Academic literature on the topic 'Young-Jucys-Murphy elements'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Young-Jucys-Murphy elements.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Young-Jucys-Murphy elements"

1

Goulden, I. P., and D. M. Jackson. "Transitive powers of Young–Jucys–Murphy elements are central." Journal of Algebra 321, no. 7 (April 2009): 1826–35. http://dx.doi.org/10.1016/j.jalgebra.2009.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dunkl, Charles F. "Singular Nonsymmetric Jack Polynomials for Some Rectangular Tableaux." Symmetry 12, no. 4 (April 16, 2020): 630. http://dx.doi.org/10.3390/sym12040630.

Full text
Abstract:
In the intersection of the theories of nonsymmetric Jack polynomials in N variables and representations of the symmetric groups S N one finds the singular polynomials. For certain values of the parameter κ there are Jack polynomials which span an irreducible S N -module and are annihilated by the Dunkl operators. The S N -module is labeled by a partition of N, called the isotype of the polynomials. In this paper the Jack polynomials are of the vector-valued type, i.e., elements of the tensor product of the scalar polynomials with the span of reverse standard Young tableaux of the shape of a fixed partition of N. In particular, this partition is of shape m , m , … , m with 2 k components and the constructed singular polynomials are of isotype m k , m k for the parameter κ = 1 / m + 2 . This paper contains the necessary background on nonsymmetric Jack polynomials and representation theory and explains the role of Jucys–Murphy elements in the construction. The main ingredient is the proof of uniqueness of certain spectral vectors, namely the list of eigenvalues of the Jack polynomials for the Cherednik–Dunkl operators, when specialized to κ = 1 / m + 2 . The paper finishes with a discussion of associated maps of modules of the rational Cherednik algebra and an example illustrating the difficulty of finding singular polynomials for arbitrary partitions.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Young-Jucys-Murphy elements"

1

Poulain, d. andecy Loic. "Algèbres de Hecke cyclotomiques : représentations, fusion et limite classique." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4036/document.

Full text
Abstract:
Une approche inductive est développée pour la théorie des représentations de la chaîne des algèbres de Hecke cyclotomiques de type G(m,1,n). Cette approche repose sur l'étude du spectre d'une famille commutative maximale, formée par les analogues des éléments de Jucys--Murphy.Les représentations irréductibles, paramétrées par les multi-partitions, sont construites avec l'aide d'une nouvelle algèbre associative, dont l'espace vectoriel sous-jacent est le produit tensoriel de l'algèbre de Hecke cyclotomique avec l'algèbre associative libre engendrée par les multi-tableaux standards.L'analogue de cette approche est présentée pour la limite classique, c'est-à-dire la chaîne des groupes de réflexions complexes de type G(m,1,n).Dans une seconde partie, une base des algèbres de Hecke cyclotomiques est donnée et la platitude de la déformation est montrée sans utiliser la théorie des représentations. Ces résultats sont généralisés aux algèbres de Hecke affines de type A.Ensuite, une procédure de fusion est présentée pour les groupes de réflexions complexes et les algèbres de Hecke cyclotomiques de type G(m,1,n). Dans les deux cas, un ensemble complet d'idempotents primitifs orthogonaux est obtenu par évaluation consécutive d'une fonction rationnelle.Dans une troisième partie, une nouvelle présentation est obtenue pour les sous-groupes alternés de tous les groupes de Coxeter. Les générateurs sont reliés aux arêtes orientées du graphe de Coxeter. Cette présentation est ensuite étendue, pour tous les types, aux extensions spinorielles des groupes alternés, aux algèbres de Hecke alternées et aux sous-groupes alternés des groupes de tresses
An inductive approach to the representation theory of the chain of the cyclotomic Hecke algebras of type G(m,1,n) is developed. This approach relies on the study of the spectrum of a maximal commutative family formed by the analogues of the Jucys--Murphy elements.The irreducible representations, labelled by the multi-partitions, are constructed with the help of a new associative algebra, whose underlying vector space is the tensor product of the cyclotomic Hecke algebra with the free associative algebra generated by the standard multi-tableaux.The analogue of this approach is presented for the classical limit, that is for the chain of complex reflection groups of type G(m,1,n).In a second part, a basis of the cyclotomic Hecke algebras is given and the flatness of the deformation is proved without using the representation theory. These results are extended to the affine Hecke algebras of type A.Then a fusion procedure is presented for the complex reflection groups and the cyclotomic Hecke algebras of type G(m,1,n). In both cases, a complete set of primitive orthogonal idempotents is obtained by successive evaluations of a rational fonction.In a third part, a new presentation is obtained for the alternating subgroups of all Coxeter groups. The generators are related to oriented edges of the Coxeter graph. This presentation is then extended, for all types, to the spinor extensions of the alternating groups, the alternating Hecke algebras and the alternating subgroups of braid groups
APA, Harvard, Vancouver, ISO, and other styles
2

Feray, Valentin. "Fonctions sur l'ensemble des diagrammes de Young : caractères du groupe symétrique et polynômes de Kerov." Thesis, Paris Est, 2009. http://www.theses.fr/2009PEST1013/document.

Full text
Abstract:
Cette thèse concerne les valeurs du caractère irréductible (renormalisé) comme fonction de la partition indexant la représentation (et non de la permutation sur laquelle on calcule le caractère). Avec une bonne renormalisation, les caractères s’écrivent comme des polynômes en fonction des coordonnées des diagrammes multirectangulaires d’une part et en fonction des cumulants libres d’autre part ( ce sont des observables du diagramme apparaissant naturellement dans des problèmes d’asymptotique). Nous avons donné des interprétations combinatoires des coefficients de ces différentes expressions. Celles-ci peuvent s’exprimer en termes de cartes, dont le genre est lié au comportement asymptotique du terme correspondant. Ce type d’expression permet d’une part de bien comprendre le comportement asymptotique : nous avons ainsi amélioré les bornes connues sur les caractères ainsi que le domaine de validité d’équivalents classique. D’autre part, la combinatoire apparaissant dans ces questions est riche et a pu être utilisée dans l’étude d’identité sur des fractions rationnelles
The main object of this thesis is the (normalized) irreducible character values of the symmetric group, seen as a function of the partition indexing the representation (and not of the permutation on which we compute the character value). With a good rescaling, the characters can be written as polynomials in so-called Stanley coordinates or in terms of free cumulants (the latter are observables of the diagram, which appear naturally in the asymptotics study of character values). We give a combinatorial interpretation for the coefficients of these two expressions. More precisely, the summans are indexed by maps, whose genus is linked with their asymptotic behaviour. This kind of expression is very useful to obtain asymptotic results : for example, one has given upper bounds on character values and enlarged the domain of validity of some known equivalents. Moreover, the combinatorics involved in these questions is interesting and has been applied to identities on rational functions
APA, Harvard, Vancouver, ISO, and other styles
3

Ghosh, Subhajit. "Total variation cutoff for random walks on some finite groups." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4779.

Full text
Abstract:
This thesis studies mixing times for three random walk models. Specifically, these are random walks on the alternating group, the group of signed permutations and the complete monomial group. The details for the models are given below: The random walk on the alternating group: We investigate the properties of a random walk on the alternating group $A_n$ generated by $3$-cycles of the form $(i, n − 1, n)$ and $(i, n, n − 1)$. We call this the transpose top-2 with random shuffle. We find the spectrum of the transition matrix of this shuffle. We obtain the sharp mixing time by proving the total variation cutoff phenomenon at $(n − 3/2) \log n$ for this shuffle. The random walk on the group of signed permutations: We consider a random walk on the hyperoctahedral group $B_n$ generated by the signed permutations of the form $(i, n)$ and $(−i, n)$ for $1 ≤ i ≤ n$. We call this the flip-transpose top with random shuffle on $B_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that this shuffle exhibits the total variation cutoff phenomenon with cutoff time $n \log n$. Furthermore, we show that a similar random walk on the demihyperoctahedral group $D_n$ generated by the identity signed permutation and the signed permutations of the form $(i, n)$ and $(−i, n)$ for $1 ≤ i < n$ also has a cutoff at $(n − 1/2) \log n$. The random walk on the complete monomial group: Let $G_1 ⊆ · · · ⊆ G_n ⊆ · · ·$ be a sequence of finite groups with $|G_1| > 2$. We study the properties of a random walk on the complete monomial group $G_n\wrS_n$ generated by the elements of the form $(e, . . . , e, g; id)$ and $(e, . . . , e, g^{−1} , e, . . . , e, g; (i, n))$ for $g ∈ G_n, 1 ≤ i < n$. We call this the warp-transpose top with random shuffle on $G_n\wr S_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is of order $n \log n + (1/2) n \log(|G_n | − 1)$. We also show that this shuffle satisfies cutoff phenomenon with cutoff time $n \log n$ if $|G_n| = o(n^{δ})$ for all $δ > 0$.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Tânia Sofia Zaragoza Cotrim. "Grafo da ramificação para representações irredutíveis de grupos simétricos: isomorfismo com o Grafo de Young." Master's thesis, 2014. http://hdl.handle.net/10451/10968.

Full text
Abstract:
Tese de mestrado em Matemática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014
Neste trabalho provamos que o grafo da ramificação, construído através das classes de equivalência das representações irredutíveis de Sn e das respetivas componentes irredutíveis das restrições a Sn-1, coincide, tanto nos vértices como nos caminhos, com o grafo de Young, constituído pelos diagramas de Young de partições de n e respectivos diagramas que se obtêm quando subtraída uma caixa removível. Para atingir esse objetivo recorremos a elementos particulares da álgebra do grupo simétrico e indexámos os caminhos do grafo da ramificação a um conjunto de vetores de Zn ao qual também conseguimos indexar os caminhos do grafo de Young, utilizando nesse caso os quadros de Young standard.
In this paper we prove that the branching graph, built through the equivalence classes of irreducible representations of Sn and the respective irreducible components of the restrictions to Sn-1, coincides, both in vertices as in paths, with the Young graph, composed of Young diagrams of partitions of n and the respective diagrams that are obtained when subtracted a removable box. To achieve this goal we resorted to particular elements of the symmetric group algebra and indexed the paths of the branching graph to a set of Zn vectors, to which we could also index the paths of Young graph, using, in this case, Young tableaux.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Young-Jucys-Murphy elements"

1

Hora, Akihito. "Jucys-Murphy element and walks on modified Young graph." In Quantum Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc73-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography