To see the other types of publications on this topic, follow the link: Ybb12.

Journal articles on the topic 'Ybb12'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ybb12.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Корень, Елена. "ХРУПКОСТЬ КУБИЧЕСКИХ ДОДЕКАБОРИДОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ." Modern engineering and innovative technologies, no. 04-01 (June 30, 2017): 102–5. http://dx.doi.org/10.30890/2567-5273.2018-04-01-023.

Full text
Abstract:
В работе рассматривается исследование хрупкости додекаборидов YB12, TbB12, DyB12, HoB12, ErB12, TmB12, YbB12, LuB12, ZrB12 на образцах, полученных методами порошковой металлургии, по микротвердости, определяемой на приборе ПМТ-3. Полученные результаты объ
APA, Harvard, Vancouver, ISO, and other styles
2

Xiang, Z., Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, Lu Chen, K. Sugimoto, et al. "Quantum oscillations of electrical resistivity in an insulator." Science 362, no. 6410 (August 30, 2018): 65–69. http://dx.doi.org/10.1126/science.aap9607.

Full text
Abstract:
In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields, which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally absent in insulators. Here, we report a notable exception in an insulator—ytterbium dodecaboride (YbB12). The resistivity of YbB12, which is of a much larger magnitude than the resistivity in metals, exhibits distinct quantum oscillations. These unconventional oscillations arise from the insulating bulk, even though the temperature dependence of the oscillation amplitude follows the conventional Fermi liquid theory of metals with a large effective mass. Quantum oscillations in the magnetic torque are also observed, albeit with a lighter effective mass.
APA, Harvard, Vancouver, ISO, and other styles
3

Kasaya, M., F. Iga, M. Takigawa, and T. Kasuya. "Mixed valence properties of YbB12." Journal of Magnetism and Magnetic Materials 47-48 (February 1985): 429–35. http://dx.doi.org/10.1016/0304-8853(85)90458-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bolotina, Nadezhda, Olga Khrykina, Andrey Azarevich, Sergey Gavrilkin, and Nikolay Sluchanko. "Fine details of crystal structure and atomic vibrations in YbB12 with a metal–insulator transition." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 6 (November 19, 2020): 1117–27. http://dx.doi.org/10.1107/s2052520620013566.

Full text
Abstract:
The crystal structure of single-crystal Kondo insulator YbB12 was studied at nine temperatures in the range 85–293 K based on X-ray diffraction data. Very weak Jahn–Teller distortions of the cubic lattice were detected at all temperatures, but did not require a revision of the structural model. Heat capacity and electrical conductivity of YbB12 single crystals were studied in the temperature range 1.9–300 K. It is found that both the structural parameters and the indicated physical properties have some specific features in the temperature range 120–160 K. The unit cell of YbB12 contracts when cooled below 160 K and expands at around 120 K. The temperature dependences of the equivalent atomic displacement parameters U eq(T) are no longer monotonic around 140 K and should be modeled by two Einstein curves for Yb and two Debye curves for boron atoms above and below this temperature. As follows from the temperature behavior of the specific heat, coupled oscillations of Yb ions in a double-well potential lead to the appearance of a charge gap in the density of states and gradual deterioration in conductive properties of the crystal below 150 K. This metal–insulator phase transition is accompanied by a kink in the U eq(T) curves and changes in the unit-cell values.
APA, Harvard, Vancouver, ISO, and other styles
5

Baťková, M., I. Baťko, E. Konovalova, and N. Shitsevalova. "Tunneling Spectroscopy Studies of SmB6and YbB12." Acta Physica Polonica A 113, no. 1 (January 2008): 255–58. http://dx.doi.org/10.12693/aphyspola.113.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yanase, Akira, and Hisatomo Harima. "Band Calculations on YbB12, SmB6and CeNiSn." Progress of Theoretical Physics Supplement 108 (1992): 19–25. http://dx.doi.org/10.1143/ptps.108.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shishiuchi, Naohito, Yoshitomo Kato, Oleg M. Vyaselev, Masashi Takigawa, Sayaka Hiura, Fumitoshi Iga, and Toshiro Takabatake. "Defect-induced magnetic fluctuations in YbB12." Journal of Physics and Chemistry of Solids 63, no. 6-8 (June 2002): 1231–34. http://dx.doi.org/10.1016/s0022-3697(02)00121-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barabanov, A. F., and L. A. Maksimov. "Spin excitations in Kondo insulator YbB12." Physics Letters A 373, no. 20 (April 2009): 1787–90. http://dx.doi.org/10.1016/j.physleta.2009.02.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Susaki, T., Y. Takeda, M. Arita, A. Fujimori, K. Shimada, H. Namatame, M. Taniguchi, S. Hiura, F. Iga, and T. Takabatake. "Photoemission study of kondo insulator YbB12." Physica B: Condensed Matter 281-282 (June 2000): 282–83. http://dx.doi.org/10.1016/s0921-4526(99)00854-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nemkovski, K. S., P. A. Alekseev, J. M. Mignot, and N. N. Tiden. "Phonons in the Kondo insulator YbB12." physica status solidi (c) 1, no. 11 (November 2004): 3093–96. http://dx.doi.org/10.1002/pssc.200405305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sato, Y., Z. Xiang, Y. Kasahara, S. Kasahara, L. Chen, C. Tinsman, F. Iga, et al. "Topological surface conduction in Kondo insulator YbB12." Journal of Physics D: Applied Physics 54, no. 40 (July 20, 2021): 404002. http://dx.doi.org/10.1088/1361-6463/ac10d9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rybina, A. V., P. A. Alekseev, K. S. Nemkovski, E. V. Nefeodova, J. M. Mignot, Yu B. Paderno, N. Yu Shitsevalova, and R. I. Bewley. "Vibrational spectra of the YbB12 Kondo insulator." Crystallography Reports 52, no. 5 (September 2007): 770–73. http://dx.doi.org/10.1134/s1063774507050033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nemkovski, K. S., P. A. Alekseev, J. M. Mignot, A. V. Rybina, F. Iga, T. Takabatake, N. Yu Shitsevalova, et al. "Lattice dynamics in the Kondo insulator YbB12." Journal of Solid State Chemistry 179, no. 9 (September 2006): 2895–99. http://dx.doi.org/10.1016/j.jssc.2006.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moser, M., P. Wachter, F. Hulliger, and J. R. Etourneau. "Point contact spectroscopy of YbB12 and CeAl3." Solid State Communications 54, no. 3 (April 1985): 241–44. http://dx.doi.org/10.1016/0038-1098(85)91075-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ikushima, K., Y. Kato, M. Takigawa, F. Iga, S. Hiura, and T. Takabatake. "171Yb NMR in the Kondo semiconductor YbB12." Physica B: Condensed Matter 281-282 (June 2000): 274–75. http://dx.doi.org/10.1016/s0921-4526(99)00815-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kawasaki, S., N. Takamoto, Y. Narumi, K. Kindo, S. Hiura, F. Iga, and T. Takabatake. "Temperature dependence of metamagnetic transition in YbB12." Physica B: Condensed Matter 281-282 (June 2000): 269–70. http://dx.doi.org/10.1016/s0921-4526(99)00976-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nefeodova, E. V., P. A. Alekseev, J. M. Mignot, V. N. Lazukov, I. P. Sadikov, Yu B. Paderno, N. Yu Shitcevalova, and R. Eccleston. "Magnetic excitation spectrum of Kondo-insulator YbB12." Physica B: Condensed Matter 276-278 (March 2000): 770–71. http://dx.doi.org/10.1016/s0921-4526(99)01662-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Altshuler, A. E., T. S. Altshuler, B. S. Rameev, and E. P. Khaimovich. "EPR investigation of the fluctuating valence compound YbB12." Low Temperature Physics 24, no. 8 (August 1998): 604–5. http://dx.doi.org/10.1063/1.593642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gorshunov, B. P., A. S. Prokhorov, I. E. Spektor, A. A. Volkov, M. Dressel, and F. Iga. "Infrared spectroscopy of the intermediate-valence semiconductor YbB12." Journal of Experimental and Theoretical Physics 103, no. 6 (December 2006): 897–903. http://dx.doi.org/10.1134/s1063776106120077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Altshuler, A. E., and T. S. Altshuler. "ESR investigation of the fluctuating valence compound YbB12." Physica B: Condensed Matter 281-282 (June 2000): 276–77. http://dx.doi.org/10.1016/s0921-4526(99)00952-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Iga, F., M. Kasaya, and T. Kasuya. "Specific heat measurements of YbB12 and YbxLu1−xB12." Journal of Magnetism and Magnetic Materials 76-77 (December 1988): 156–58. http://dx.doi.org/10.1016/0304-8853(88)90349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Alekseev, P. A., V. N. Lazukov, K. S. Nemkovski, J. M. Mignot, E. A. Goremychkin, N. Yu Shitsevalova, and A. V. Dukhnenko. "Magnetic dynamics in an electron-doped YbB12 condo insulator." Bulletin of the Russian Academy of Sciences: Physics 75, no. 8 (August 2011): 1149–52. http://dx.doi.org/10.3103/s1062873811050042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Al’tshuler, T. S., M. S. Bresler, Yu V. Goryunov, F. Iga, and T. Takabatake. "Effect of defects on ytterbium ion valency in YbB12." Physics of the Solid State 44, no. 8 (August 2002): 1536–39. http://dx.doi.org/10.1134/1.1501354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fujita, Yoshinori, Norio Ogita, Naoki Shimizu, Fumitoshi Iga, Toshiro Takabatake, and Masayuki Udagawa. "Phonon Raman Scattering Study of a Kondo Insulator YbB12." Journal of the Physical Society of Japan 68, no. 12 (December 15, 1999): 4051–52. http://dx.doi.org/10.1143/jpsj.68.4051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shigemoto, A., S. Suga, A. Sekiyama, S. Imada, A. Yamasaki, A. Irizawa, T. Muro, Y. Saitoh, F. Iga, and T. Takabatake. "Temperature dependence of high-energy photoemission spectra of YbB12." Physica B: Condensed Matter 351, no. 3-4 (September 2004): 289–91. http://dx.doi.org/10.1016/j.physb.2004.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alekseev, P. A., J. M. Mignot, K. S. Nemkovski, N. Yu Shitsevalova, R. I. Bewley, V. N. Lazukov, E. V. Nefeodova, I. P. Sadikov, and N. N. Tiden. "Cooperative and local properties in the Kondo insulator YbB12." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 75–76. http://dx.doi.org/10.1016/j.jmmm.2003.12.1236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ekino, T., H. Umeda, F. Iga, N. Shimizu, T. Takabatake, and H. Fujii. "Tunneling spectroscopy of the Kondo-semiconducting gap in YbB12." Physica B: Condensed Matter 259-261 (January 1999): 315–16. http://dx.doi.org/10.1016/s0921-4526(98)01141-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Okamura, Hidekazu, Takahiro Michizawa, Takao Nanba, Shin-ichi Kimura, Fumitoshi Iga, and Toshiro Takabatake. "Indirect and Direct Energy Gaps in Kondo Semiconductor YbB12." Journal of the Physical Society of Japan 74, no. 7 (July 2005): 1954–57. http://dx.doi.org/10.1143/jpsj.74.1954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Akbari, Alireza, and Peter Thalmeier. "Spin excitons from hybridized heavy quasiparticles in YbB12 and CeB6." Journal of the Korean Physical Society 62, no. 10 (May 2013): 1418–22. http://dx.doi.org/10.3938/jkps.62.1418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Altshuler, T. S., and M. S. Bresler. "Electron spin resonance studies on the energy gap in YbB12." Physica B: Condensed Matter 315, no. 1-3 (April 2002): 150–56. http://dx.doi.org/10.1016/s0921-4526(01)01042-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Takeda, Y., M. Arita, M. Higashiguchi, K. Shimada, M. Sawada, H. Sato, M. Nakatake, et al. "Temperature dependence of the electronic states of Kondo semiconductor YbB12." Physica B: Condensed Matter 351, no. 3-4 (September 2004): 286–88. http://dx.doi.org/10.1016/j.physb.2004.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alekseev, P. A., K. S. Nemkovski, J. M. Mignot, E. A. Goremychkin, V. N. Lazukov, N. Yu Shitsevalova, and A. V. Dukhnenko. "Influence of an electron doping on spin dynamics of YbB12." Solid State Sciences 14, no. 11-12 (November 2012): 1584–86. http://dx.doi.org/10.1016/j.solidstatesciences.2012.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Iga, F., N. Shimizu, and T. Takabatake. "Single crystal growth and physical properties of Kondo insulator YbB12." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 337–38. http://dx.doi.org/10.1016/s0304-8853(97)00493-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sugiyama, K., and M. Date. "Field-induced metallic state of YbB12 in high magnetic fields." Physica B: Condensed Matter 155, no. 1-3 (March 1989): 253–56. http://dx.doi.org/10.1016/0921-4526(89)90506-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ekino, T., H. Umeda, J. Klijn, F. Iga, T. Takabatake, and H. Fujii. "Energy gap in Lu-substituted YbB12 probed by break junction." Physica B: Condensed Matter 281-282 (June 2000): 278–79. http://dx.doi.org/10.1016/s0921-4526(99)01193-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rybina, A. V., P. A. Alekseev, J. M. Mignot, E. V. Nefeodova, K. S. Nemkovski, R. I. Bewley, N. Yu Shitsevalova, Yu B. Paderno, F. Iga, and T. Takabatake. "Lattice dynamics and magneto-elastic coupling in Kondo-insulator YbB12." Journal of Physics: Conference Series 92 (December 1, 2007): 012074. http://dx.doi.org/10.1088/1742-6596/92/1/012074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Shigemoto, A., S. Imada, A. Sekiyama, A. Yamasaki, A. Irizawa, T. Muro, Y. Saitoh, F. Iga, T. Takabatake, and S. Suga. "High resolution soft X-ray photoemission of Kondo insulator YbB12." Journal of Electron Spectroscopy and Related Phenomena 144-147 (June 2005): 671–73. http://dx.doi.org/10.1016/j.elspec.2005.01.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sugiyama, K., A. Ohya, M. Date, F. Iga, M. Kasaya, and T. Kasuya. "Magnetic and electric properties of YbB12 under high magnetic field." Journal of Magnetism and Magnetic Materials 52, no. 1-4 (October 1985): 283–85. http://dx.doi.org/10.1016/0304-8853(85)90280-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Terashima, Taku T., Akihiko Ikeda, Yasuhiro H. Matsuda, Akihiro Kondo, Koichi Kindo, and Fumitoshi Iga. "Magnetization Process of the Kondo Insulator YbB12 in Ultrahigh Magnetic Fields." Journal of the Physical Society of Japan 86, no. 5 (May 15, 2017): 054710. http://dx.doi.org/10.7566/jpsj.86.054710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Matsuhra, W., K. Yokomichi, W. Hirano, S. Kikuchi, N. Uematsu, H. Nakayama, A. Kondo, K. Kindo, and F. Iga. "Divalent ion substitution effect on Yb-site in Kondo insulator YbB12." AIP Advances 8, no. 10 (October 2018): 101329. http://dx.doi.org/10.1063/1.5043111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Al’tshuler, T. S., and M. S. Bresler. "On the nature of the energy gap in ytterbium dodecaboride YbB12." Physics of the Solid State 44, no. 8 (August 2002): 1532–35. http://dx.doi.org/10.1134/1.1501353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Susaki, T., Y. Takeda, M. Arita, K. Mamiya, A. Fujimori, K. Shimada, H. Namatame, et al. "Temperature-Dependent High-Resolution Photoemission Study of the Kondo Insulator YbB12." Physical Review Letters 82, no. 5 (February 1999): 992–95. http://dx.doi.org/10.1103/physrevlett.82.992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Iga, F., A. Bouvet, L. P. Regnault, T. Takabatake, A. Hiess, and T. Kasuya. "Magnetic excitations in a single crystal of the Kondo semiconductor YbB12." Journal of Physics and Chemistry of Solids 60, no. 8-9 (September 1999): 1193–96. http://dx.doi.org/10.1016/s0022-3697(99)00081-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ohta, H., T. Nanba, K. Lehnert, S. J. Allen, M. Motokawa, F. Iga, and M. Kasaya. "Spectroscopic study of Kondo insulator YbB12 using a free electron laser." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 341–42. http://dx.doi.org/10.1016/s0304-8853(97)00401-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barabanov, A. F., and L. A. Maksimov. "Asymmetric Anderson model and spin excitations in the Kondo insulator YbB12." Journal of Experimental and Theoretical Physics 109, no. 1 (July 2009): 95–102. http://dx.doi.org/10.1134/s1063776109070127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Matsuda, Yasuhiro H., Yoshiki Kakita, and Fumitoshi Iga. "The Temperature Dependence of the Magnetization Process of the Kondo Insulator YbB12." Crystals 10, no. 1 (January 7, 2020): 26. http://dx.doi.org/10.3390/cryst10010026.

Full text
Abstract:
The properties of the Kondo insulator in a strong magnetic field are one of the most intriguing subjects in condensed matter physics. The Kondo insulating state is expected to be suppressed by magnetic fields, which results in the dramatic change in the electronic state. We have studied the magnetization process of one of the prototypical Kondo insulators YbB 12 at several temperatures in magnetic fields of up to 80 T. The metamagnetism due to the insulator-metal (IM) transition seen around 50 T was found to become significantly broadened at approximately 30 K. This characteristic temperature T * ≈ 30 K in YbB 12 is an order of magnitude lower than the Kondo temperature T K = 240 K. Our results suggest that there is an energy scale smaller than the Kondo temperature that is important to understanding the nature of Kondo insulators.
APA, Harvard, Vancouver, ISO, and other styles
47

Hagiwara, Kenta, Yusuke Takeno, Yoshiyuki Ohtsubo, Ryu Yukawa, Masaki Kobayashi, Koji Horiba, Hiroshi Kumigashira, et al. "Temperature dependence of Yb valence in the sub-surface of YbB12(001)." Journal of Physics: Conference Series 807 (April 6, 2017): 012003. http://dx.doi.org/10.1088/1742-6596/807/1/012003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Okamura, H., S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takabatake. "Optical study of the gap formation and low-energy excitations in YbB12." Physica B: Condensed Matter 259-261 (January 1999): 317–18. http://dx.doi.org/10.1016/s0921-4526(98)00628-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yamaguchi, J., A. Sekiyama, M. Y. Kimura, H. Sugiyama, Y. Tomida, G. Funabashi, S. Komori, et al. "Different evolution of the intrinsic gap in strongly correlated SmB6in contrast to YbB12." New Journal of Physics 15, no. 4 (April 23, 2013): 043042. http://dx.doi.org/10.1088/1367-2630/15/4/043042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Iga, F., M. Kasaya, H. Suzuki, Y. Okayama, H. Takahashi, and N. Mori. "Transport properties under high pressure of the dense Kondo compounds CePdSn and YbB12." Physica B: Condensed Matter 186-188 (May 1993): 419–21. http://dx.doi.org/10.1016/0921-4526(93)90591-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography