Academic literature on the topic 'Yeast Cell Surface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yeast Cell Surface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Yeast Cell Surface"
Bae, Jungu, Kouichi Kuroda, and Mitsuyoshi Ueda. "Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface." Applied and Environmental Microbiology 81, no. 1 (October 10, 2014): 59–66. http://dx.doi.org/10.1128/aem.02864-14.
Full textNayyar, Ashima, Graeme Walker, Elisabetta Canetta, Forbes Wardrop, and Ashok K. Adya. "Influence of Cell Surface and Nanomechanical Properties on the Flocculation Ability of Industrial Saccharomyces cerevisiae Strains." Journal of Food Research 6, no. 5 (August 2, 2017): 1. http://dx.doi.org/10.5539/jfr.v6n5p1.
Full textShibasaki, Seiji, and Mitsuyoshi Ueda. "Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals." Microorganisms 11, no. 1 (January 3, 2023): 125. http://dx.doi.org/10.3390/microorganisms11010125.
Full textINOKUMA, Kentaro, and Tomohisa HASUNUMA. "Evolution of Yeast Cell Surface Engineering." Oleoscience 22, no. 3 (2022): 99–105. http://dx.doi.org/10.5650/oleoscience.22.99.
Full textBagnat, M., and K. Simons. "Cell surface polarization during yeast mating." Proceedings of the National Academy of Sciences 99, no. 22 (October 8, 2002): 14183–88. http://dx.doi.org/10.1073/pnas.172517799.
Full textShimoi, Hitoshi, Kazutoshi Sakamoto, Masaki Okuda, Ratchanee Atthi, Kazuhiro Iwashita, and Kiyoshi Ito. "The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast." Applied and Environmental Microbiology 68, no. 4 (April 2002): 2018–25. http://dx.doi.org/10.1128/aem.68.4.2018-2025.2002.
Full textThiebault, F., and J. Coulon. "Influence of carbon source and surface hydrophobicity on the aggregation of the yeastKluyveromyces bulgaricus." Canadian Journal of Microbiology 51, no. 1 (January 1, 2005): 91–94. http://dx.doi.org/10.1139/w04-106.
Full textShipingana, N. N., N. Raghu, S. Veerana Gowda, T. S. Gopenath, M. S. Ranjith, A. Gnanasekaran, M. Karthikeyan, et al. "Cell signaling in yeast: A mini review." Journal of Biomedical Sciences 5, no. 2 (April 17, 2019): 18–22. http://dx.doi.org/10.3126/jbs.v5i2.23634.
Full textShibasaki, Seiji, Yuki Nakatani, Kazuaki Taketani, Miki Karasaki, Kiyoshi Matsui, Mitsuyoshi Ueda, and Tsuyoshi Iwasaki. "Construction of HGF-Displaying Yeast by Cell Surface Engineering." Microorganisms 10, no. 7 (July 7, 2022): 1373. http://dx.doi.org/10.3390/microorganisms10071373.
Full textColeman, David A., Soon-Hwan Oh, Xiaomin Zhao, and Lois L. Hoyer. "Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody." Microbiology 156, no. 12 (December 1, 2010): 3645–59. http://dx.doi.org/10.1099/mic.0.043851-0.
Full textDissertations / Theses on the topic "Yeast Cell Surface"
Nayyar, Ashima. "Yeast flocculation : understanding cell surface structure-function relationships in industrial yeast strains." Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/cec13693-e667-4426-ba6c-6873e5c2b642.
Full textProszynski, Tomasz. "Protein sorting and cell surface polarity in yeast." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1131974045019-73555.
Full textFoster, Alexander J. "Cell surface analysis of the basidiomycete yeast cryptococcus neoformans." Thesis, Aston University, 2004. http://publications.aston.ac.uk/11011/.
Full textGeorge, Ellen. "The influence of brewing yeast physiology on cell surface properties." Thesis, Oxford Brookes University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318535.
Full textMurai, Toshiyuki. "Studies on genetic display of hydrolytic enzymes on yeast cell surface." Kyoto University, 1998. http://hdl.handle.net/2433/182354.
Full textShiraga, Seizaburo. "Studies on modification of functions of hydrolytic enzymes by yeast cell surface engineering." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144560.
Full text0048
新制・課程博士
博士(工学)
甲第11889号
工博第2582号
新制||工||1362(附属図書館)
23669
UT51-2005-N723
京都大学大学院工学研究科合成・生物化学専攻
(主査)教授 森 泰生, 教授 今中 忠行, 教授 青山 安宏
学位規則第4条第1項該当
Zou, Wen. "STUDIES ON THE NEW FUNCTIONAL YEAST STRAINS CONSTRUCTED AND SCREENED BY CELL SURFACE ENGINEERING." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150264.
Full textHennig, Stefan. "Utilization of yeast pheromones and hydrophobin-based surface engineering for novel whole-cell sensor applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-223271.
Full textChetty, Bronwyn Jean. "Improvement of cell-surface adhered cellulase activities in recombinant strains of Saccharomyces cerevisiae engineered for consolidated bioprocessing." University of Western Cape, 2021. http://hdl.handle.net/11394/8357.
Full textConsolidated bioprocessing (CBP), in which a single organism in a single reactor is responsible for the conversion of pretreated lignocellulosic biomass to bioethanol, remains an attractive option for production of commodity products if an organism fit for this process can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second generation bioethanol. Current recombinant yeast strains engineered for this purpose must overcome the drawback of generally low secretion titres. A promising strategy for directly converting lignocellulose to ethanol is by displaying heterologous cellulolytic enzymes on the cell surface by means of the glycosylphosphatidylinositol (GPI) or similar anchoring systems. Recently, a strain producing cell-adhered enzymes in a ratio-optimized manner was created that showed significant crystalline cellulose hydrolysis.
Hennig, Stefan, Gerhard Rödel, and Kai Ostermann. "Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214807.
Full textBooks on the topic "Yeast Cell Surface"
Ueda, Mitsuyoshi, ed. Yeast Cell Surface Engineering. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5.
Full textGeorge, Ellen. The influence of brewing yeast physiology on cell surface properties. Oxford: Oxford Brookes University, 1996.
Find full textRhymes, Maureen Ruth. The effect of starvation on brewing yeast cell surface physical characteristics. Oxford: Oxford Brookes University, 1998.
Find full textUeda, Mitsuyoshi. Yeast Cell Surface Engineering: Biological Mechanisms and Practical Applications. Springer, 2019.
Find full textRead, Nick D. Fungal cell structure and organization. Edited by Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum, and Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0004.
Full textBook chapters on the topic "Yeast Cell Surface"
Ueda, Mitsuyoshi. "Principle of Cell Surface Engineering of Yeast." In Yeast Cell Surface Engineering, 3–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_1.
Full textAoki, Wataru. "Engineering Antibodies and Alternative Binders for Therapeutic Uses." In Yeast Cell Surface Engineering, 123–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_10.
Full textShibasaki, Seiji. "Oral Vaccine Development Using Cell Surface Display Technology." In Yeast Cell Surface Engineering, 149–58. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_11.
Full textUeda, Mitsuyoshi. "Combinatorial Engineering." In Yeast Cell Surface Engineering, 161–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_12.
Full textMiura, Natsuko. "Enzyme Evolution." In Yeast Cell Surface Engineering, 175–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_13.
Full textKuroda, Kouichi. "Energy Production: Biomass – Starch, Cellulose, and Hemicellulose." In Yeast Cell Surface Engineering, 17–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_2.
Full textTakagi, Toshiyuki. "Energy Production: Biomass – Marine." In Yeast Cell Surface Engineering, 29–41. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_3.
Full textOgino, Chiaki, and Jerome Amoah. "Energy Production: Biodiesel." In Yeast Cell Surface Engineering, 43–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_4.
Full textKuroda, Kouichi. "Cleanup of Pollution: Heavy Metal Ions and Environmental Hormones." In Yeast Cell Surface Engineering, 63–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_5.
Full textKuroda, Kouichi. "Recovery of Rare Metal Ions." In Yeast Cell Surface Engineering, 73–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5868-5_6.
Full textConference papers on the topic "Yeast Cell Surface"
Fung, Tracy H., Gregory I. Ball, Sarah C. McQuaide, Shih-Hui Chao, Alejandro Coleman-Lerner, Mark R. Holl, and Deirdre R. Meldrum. "Microprinting of On-Chip Cultures: Patterning of Yeast Cell Microarrays Using Concanavalin-A Adhesion." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60866.
Full textMarynchenko, L., O. Nizhelska, A. Kurylyuk, V. Makara, and S. Naumenko. "Observed effects of electromagnetic fields action on yeast and bacteria cells attached to surfaces." In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2020. http://dx.doi.org/10.1109/elnano50318.2020.9088883.
Full textMelhado, Eliana Meire, Letícia Buzzo do Amaral, Leonardo Estrela Thomé, Cibele Alexandra Ferro, Marcelo Freitas Martins, Natalia Prando, and Alexandre Haddad de Souza. "Neurocriptococcosis in an immunocompetent patient: a case report." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.377.
Full textStanojević-Nikolić, Slobodanka, Milan P. Nikolić, Marina Šćiban, Vladimir V. Srdić, and Vladimir B. Pavlović. "KINETIC AND EQUILIBRIUM STUDIES OF BIOSORPTION OF Cd(II) IONS USING SILICA-ALGINATE-YEAST COMPOSITE." In 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.323sn.
Full textJAWAD, Israa, Adian Abd Alrazak DAKL, and Hussein Jabar JASIM. "CHARACTERIZATION, MECHANISM OF ACTION, SOURCES TYPES AND USES OF THE ANTIMICROBIAL PEPTIDES IN DOMESTIC ANIMALS, REVIEW." In VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-13.
Full textReports on the topic "Yeast Cell Surface"
Droby, Samir, Michael Wisniewski, Ron Porat, and Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Full text