Academic literature on the topic 'Zariski topology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zariski topology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zariski topology"

1

Watase, Yasushige. "Zariski Topology." Formalized Mathematics 26, no. 4 (December 1, 2018): 277–83. http://dx.doi.org/10.2478/forma-2018-0024.

Full text
Abstract:
Summary We formalize in the Mizar system [3], [4] basic definitions of commutative ring theory such as prime spectrum, nilradical, Jacobson radical, local ring, and semi-local ring [5], [6], then formalize proofs of some related theorems along with the first chapter of [1]. The article introduces the so-called Zariski topology. The set of all prime ideals of a commutative ring A is called the prime spectrum of A denoted by Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A a topological space. A different role is given to Spec as a map from a ring morphism of commutative rings to that of topological spaces by the following manner: for a ring homomorphism h : A → B, we defined (Spec h) : Spec B → Spec A by (Spec h)(𝔭) = h−1(𝔭) where 𝔭 2 Spec B.
APA, Harvard, Vancouver, ISO, and other styles
2

Hassanzadeh-Lelekaami, Dawood, and Maryam Karimi. "Developed Zariski topology-graph." Discussiones Mathematicae - General Algebra and Applications 37, no. 2 (2017): 233. http://dx.doi.org/10.7151/dmgaa.1272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rinaldi, Davide, Giovanni Sambin, and Peter Schuster. "The Basic Zariski Topology." Confluentes Mathematici 7, no. 1 (February 3, 2016): 55–81. http://dx.doi.org/10.5802/cml.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mustafa, Hadi J., and Ameer Mohammad-Husain Hassan. "Near Prime Spectrum." Journal of Kufa for Mathematics and Computer 1, no. 8 (December 30, 2013): 58–70. http://dx.doi.org/10.31642/jokmc/2018/010808.

Full text
Abstract:
Let  be a commutative ring with identity . It is well known that a topology was defined for  called the Zariski topology (prime spectrum) . In this paper we will generalize this idea for near prime ideal . If  be a commutative near-ring with identity ,  be a near prime ideal of  and define  . Then  can be endowed with a topology similar to the Zariski topology which is called near Zariski topology (near prime spectrum) . we studies and discuss some of properties of such topology .
APA, Harvard, Vancouver, ISO, and other styles
5

Dikranjan, Dikran, and Daniele Toller. "Zariski topology and Markov topology on groups." Topology and its Applications 241 (June 2018): 115–44. http://dx.doi.org/10.1016/j.topol.2018.03.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

JUNKER, MARKUS, and DANIEL LASCAR. "THE INDISCERNIBLE TOPOLOGY: A MOCK ZARISKI TOPOLOGY." Journal of Mathematical Logic 01, no. 01 (May 2001): 99–124. http://dx.doi.org/10.1142/s0219061301000041.

Full text
Abstract:
We associate with every first order structure [Formula: see text] a family of invariant, locally Noetherian topologies (one topology on each Mn). The structure is almost determined by the topologies, and properties of the structure are reflected by topological properties. We study these topologies in particular for stable structures. In nice cases, we get a behaviour similar to the Zariski topology in algebraically closed fields.
APA, Harvard, Vancouver, ISO, and other styles
7

Ballal, Sachin, and Vilas Kharat. "Zariski topology on lattice modules." Asian-European Journal of Mathematics 08, no. 04 (November 17, 2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.

Full text
Abstract:
Let [Formula: see text] be a lattice module over a [Formula: see text]-lattice [Formula: see text] and [Formula: see text] be the set of all prime elements in lattice modules [Formula: see text]. In this paper, we study the generalization of the Zariski topology of multiplicative lattices [N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II: Minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. 52 (1988) 53–67; N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, in Algebra and Its Applications (Marcel Dekker, New York, 1984), pp. 265–276.] to lattice modules. Also we investigate the interplay between the topological properties of [Formula: see text] and algebraic properties of [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
8

Abuhlail, Jawad. "A Zariski Topology for Modules." Communications in Algebra 39, no. 11 (November 2011): 4163–82. http://dx.doi.org/10.1080/00927872.2010.519748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GOODEARL, K. R., and E. S. LETZTER. "THE CLOSED-POINT ZARISKI TOPOLOGY FOR IRREDUCIBLE REPRESENTATIONS." Journal of Algebra and Its Applications 05, no. 06 (December 2006): 719–30. http://dx.doi.org/10.1142/s0219498806001922.

Full text
Abstract:
In previous work, the second author introduced a topology, for spaces of irreducible representations, that reduces to the classical Zariski topology over commutative rings but provides a proper refinement in various noncommutative settings. In this paper, a concise and elementary description of this refined Zariski topology is presented, under certain hypotheses, for the space of simple left modules over a ring R. Namely, if R is left noetherian (or satisfies the ascending chain condition for semiprimitive ideals), and if R is either a countable dimensional algebra (over a field) or a ring whose (Gabriel-Rentschler) Krull dimension is a countable ordinal, then each closed set of the refined Zariski topology is the union of a finite set with a Zariski closed set. The approach requires certain auxiliary results guaranteeing embeddings of factor rings into direct products of simple modules. Analysis of these embeddings mimics earlier work of the first author and Zimmermann-Huisgen on products of torsion modules.
APA, Harvard, Vancouver, ISO, and other styles
10

Mouadi, Hassan, and Driss Karim. "Some topology on zero-dimensional subrings of product of rings." Filomat 34, no. 14 (2020): 4589–95. http://dx.doi.org/10.2298/fil2014589m.

Full text
Abstract:
Let R be a ring and {Ri}i?I a family of zero-dimensional rings. We define the Zariski topology on Z(R,?Ri) and study their basic properties. Moreover, we define a topology on Z(R,?Ri) by using ultrafilters; it is called the ultrafilter topology and we demonstrate that this topology is finer than the Zariski topology. We show that the ultrafilter limit point of a collections of subrings of Z(R,?Ri) is a zero-dimensional ring. Its relationship with F-lim and the direct limit of a family of rings are studied.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Zariski topology"

1

Guerville, Benoît. "Invariants Topologiques d'Arrangements de droites." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3033/document.

Full text
Abstract:
Cette thèse est le point d’intersection entre deux facettes de l’étude des arrangements de droites : la combinatoire et la topologie. Dans une première partie nous avons étudié l’inclusion de la variété bord dans le complémentaire d’un arrangement. Nous avons ainsi généralisé le résultat d’E. Hironaka au cas de tous les arrangements complexes. Pour contourner les problèmes provenant des arrangements non réels, nous avons étudié le diagramme de câblage, dit wiring diagram, qui code la monodromie de tresses sous forme de tresse singulière. Pour pouvoir l'utiliser, nous avons implémenté un programme sur Sage permettant de calculer ce diagramme en fonction des équations de l’arrangement. Cela nous a permis de d’obtenir deux descriptions explicites de l’application induite par l’inclusion de la variété bord dans le complémentaire sur les groupes fondamentaux. Nous obtenons ainsi deux nouvelles présentations du groupe fondamental du complémentaire d’un arrangement. L’une d’entre elle généralise le théorème de R. Randell au cas des arrangements complexes. Pour continuer ces travaux, nous avons étudié l’application induite par l’inclusion sur le premier groupe d’homologie. Nous obtenons deux descriptions simples de cette application. En s’inspirant des travaux de J.I. Cogolludo, nous décrivons une décomposition canonique du premier groupe d’homologie de la variété bord comme produit de la 1-homologie et de la 2-cohomologie du complémentaire, ainsi qu'un isomorphisme entre la 2-cohomologie du complémentaire et la 1-homologie du graphe d’incidence. Dans la seconde partie de notre travail nous nous sommes intéressés à l’étude des caractères du groupe fondamental du complémentaire. Nous partons des résultats obtenus par E. Artal sur le calcul de la profondeur d’un caractère. Cette profondeur peut être décomposée en un terme projectif et un terme quasi-projectif. Un algorithme pour calculer la partie projective a été donné par A. Libgober. Les travaux de E. Artal concernent la partie quasi-projective. Il a obtenu une méthode pour la calculer en fonction de l’image de certains cycles particuliers du complémentaire par le caractère. En utilisant les résultats obtenus dans la première partie, nous avons obtenu un algorithme complet permettant le calcul de la profondeur quasi-projective d’un caractère. A travers l’étude de cet algorithme, nous avons obtenu une condition combinatoire pour admettre une profondeur quasi-projective potentiellement non combinatoire. Nous avons ainsi défini la notion de caractère inner-cyclic . Cette notion nous a permis de formuler des conditions fortes sur la combinatoire pour qu’un arrangement n’ait que des caractères de profondeur quasi-projective nulle. Enfin pour diminuer le nombre d’exemples à considérer nous avons introduit la notion de combinatoire première. Si une combinatoire ne l’est pas, alors les variétés caractéristiques de ses réalisations sont définies par celles d’un arrangement avec moins de droites. En parallèle à cette étude, nous avons observé que la composition de l’application induite par l’inclusion sur le premier groupe d’homologie avec un caractère nous fournit un invariant topologique de l'arrangement obtenu en désingularisant les points multiples (blow-up). De plus, nous montrons que cet invariant n’est pas de nature combinatoire. Il nous a ainsi permis de découvrir deux nouvelles nc-paires de Zariski
This thesis is the intersection point between the two facets of the study of line arrangements: combinatorics and topology. In the first part, we study the inclusion of the boundary manifold in the complement of an arrangement. We generalize the results of E. Hironaka to the case of any complex line arrangement. To get around the problems due to the case of non complexified real arrangement, we study the braided wiring diagram. We develop a Sage program to compute it from the equation of the complex line arrangement. This diagram allows to give two explicit descriptions of the map induced by the inclusion on the fundamental groups. From theses descriptions, we obtain two new presentations of the fundamental group of the complement. One of them is a generalization of the R. Randell Theorem to any complex line arrangement. In the next step of this work, we study the map induced by the inclusion on the first homology group. Then we obtain two simple descriptions of this map. Inspired by ideas of J.I. Cogolludo, we give a canonical description of the homology of the boundary manifold as the product of the 1-homology with the 2-cohomology of the complement. Finally, we obtain an isomorphism between the 2-cohomology of the complement with the 1-homology of the incidence graph of the arrangement. In the second part, we are interested by the study of character on the group of the complement. We start from the results of E. Artal on the computation of the depth of a character. This depth can be decomposed into a projective term and a quasi-projective term, vanishing for characters that ramify along all the lines. An algorithm to compute the projective part is given by A. Libgober. E. Artal focuses on the quasi-projective part and gives a method to compute it from the image by the character of certain cycles of the complement. We use our results on the inclusion map of the boundary manifold to determine these cycles explicitly. Combined with the work of E. Artal we obtain an algorithm to compute the quasi-projective depth of any character. From the study of this algorithm, we obtain a strong combinatorial condition on characters to admit a quasi-projective depth potentially not determined by the combinatorics. With this property, we define the inner-cyclic characters. From their study, we observe a strong condition on the combinatorics of an arrangement to have only characters with null quasi-projective depth. Related to this, in order to reduce the number of computations, we introduce the notion of prime combinatorics. If a combinatorics is not prime, then the characteristics varieties of its realizations are completely determined by realization of a prime combinatorics with less line. In parallel, we observe that the composition of the map induced by the inclusion with specific characters provide topological invariants of the blow-up of arrangements. We show that the invariant captures more than combinatorial information. Thereby, we detect two new examples of nc-Zariski pairs
APA, Harvard, Vancouver, ISO, and other styles
2

Marty, Florian. "Des ouverts Zariski et des morphismes lisses en géométrie relative." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/540/.

Full text
Abstract:
Dans cette thèse, l'auteur étudie la théorie des schémas relatifs telle qu'elle est définie par B. Toën et M. Vaquié dans leur article "Au dessous de Spec(Z)". Il se penche plus particulièrement sur l'étude des ouverts Zariski et des morphismes lisses dans un cadre relatif sans hypothèse d'additivité sur la catégorie de base. Le premier résultat obtenu est une description en terme d'idéaux premier relatifs de l'espace topologique de Zariski, associé à une schéma relatif affine. Le second résultat de la thèse est la définition d'une notion de morphisme lisse relatif, entre monoïdes, qui généralise la notion de morphisme lisse entre anneaux. L'auteur démontre en particulier que la droite affine est lisse dans tout contexte suffisamment régulier, tel que celui des schémas au dessus du corps à un élément (* -> N est lisse) ou celui des N-schémas (N ->N[X] est lisse)3
In this thesis, the author work on the relative scheme theory defined by B. Toën and M. Vaquié in the article "Au dessous de Spec(Z)". More precisely, he studies the properties of Zariski open immersions and smooth morphisms in a relative context, not necessarily additive. The first issue is a description in terms of prime ideals of the Zariski topological space associated to a relative affine scheme. The second issue is a definition of a notion of relative smooth morphism, between monoids, which recover the notion of smooth morphism between rings. The author proves in particular that the affine line is smooth in most relative contexts, as for example the context of scheme over the field with one element (* -> N is smooth) or the context of N-schemes (N ->N[X] is smooth)
APA, Harvard, Vancouver, ISO, and other styles
3

de, Felipe Paramio Ana Belén. "Topologie des espaces de valuations et géométrie des singularités." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC136.

Full text
Abstract:
On étudie la fibre de l'espace de Riemann-Zariski au-dessus d'un point fermé x d'une variété algébrique X définie sur un corps algébriquement clos. On caractérise son type d'homéomorphisme pour des points réguliers et des singularités normales de surface. Cela est fait en étudiant le lien avec l'entrelac non Archimédien normalisé de x dans X. On démontre qu'ils ont le même comportement
We study the fiber of the Riemann-Zariski space above a closed point x of an algebraic variety X defined over an algebraically closed field. We characterize its homeomorphism type for regular points and normal surface singularities. This is done by studying the relation between this space and the normalized non-Archimedean link of x in X. We prove that their behavior is the same
APA, Harvard, Vancouver, ISO, and other styles
4

Nanni, Giacomo. "Varietà di Segre e di Veronese." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20941/.

Full text
Abstract:
L'obbiettivo della tesi è presentare due esempi classici di varietà proiettive: le varietà di Segre e di Veronese. Inizialmente si presentano alcuni risultati generali sugli insiemi algebrici affini e proiettivi, sugli anelli graduati e gli ideali omogenei, sulla corrispondenza tra insiemi algebrici proiettivi e ideali omogenei radicali e si costruisce la topologia di Zariski di Pn. Si costruiscono poi le varietà di Segre e le varietà di Veronese e si conclude con alcune considerazioni sulla cubica gobba.
APA, Harvard, Vancouver, ISO, and other styles
5

Floris, Enrica. "Deux aspects de la géométrie birationnelle des variétés algébriques : la formule du fibré canonique et la décomposition de Zariski." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00861470.

Full text
Abstract:
La formule du fibré canonique et la décomposition de Zariski sont deux outils très importants en géométrie birationnelle. La formule du fibré canonique pour une fibration f:(X,B)->Z consiste à écrire K_X+B comme tiré en arrière de K_Z+B_Z+M où B_Z contient des informations sur les fibres singulières et M s'appelle partie modulaire. Il a été conjecturé qu'il existe une modification birationnelle Z' de Z telle que M' est semiample, où M' est la partie modulaire induite par changement de base. Un diviseur pseudoeffectif admet une décomposition de Zariski s'il existent un diviseur nef P et un diviseur effectif N tels que D=P+N et P est "le plus grand" diviseur nef tel que D-P est effectif.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Zariski topology"

1

Hrushovski, Ehud, and François Loeser. Continuity of homotopies. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.003.0010.

Full text
Abstract:
This chapter includes some additional material on homotopies. In particular, for a smooth variety V, there exists an “inflation” homotopy, taking a simple point to the generic type of a small neighborhood of that point. This homotopy has an image that is properly a subset of unit vector V, and cannot be understood directly in terms of definable subsets of V. The image of this homotopy retraction has the merit of being contained in unit vector U for any dense Zariski open subset U of V. The chapter also proves the continuity of functions and homotopies using continuity criteria and constructs inflation homotopies before proving GAGA type results for connectedness. Additional results regarding the Zariski topology are given.
APA, Harvard, Vancouver, ISO, and other styles
2

Hrushovski, Ehud, and François Loeser. The space of stably dominated types. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161686.003.0003.

Full text
Abstract:
This chapter introduces the space unit vector V of stably dominated types on a definable set V. It first endows unit vector V with a canonical structure of a (strict) pro-definable set before providing some examples of stably dominated types. It then endows unit vector V with the structure of a definable topological space, and the properties of this definable topology are discussed. It also examines the canonical embedding of V in unit vector V as the set of simple points. An essential feature in the approach used in this chapter is the existence of a canonical extension for a definable function on V to unit vector V. This is considered in the next section where continuity criteria are given. The chapter concludes by describing basic notions of (generalized) paths and homotopies, along with good metrics, Zariski topology, and schematic distance.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zariski topology"

1

Kemper, Gregor. "The Zariski Topology." In Graduate Texts in Mathematics, 33–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03545-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scheiderer, Claus. "Relations to the Zariski topology." In Lecture Notes in Mathematics, 212–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0074287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Underwood, Robert G. "The Zariski Topology on the Spectrum." In An Introduction to Hopf Algebras, 13–34. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-72766-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parusiński, Adam. "Algebro-Geometric Equisingularity of Zariski." In Handbook of Geometry and Topology of Singularities II, 177–222. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78024-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brodmann, Markus. "Zariski-Topologie und Koordinatenringe." In Algebraische Geometrie, 67–78. Basel: Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-9266-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laumon, Gérard, and Laurent Moret-Bailly. "Points d’un S-champ algébrique; topologie de Zariski." In Champs algébriques, 39–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-24899-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"The K-Spectrum and the Zariski Topology." In IISc Lecture Notes Series, 19–39. Co-Published with Indian Institute of Science (IISc), Bangalore, India, 2010. http://dx.doi.org/10.1142/9789814304573_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Structure of varieties in the Zariski topology." In Graduate Studies in Mathematics, 159–81. Providence, Rhode Island: American Mathematical Society, 2022. http://dx.doi.org/10.1090/gsm/222/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aschenbrenner, Matthias, Lou van den Dries, and Joris van der Hoeven. "Some Commutative Algebra." In Asymptotic Differential Algebra and Model Theory of Transseries. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691175423.003.0002.

Full text
Abstract:
This chapter provides a background on commutative algebra and gives a self-contained proof of Johnson's Theorem 5.9.1 on regular solutions of systems of algebraic differential equations. It presents the facts on regular local rings and Kähler differentials needed for Theorem 5.9.1. It also recalls a common notational convention concerning a commutative ring R and an R-module M, with U and V as additive subgroups of R and M. Other topics include the Zariski topology, noetherian rings and spaces, rings and modules of finite length, integral extensions and integrally closed domains, Krull's Principal Ideal Theorem, differentials, and derivations on field extensions.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Zariski topology"

1

Çeken, Seçil, Mustafa Alkan, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Dual of Zariski Topology for Modules." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çeken, Seçil. "On a subspace of dual Zariski topology." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sanh, Nguyen Van, Le Phuong Thao, Noori F. A. Al-Mayahi, and Kar Ping Shum. "Zariski Topology of Prime Spectrum of a Module." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography