Journal articles on the topic 'Yeast Cell Surface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Yeast Cell Surface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bae, Jungu, Kouichi Kuroda, and Mitsuyoshi Ueda. "Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface." Applied and Environmental Microbiology 81, no. 1 (October 10, 2014): 59–66. http://dx.doi.org/10.1128/aem.02864-14.
Full textNayyar, Ashima, Graeme Walker, Elisabetta Canetta, Forbes Wardrop, and Ashok K. Adya. "Influence of Cell Surface and Nanomechanical Properties on the Flocculation Ability of Industrial Saccharomyces cerevisiae Strains." Journal of Food Research 6, no. 5 (August 2, 2017): 1. http://dx.doi.org/10.5539/jfr.v6n5p1.
Full textShibasaki, Seiji, and Mitsuyoshi Ueda. "Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals." Microorganisms 11, no. 1 (January 3, 2023): 125. http://dx.doi.org/10.3390/microorganisms11010125.
Full textINOKUMA, Kentaro, and Tomohisa HASUNUMA. "Evolution of Yeast Cell Surface Engineering." Oleoscience 22, no. 3 (2022): 99–105. http://dx.doi.org/10.5650/oleoscience.22.99.
Full textBagnat, M., and K. Simons. "Cell surface polarization during yeast mating." Proceedings of the National Academy of Sciences 99, no. 22 (October 8, 2002): 14183–88. http://dx.doi.org/10.1073/pnas.172517799.
Full textShimoi, Hitoshi, Kazutoshi Sakamoto, Masaki Okuda, Ratchanee Atthi, Kazuhiro Iwashita, and Kiyoshi Ito. "The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast." Applied and Environmental Microbiology 68, no. 4 (April 2002): 2018–25. http://dx.doi.org/10.1128/aem.68.4.2018-2025.2002.
Full textThiebault, F., and J. Coulon. "Influence of carbon source and surface hydrophobicity on the aggregation of the yeastKluyveromyces bulgaricus." Canadian Journal of Microbiology 51, no. 1 (January 1, 2005): 91–94. http://dx.doi.org/10.1139/w04-106.
Full textShipingana, N. N., N. Raghu, S. Veerana Gowda, T. S. Gopenath, M. S. Ranjith, A. Gnanasekaran, M. Karthikeyan, et al. "Cell signaling in yeast: A mini review." Journal of Biomedical Sciences 5, no. 2 (April 17, 2019): 18–22. http://dx.doi.org/10.3126/jbs.v5i2.23634.
Full textShibasaki, Seiji, Yuki Nakatani, Kazuaki Taketani, Miki Karasaki, Kiyoshi Matsui, Mitsuyoshi Ueda, and Tsuyoshi Iwasaki. "Construction of HGF-Displaying Yeast by Cell Surface Engineering." Microorganisms 10, no. 7 (July 7, 2022): 1373. http://dx.doi.org/10.3390/microorganisms10071373.
Full textColeman, David A., Soon-Hwan Oh, Xiaomin Zhao, and Lois L. Hoyer. "Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody." Microbiology 156, no. 12 (December 1, 2010): 3645–59. http://dx.doi.org/10.1099/mic.0.043851-0.
Full textUEDA, MITSUYOSHI. "Cell surface layer engineering of the yeast." Kagaku To Seibutsu 35, no. 7 (1997): 525–32. http://dx.doi.org/10.1271/kagakutoseibutsu1962.35.525.
Full textUeda, Mitsuyoshi, and Atsuo Tanaka. "Cell surface engineering of yeast: Construction of arming yeast with biocatalyst." Journal of Bioscience and Bioengineering 90, no. 2 (January 2000): 125–36. http://dx.doi.org/10.1016/s1389-1723(00)80099-7.
Full textUEDA, MITSUYOSHI, and ATSUO TANAKA. "Cell Surface Engineering of Yeast. Construction of Arming Yeast with Biocatalyst." Journal of Bioscience and Bioengineering 90, no. 2 (2000): 125–36. http://dx.doi.org/10.1263/jbb.90.125.
Full textBraun, Phyllis C. "Nutrient uptake byCandida albicans: the influence of cell surface mannoproteins." Canadian Journal of Microbiology 45, no. 5 (July 1, 1999): 353–59. http://dx.doi.org/10.1139/w99-035.
Full textSayin, Ismail, Mehmet Kahraman, Fikrettin Sahin, Dilsad Yurdakul, and Mustafa Culha. "Characterization of Yeast Species Using Surface-Enhanced Raman Scattering." Applied Spectroscopy 63, no. 11 (November 2009): 1276–82. http://dx.doi.org/10.1366/000370209789806849.
Full textGregoire, S., J. Xiao, B. B. Silva, I. Gonzalez, P. S. Agidi, M. I. Klein, K. S. Ambatipudi, et al. "Role of Glucosyltransferase B in Interactions of Candida albicans with Streptococcus mutans and with an Experimental Pellicle on Hydroxyapatite Surfaces." Applied and Environmental Microbiology 77, no. 18 (July 29, 2011): 6357–67. http://dx.doi.org/10.1128/aem.05203-11.
Full textKlis, Frans M., Marian de Jong, Stanley Brul, and Piet W. J. de Groot. "Extraction of cell surface-associated proteins from living yeast cells." Yeast 24, no. 4 (2007): 253–58. http://dx.doi.org/10.1002/yea.1476.
Full textMacDonald, Chris, and Robert C. Piper. "Cell surface recycling in yeast: mechanisms and machineries." Biochemical Society Transactions 44, no. 2 (April 11, 2016): 474–78. http://dx.doi.org/10.1042/bst20150263.
Full textColling, Lisa, Michael Essmann, Cara Hollmer, and Bryan Larsen. "Surface Modifying Substances that Reduce Apparent Yeast Cell Hydrophobicity." Infectious Diseases in Obstetrics and Gynecology 13, no. 3 (2005): 171–77. http://dx.doi.org/10.1080/10647440500068149.
Full textColling, Lisa, Richard N. Carter, Michael Essmann, and Bryan Larsen. "Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry." Infectious Diseases in Obstetrics and Gynecology 13, no. 1 (2005): 43–48. http://dx.doi.org/10.1155/2005/739101.
Full textTran, Clara T. H., Alexey Kondyurin, Stacey L. Hirsh, David R. McKenzie, and Marcela M. M. Bilek. "Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization." Journal of The Royal Society Interface 9, no. 76 (June 13, 2012): 2923–35. http://dx.doi.org/10.1098/rsif.2012.0347.
Full textNakari-Setälä, Tiina, Joana Azeredo, Mariana Henriques, Rosário Oliveira, José Teixeira, Markus Linder, and Merja Penttilä. "Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization." Applied and Environmental Microbiology 68, no. 7 (July 2002): 3385–91. http://dx.doi.org/10.1128/aem.68.7.3385-3391.2002.
Full textLi, Yumei, Lili Lu, Hongmei Wang, Xiaodong Xu, and Min Xiao. "Cell Surface Engineering of a β-Galactosidase for Galactooligosaccharide Synthesis." Applied and Environmental Microbiology 75, no. 18 (July 17, 2009): 5938–42. http://dx.doi.org/10.1128/aem.00326-09.
Full textKonnova, S. A., Y. M. Lvov, and R. F. Fakhrullin. "Magnetic halloysite nanotubes for yeast cell surface engineering." Clay Minerals 51, no. 3 (June 2016): 429–33. http://dx.doi.org/10.1180/claymin.2016.051.3.07.
Full textFUKUDA, Takeshi, Danya ISOGAWA, Madoka TAKAGI, Michiko KATO-MURAI, Hisashi KIMOTO, Hideo KUSAOKE, Mitsuyoshi UEDA, and Shin-ichiro SUYE. "Yeast Cell-Surface Expression of Chitosanase fromPaenibacillus fukuinensis." Bioscience, Biotechnology, and Biochemistry 71, no. 11 (November 23, 2007): 2845–47. http://dx.doi.org/10.1271/bbb.70315.
Full textKondo, A., and M. Ueda. "Yeast cell-surface display?applications of molecular display." Applied Microbiology and Biotechnology 64, no. 1 (March 1, 2004): 28–40. http://dx.doi.org/10.1007/s00253-003-1492-3.
Full textRoemer, Terry, and Howard Bussey. "Yeast Kre1p is a cell surface O-glycoprotein." Molecular and General Genetics MGG 249, no. 2 (March 1995): 209–16. http://dx.doi.org/10.1007/bf00290368.
Full textHossain, SK Amir, SM Rifat Rahman, Toufiq Ahmed, and Chanchal Mandal. "An overview of yeast cell wall proteins and their contribution in yeast display system." Asian Journal of Medical and Biological Research 5, no. 4 (February 3, 2020): 246–57. http://dx.doi.org/10.3329/ajmbr.v5i4.45261.
Full textLu, Dongdong, Songsong Tang, Yangyang Li, Zhaoqing Cong, Xueji Zhang, and Song Wu. "Magnetic-Propelled Janus Yeast Cell Robots Functionalized with Metal-Organic Frameworks for Mycotoxin Decontamination." Micromachines 12, no. 7 (July 5, 2021): 797. http://dx.doi.org/10.3390/mi12070797.
Full textBEUCHAT, L. R., B. V. NAIL, R. E. BRACKETT, and T. L. FOX. "Evaluation of a Culture Film (Petrifilm™ YM) Method for Enumerating Yeasts and Molds in Selected Dairy and High-Acid Foods." Journal of Food Protection 53, no. 10 (October 1, 1990): 869–74. http://dx.doi.org/10.4315/0362-028x-53.10.869.
Full textUEDA, MITSUYOSHI, TOSHIYUKI MURAI, YUMI SHIBASAKI, NAOMI KAMASAWA, MASAKO OSUMI, and ATSUO TANAKA. "Molecular Breeding of Polysaccharide-Utilizing Yeast Cells by Cell Surface Engineering." Annals of the New York Academy of Sciences 864, no. 1 ENZYME ENGINE (December 1998): 528–37. http://dx.doi.org/10.1111/j.1749-6632.1998.tb10374.x.
Full textWatanabe, Yukio, Wataru Aoki, and Mitsuyoshi Ueda. "Improved ammonia production from soybean residues by cell surface-displayed l-amino acid oxidase on yeast." Bioscience, Biotechnology, and Biochemistry 85, no. 4 (December 21, 2020): 972–80. http://dx.doi.org/10.1093/bbb/zbaa112.
Full textWahyuni, I., U. Purwandari, A. Subagio, and N. Nurhayati. "Isolation and identification of gastric acid-tolerant yeast from tapai." Food Research 7, Supplementary 1 (August 15, 2023): 276–82. http://dx.doi.org/10.26656/fr.2017.7(s1).13.
Full textBouyx, Clara, Marion Schiavone, and Jean Marie François. "FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae." Pathogens 10, no. 11 (November 19, 2021): 1509. http://dx.doi.org/10.3390/pathogens10111509.
Full textUEDA, Mitsuyoshi, and Atsuo TANAKA. "Novel Molecular Breeding of Yeast by Cell Surface Engineering." JOURNAL OF THE BREWING SOCIETY OF JAPAN 94, no. 11 (1999): 860–67. http://dx.doi.org/10.6013/jbrewsocjapan1988.94.860.
Full textKondo, Akihiko, Tsutomu Tanaka, Tomohisa Hasunuma, and Chiaki Ogino. "Applications of Yeast Cell-Surface Display in Bio-Refinery." Recent Patents on Biotechnology 4, no. 3 (November 1, 2010): 226–34. http://dx.doi.org/10.2174/187220810793611509.
Full textUeda, Mitsuyoshi, and Atsuo Tanaka. "Genetic immobilization of proteins on the yeast cell surface." Biotechnology Advances 18, no. 2 (April 2000): 121–40. http://dx.doi.org/10.1016/s0734-9750(00)00031-8.
Full textHarsay, E., and A. Bretscher. "Parallel secretory pathways to the cell surface in yeast." Journal of Cell Biology 131, no. 2 (October 15, 1995): 297–310. http://dx.doi.org/10.1083/jcb.131.2.297.
Full textKono, Keiko, Hiroki Okada, and Yoshikazu Ohya. "Local and Acute Disruption of the Yeast Cell Surface." Cold Spring Harbor Protocols 2016, no. 8 (August 2016): pdb.prot085266. http://dx.doi.org/10.1101/pdb.prot085266.
Full textZhang, Wei, Bo Zhang, Yu Long Zhang, Da Han, and Yong Liang Zhou. "Trapping Yeast Cells on PDMS Micropillar Array." Advanced Materials Research 476-478 (February 2012): 2096–99. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.2096.
Full textBuzzini, Pietro, Benedetta Turchetti, Guglielmina Diolaiuti, Carlo D’Agata, and Alessandro Martini. "Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps." Annals of Glaciology 40 (2005): 119–22. http://dx.doi.org/10.3189/172756405781813591.
Full textLiu, Yun, Rui Zhang, Zhongshuai Lian, Shihui Wang, and Aaron T. Wright. "Yeast cell surface display for lipase whole cell catalyst and its applications." Journal of Molecular Catalysis B: Enzymatic 106 (August 2014): 17–25. http://dx.doi.org/10.1016/j.molcatb.2014.04.011.
Full textShenoy, Anjali, Srisaimaneesh Yalamanchili, Alexander R. Davis, and Adam W. Barb. "Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain." Antibodies 10, no. 4 (September 29, 2021): 38. http://dx.doi.org/10.3390/antib10040038.
Full textVialás, Vital, Palani Perumal, Dolores Gutierrez, Pilar Ximénez-Embún, César Nombela, Concha Gil, and W. LaJean Chaffin. "Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells." PROTEOMICS 12, no. 14 (August 2012): 2331–39. http://dx.doi.org/10.1002/pmic.201100588.
Full textZou, Wen, Mitsuyoshi Ueda, and Atsuo Tanaka. "Genetically Controlled Self-Aggregation of Cell-Surface-Engineered Yeast Responding to Glucose Concentration." Applied and Environmental Microbiology 67, no. 5 (May 1, 2001): 2083–87. http://dx.doi.org/10.1128/aem.67.5.2083-2087.2001.
Full textKlotz, Stephen A., Nicole Bradley, and Peter N. Lipke. "Blocking Serum Amyloid-P Component from Binding to Macrophages and Augmenting Fungal Functional Amyloid Increases Macrophage Phagocytosis of Candida albicans." Pathogens 11, no. 9 (September 1, 2022): 1000. http://dx.doi.org/10.3390/pathogens11091000.
Full textBreinig, Frank, Björn Diehl, Sabrina Rau, Christian Zimmer, Helmut Schwab, and Manfred J. Schmitt. "Cell Surface Expression of Bacterial Esterase A by Saccharomyces cerevisiae and Its Enhancement by Constitutive Activation of the Cellular Unfolded Protein Response." Applied and Environmental Microbiology 72, no. 11 (September 15, 2006): 7140–47. http://dx.doi.org/10.1128/aem.00503-06.
Full textTsygankov, Miklhail A., Andrey M. Rumyantsev, Anastasiya S. Makeeva, and Marina V. Padkina. "Comparasion of the effectiveness of anchor proteins ScAGα1p, KpCW51p, KpCW61p for surface display in yeast <i>Komagataella phaffii</i>." Ecological genetics 20, no. 4 (December 24, 2022): 359–71. http://dx.doi.org/10.17816/ecogen112509.
Full textLe, Phuc H., Duy H. K. Nguyen, Arturo Aburto Medina, Denver P. Linklater, Christian Loebbe, Russell J. Crawford, Shane MacLaughlin, and Elena P. Ivanova. "Surface Architecture Influences the Rigidity of Candida albicans Cells." Nanomaterials 12, no. 3 (February 7, 2022): 567. http://dx.doi.org/10.3390/nano12030567.
Full textBuck, James W., and John H. Andrews. "Localized, Positive Charge Mediates Adhesion ofRhodosporidium toruloides to Barley Leaves and Polystyrene." Applied and Environmental Microbiology 65, no. 5 (May 1, 1999): 2179–83. http://dx.doi.org/10.1128/aem.65.5.2179-2183.1999.
Full text