With Potential Applications as Hydrogen Storage Media." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95740.
Full textPhuong, Nguyen Thi Truc, Cu Hoang Minh, Hung Hoa Lam, Ngo Tran Hoang Duong, and Long Quang Nguyen. "An Ultrafast and Green Synthesis of Mesoporous Zeolite X for Great Enhancement in Methylene Blue Adsorption." In 5th International Conference on Advanced Materials Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-6rb9r6.
Full textEbeling, A. C., A. G. Panov, D. E. Mccready, and M. L. Balmer. "Characterization of Acid Sites in Ion-exchanged and Solid State-exchanged Zeolites." In SAE International Fall Fuels & Lubricants Meeting & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3571.
Full textVainer, B. G., M. S. Melgunov, A. B. Ayupov, and V. B. Fenelonov. "Real-time thermal imaging and quantitative characterization of adsorption-desorption processes in zeolites and silica gels." In 2012 Quantitative InfraRed Thermography. QIRT Council, 2012. http://dx.doi.org/10.21611/qirt.2012.252.
Full textFiddy, Steven, Vitalii Petranovskii, Steve Ogden, and Inocente Rodríguez Iznaga. "Characterization of Binary Ag-Cu Ion Mixtures in Zeolites: Their Reduction Products and Stability to Air Oxidation." In X-RAY ABSORPTION FINE STRUCTURE - XAFS13: 13th International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2644614.
Full text"Comparative Study of Natural Zeolites and Other Inorganic Admixtures in Terms of Characterization and Properties of Mortars." In "SP-132: Fly Ash, Silica Fume, Slag, and Natural Pozzolans and Natural Pozzolans in Concrete - Proceedings Fourth Interna". American Concrete Institute, 1992. http://dx.doi.org/10.14359/2081.
Full textSesario, Rujito, Khoirina Dwi, Fitria Rahmawati, Eddy Heraldy, and Rachmadani. "Characterization of metal particles on supporting materials mordenite, ultra stable Y zeolita, and natural zeolit." In THE 4TH INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION, AND EDUCATION OF MATHEMATICS AND SCIENCE (4TH ICRIEMS): Research and Education for Developing Scientific Attitude in Sciences And Mathematics. Author(s), 2017. http://dx.doi.org/10.1063/1.4995088.
Full textReports on the topic "Zeolites characterization"
Ristić, Alenka. Development and Characterization of Improved Thermochemical Materials. IEA SHC, July 2021. http://dx.doi.org/10.18777/ieashc-task58-2024-0001.
Full textMolinero, Valeria, Subramanian Sankaranarayanan, and Ilke Arslan. DE-SC0020201: Elucidating the formation mechanisms of zeolites using data-driven modelling and in-situ characterization. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2311836.
Full textEckert, J., A. Bug, and J. M. Nicol. Characterization of active sites in zeolite catalysts. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548615.
Full textCorbin, D. R., M. M. Eddy, L. Abrams, G. A. Jones, and G. D. Stucky. Flexibility of the Zeolite RHO Framework. Neutron Powder Structural Characterization of Ca-Exchanged Zeolite RHO. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada197195.
Full textRong, Charles, Deryn Chu, and John Hopkins. Test and Characterization of Some Zeolite Supported Gas Phase Desulfurization Sorbents. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada502628.
Full textConner, William C. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/910537.
Full textCoulombe, S., G. Jean, P. Chantal, and S. Kaliaguine. Characterization of products from the conversion of furanic compounds to hydrocarbons on zeolite using gas chromatography/mass spectrometry and gas chromatography/Fourier transform infrared spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/302618.
Full text