Journal articles on the topic 'Zener pinning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zener pinning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hazzledine, P. M., and R. D. J. Oldershaw. "Computer simulation of Zener pinning." Philosophical Magazine A 61, no. 4 (April 1990): 579–89. http://dx.doi.org/10.1080/01418619008231936.
Full textLiu, Yixiong, and B. R. Patterson. "Stereological analysis of Zener pinning." Acta Materialia 44, no. 11 (November 1996): 4327–35. http://dx.doi.org/10.1016/1359-6454(96)00107-3.
Full textCouturier, G., Claire Maurice, R. Fortunier, R. Doherty, and Julian H. Driver. "Finite Element Simulations of 3D Zener Pinning." Materials Science Forum 467-470 (October 2004): 1009–18. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.1009.
Full textKim, B. N., and T. Kishi. "Finite element simulation of Zener pinning behavior." Acta Materialia 47, no. 7 (May 1999): 2293–301. http://dx.doi.org/10.1016/s1359-6454(99)00069-5.
Full textNovikov, V. Yu. "On zener pinning in 3-D polycrystals." Scripta Materialia 42, no. 5 (February 2000): 439–43. http://dx.doi.org/10.1016/s1359-6462(99)00379-6.
Full textZhou, Jian, Chao Li, Miao Guan, Fuzeng Ren, Xiaonan Wang, Shunhu Zhang, and Bingbing Zhao. "Zener pinning by coherent particles: pinning efficiency and particle reorientation mechanisms." Modelling and Simulation in Materials Science and Engineering 25, no. 6 (June 13, 2017): 065008. http://dx.doi.org/10.1088/1361-651x/aa6cfb.
Full textGrasserbauer, Jakob, Irmgard Weißensteiner, Georg Falkinger, Peter J. Uggowitzer, and Stefan Pogatscher. "Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture." Materials 14, no. 12 (June 15, 2021): 3312. http://dx.doi.org/10.3390/ma14123312.
Full textKolesnikov, Dmitro, Andrey Belyakov, Alla Kipelova, Valeriy Dudko, Rustam Kaibyshev, and Dmitri A. Molodov. "Zener Pinning Pressure in Tempered Martensite Lath Structure." Materials Science Forum 715-716 (April 2012): 745–50. http://dx.doi.org/10.4028/www.scientific.net/msf.715-716.745.
Full textHARUN, A., E. HOLM, M. CLODE, and M. MIODOWNIK. "On computer simulation methods to model Zener pinning." Acta Materialia 54, no. 12 (July 2006): 3261–73. http://dx.doi.org/10.1016/j.actamat.2006.03.012.
Full textWörner, C. H., and A. Olguín. "Potential well and thermal detachment in Zener pinning." Scripta Metallurgica et Materialia 28, no. 1 (January 1993): 1–5. http://dx.doi.org/10.1016/0956-716x(93)90527-y.
Full textHarun, Azmir, Mark A. Miodownik, Mike P. Clode, and Elizabeth A. Holm. "Modelling Zener Pinning: A Comparison of Different Computer Simulation Methods." Materials Science Forum 467-470 (October 2004): 1033–38. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.1033.
Full textKad, Bimal K., and Peter M. Hazzledine. "Monte Carlo simulations of grain growth and Zener pinning." Materials Science and Engineering: A 238, no. 1 (October 1997): 70–77. http://dx.doi.org/10.1016/s0921-5093(97)00435-8.
Full textSoucail, M., R. Messina, A. Cosnuau, and L. P. Kubin. "Monte Carlo simulation of Zener pinning in two dimensions." Materials Science and Engineering: A 271, no. 1-2 (November 1999): 1–7. http://dx.doi.org/10.1016/s0921-5093(99)00196-3.
Full textMiyake, A. "New criterion on zener pinning in 2-D systems." Scripta Materialia 45, no. 9 (November 2001): 1009–15. http://dx.doi.org/10.1016/s1359-6462(01)01123-x.
Full textMiodownik, Mark, Elizabeth A. Holm, and Gregory N. Hassold. "Highly parallel computer simulations of particle pinning: zener vindicated." Scripta Materialia 42, no. 12 (June 2000): 1173–77. http://dx.doi.org/10.1016/s1359-6462(00)00354-7.
Full textCouturier†, G., C. Maurice‡, and R. Fortunier§. "Three-dimensional finite-element simulation of Zener pinning dynamics." Philosophical Magazine 83, no. 30 (October 2003): 3387–405. http://dx.doi.org/10.1080/1478643031000152771.
Full textWörner, C. H., and A. Olguín. "On the Influence of the Temperature in Zener Pinning." Materials Science Forum 94-96 (January 1992): 605–10. http://dx.doi.org/10.4028/www.scientific.net/msf.94-96.605.
Full textChakrabarti, Tamoghna, and Sukriti Manna. "Zener pinning through coherent precipitate: A phase-field study." Computational Materials Science 154 (November 2018): 84–90. http://dx.doi.org/10.1016/j.commatsci.2018.07.041.
Full textAbbruzzese, Giuseppe Carlo, and Massimiliano Buccioni. "Theory of Grain Growth in the Presence of Atoms Drag Effects." Materials Science Forum 558-559 (October 2007): 1005–12. http://dx.doi.org/10.4028/www.scientific.net/msf.558-559.1005.
Full textWörner, C. H., and A. Olguín. "Temporal Evolution of Grain Size Distributions in Two-Dimensional Pinned Cells." Materials Science Forum 467-470 (October 2004): 1003–8. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.1003.
Full textFan, Danan, Long-Qing Chen, and Shao-Ping P. Chen. "Numerical Simulation of Zener Pinning with Growing Second-Phase Particles." Journal of the American Ceramic Society 81, no. 3 (January 21, 2005): 526–32. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02370.x.
Full textRios, Paulo Rangel, and Gláucio Soares Fonseca. "Grain Boundary Pinning by Particles." Materials Science Forum 638-642 (January 2010): 3907–12. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3907.
Full textWu, Yan, Si Xia, and Bernie Ya Ping Zong. "Grain Growth of Polycrystalline AZ31 Mg Alloy Containing Second Phase Particles by Phase Field Simulation." Materials Science Forum 850 (March 2016): 307–13. http://dx.doi.org/10.4028/www.scientific.net/msf.850.307.
Full textSan Martín, David, Francisca García Caballero, Carlos Capdevila, and Carlos García de Andrés. "Discussion on the Rate Controlling Process of Coarsening of Niobium Carbonitrides in a Niobium Microalloyed Steel." Materials Science Forum 500-501 (November 2005): 703–10. http://dx.doi.org/10.4028/www.scientific.net/msf.500-501.703.
Full textMa, Xiao Fei. "Cellular Automata Simulation of Grain Growth under Consideration of Zener Pinning." Advanced Materials Research 189-193 (February 2011): 2200–2203. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.2200.
Full textWeygand, D., Y. Bréchet, and J. Lépinoux. "Zener pinning and grain growth: a two-dimensional vertex computer simulation." Acta Materialia 47, no. 3 (February 1999): 961–70. http://dx.doi.org/10.1016/s1359-6454(98)00383-8.
Full textHumphreys, F. J., and M. G. Ardakani. "Grain boundary migration and Zener pinning in particle-containing copper crystals." Acta Materialia 44, no. 7 (July 1996): 2717–27. http://dx.doi.org/10.1016/1359-6454(95)00421-1.
Full textKoju, R. K., K. A. Darling, L. J. Kecskes, and Y. Mishin. "Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys." JOM 68, no. 6 (April 18, 2016): 1596–604. http://dx.doi.org/10.1007/s11837-016-1899-9.
Full textZhou, Wen Quan, Ying Juna Gao, Yao Liu, Zhi Rong Luo, and Chuang Gao Huang. "Phase Field Model for Grain Growth with Second-Phase Particles of Stick Shape." Advanced Materials Research 741 (August 2013): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.741.3.
Full textFjeldberg, E., Elizabeth A. Holm, Anthony D. Rollett, and Knut Marthinsen. "Mobility Driven Abnormal Grain Growth in the Presence of Particles." Materials Science Forum 715-716 (April 2012): 930–35. http://dx.doi.org/10.4028/www.scientific.net/msf.715-716.930.
Full textMontheillet, Frank, Gilles Damamme, David Piot, and S. Lee Semiatin. "Modeling Grain Boundary Mobility during Dynamic Recrystallization of Metallic Alloys." Materials Science Forum 638-642 (January 2010): 2303–8. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.2303.
Full textRinger, S. P., R. P. Kuziak, and K. E. Easterling. "Liquid film simulation of Zener grain boundary pinning by second phase particles." Materials Science and Technology 7, no. 3 (March 1991): 193–200. http://dx.doi.org/10.1179/mst.1991.7.3.193.
Full textLi, Runjie, Jian Zhou, Yi Li, Yihan Liu, Bingbing Zhao, and Fuzeng Ren. "Grain boundary migration and Zener pinning in a nanocrystalline Cu–Ag alloy." Modelling and Simulation in Materials Science and Engineering 28, no. 6 (August 18, 2020): 065017. http://dx.doi.org/10.1088/1361-651x/aba737.
Full textMujahid, M., and J. W. Martin. "The effect of oxide particle coherency on Zener pinning in ODS superalloys." Journal of Materials Science Letters 13, no. 3 (1994): 153–55. http://dx.doi.org/10.1007/bf00278146.
Full textChang, Kunok, Junhyun Kwon, and Chang-Kyu Rhee. "Effect of particle-matrix coherency on Zener pinning: A phase-field approach." Computational Materials Science 142 (February 2018): 297–302. http://dx.doi.org/10.1016/j.commatsci.2017.10.030.
Full textBozzolo, Nathalie, Andrea Agnoli, Nadia Souaï, Marc Bernacki, and Roland E. Logé. "Strain Induced Abnormal Grain Growth in Nickel Base Superalloys." Materials Science Forum 753 (March 2013): 321–24. http://dx.doi.org/10.4028/www.scientific.net/msf.753.321.
Full textGu, Zong Lei, and Yu Liang Yin. "Research on Key Technology of Normal Grain Growth for Second Phase Particle Materials by Cellular Automata Simulation." Advanced Materials Research 510 (April 2012): 772–75. http://dx.doi.org/10.4028/www.scientific.net/amr.510.772.
Full textBECKWITH, A. W. "A NEW S-S′ PAIR CREATION RATE EXPRESSION IMPROVING UPON ZENER CURVES FOR I-E PLOTS." Modern Physics Letters B 20, no. 14 (June 20, 2006): 849–61. http://dx.doi.org/10.1142/s0217984906011219.
Full textSchwarze, Christian, Reza Darvishi Kamachali, and Ingo Steinbach. "Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials." Acta Materialia 106 (March 2016): 59–65. http://dx.doi.org/10.1016/j.actamat.2015.10.045.
Full textEichler, Jan, Ina Kleitz, Maddalena Bayer-Giraldi, Daniela Jansen, Sepp Kipfstuhl, Wataru Shigeyama, Christian Weikusat, and Ilka Weikusat. "Location and distribution of micro-inclusions in the EDML and NEEM ice cores using optical microscopy and in situ Raman spectroscopy." Cryosphere 11, no. 3 (May 5, 2017): 1075–90. http://dx.doi.org/10.5194/tc-11-1075-2017.
Full textZurob, Hatem S., G. Zhu, S. V. Subramanian, Gary R. Purdy, Christopher R. Hutchinson, and Yves Bréchet. "Analysis of Mn Effect on Recrystallization Kinetics in High Nb Steels." Materials Science Forum 500-501 (November 2005): 123–30. http://dx.doi.org/10.4028/www.scientific.net/msf.500-501.123.
Full textLiu, Huasong, Yannan Dong, Hongguang Zheng, Xiangchun Liu, Peng Lan, Haiyan Tang, and Jiaquan Zhang. "Precipitation Criterion for Inhibiting Austenite Grain Coarsening during Carburization of Al-Containing 20Cr Gear Steels." Metals 11, no. 3 (March 18, 2021): 504. http://dx.doi.org/10.3390/met11030504.
Full textCao, Miao, Jucun Wang, Qi Zhang, and Ke Huang. "In Situ Observation of Deformation-Induced Spherical Grains in Semi-Solid State of C5191 Copper Alloy." Materials 13, no. 23 (December 2, 2020): 5496. http://dx.doi.org/10.3390/ma13235496.
Full textDu, Zheng Lin, Ming Jen Tan, Jun Feng Guo, Jun Wei, and Chee Kai Chua. "Dispersion of CNTs in Selective Laser Melting Printed AlSi10Mg Composites via Friction Stir Processing." Materials Science Forum 879 (November 2016): 1915–20. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1915.
Full textHu, G. W., L. C. Zeng, H. Du, Q. Wang, Z. T. Fan, and X. W. Liu. "Combined effects of solute drag and Zener pinning on grain growth of a NiCoCr medium-entropy alloy." Intermetallics 136 (September 2021): 107271. http://dx.doi.org/10.1016/j.intermet.2021.107271.
Full textQiu, Zhan, Li, Yang, Qi, Jiang, and Zhang. "Influence of Inclusions on the Mechanical Properties of RAFM Steels Via Y and Ti Addition." Metals 9, no. 8 (August 2, 2019): 851. http://dx.doi.org/10.3390/met9080851.
Full textRadetić, Tamara, Miljana Popović, Bojan Gligorijević, Ana Alil, and Endre Romhanji. "The influence of Mg and Mn content on abnormal grain growth in AA5182 type alloys." Metallurgical and Materials Engineering 25, no. 04 (January 14, 2020): 315–23. http://dx.doi.org/10.30544/463.
Full textLong, Yong Qiang, Ping Liu, and Wei Min Zhang. "Phase Field Modeling of Recrystallization Grain Growth during Re-Aging Process in Cu-Ni-Si Alloy." Materials Science Forum 561-565 (October 2007): 1805–8. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1805.
Full textZhu, Haofei, Jun Liu, Yi Wu, Qing Zhang, Qiwei Shi, Zhe Chen, Lei Wang, Fengguo Zhang, and Haowei Wang. "Hot Deformation Behavior and Workability of In-Situ TiB2/7050Al Composites Fabricated by Powder Metallurgy." Materials 13, no. 23 (November 24, 2020): 5319. http://dx.doi.org/10.3390/ma13235319.
Full textLai, Chih-Ting, Hsuan-Hao Lai, Yen-Hao Su, Fei-Ya Huang, Chi-Kang Lin, Jui-Chao Kuo, and Hwa-Teng Lee. "The Influence of Mg-Based Inclusions on the Grain Boundary Mobility of Austenite in SS400 Steel." Metals 9, no. 3 (March 22, 2019): 370. http://dx.doi.org/10.3390/met9030370.
Full text