Academic literature on the topic 'Yang-Mills theory; Gauge theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yang-Mills theory; Gauge theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Yang-Mills theory; Gauge theory"
BENAOUM, H. B., and M. LAGRAA. "Uq(2) YANG–MILLS THEORY." International Journal of Modern Physics A 13, no. 04 (February 10, 1998): 553–68. http://dx.doi.org/10.1142/s0217751x98000238.
Full textDehnen, H., and F. Ghaboussi. "Gravity as Yang-Mills gauge theory." Nuclear Physics B 262, no. 1 (December 1985): 144–58. http://dx.doi.org/10.1016/0550-3213(85)90069-0.
Full textStedile, E., and R. Duarte. "Yang-Mills gauge theory and gravitation." International Journal of Theoretical Physics 34, no. 6 (June 1995): 945–50. http://dx.doi.org/10.1007/bf00674452.
Full textSavvidy, G. "Generalization of the Yang–Mills theory." International Journal of Modern Physics A 31, no. 01 (January 10, 2016): 1630003. http://dx.doi.org/10.1142/s0217751x16300039.
Full textMOFFAT, J. W., and S. M. ROBBINS. "YANG–MILLS THEORY AND NON-LOCAL REGULARIZATION." Modern Physics Letters A 06, no. 17 (June 7, 1991): 1581–87. http://dx.doi.org/10.1142/s0217732391001706.
Full textELLWANGER, ULRICH, and NICOLÁS WSCHEBOR. "MASSIVE YANG–MILLS THEORY IN ABELIAN GAUGES." International Journal of Modern Physics A 18, no. 09 (April 10, 2003): 1595–612. http://dx.doi.org/10.1142/s0217751x03014198.
Full textMAGPANTAY, JOSE A. "THE CONFINEMENT MECHANISM IN YANG–MILLS THEORY?" Modern Physics Letters A 14, no. 06 (February 28, 1999): 447–57. http://dx.doi.org/10.1142/s021773239900050x.
Full textWu, Tai Tsun, and Sau Lan Wu. "Yang–Mills gauge theory and Higgs particle." International Journal of Modern Physics A 30, no. 34 (December 9, 2015): 1530065. http://dx.doi.org/10.1142/s0217751x15300653.
Full textHořava, Petr. "Quantum criticality and Yang–Mills gauge theory." Physics Letters B 694, no. 2 (November 2010): 172–76. http://dx.doi.org/10.1016/j.physletb.2010.09.055.
Full textMagpantay, Jose A., and Danilo B. Romero. "Gauge-invariant potentials from Yang-Mills theory." Annals of Physics 161, no. 2 (May 1985): 303–13. http://dx.doi.org/10.1016/0003-4916(85)90082-x.
Full textDissertations / Theses on the topic "Yang-Mills theory; Gauge theory"
Gongyo, Shinya. "The Gribov problem beyond Landau gauge Yang-Mills theory." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199098.
Full textMaas, Axel Torsten. "The high-temperature phase of Yang-Mills theory in Landau gauge." Phd thesis, [S.l. : s.n.], 2004. http://elib.tu-darmstadt.de/diss/000504.
Full textGrosse, Harald, Thomas Krajewski, Raimar Wulkenhaar, and grosse@doppler thp univie ac at. "Renormalization of Noncommutative Yang-Mills Theories: A Simple Example." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi914.ps.
Full textSlater, Matthew J. "Instanton effects in supersymmetric SU(N) gauge theories." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4812/.
Full textTrocsanyi, Zoltan L. "Three-loop renormalization of Yang-Mills theory in background field gauge." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39413.
Full textMariani, Alessandro. "Finite-group Yang-Mills lattice gauge theories in the Hamiltonian formalism." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21183/.
Full text陶福臻 and Fook-tsun To. "Soliton solutions to gravitational field and Yang-Mills gauge field." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233910.
Full textTo, Fook-tsun. "Soliton solutions to gravitational field and Yang-Mills gauge field /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13671728.
Full textKovalev, Alexei Gennadievich. "The geometry of dimensionally reduced anti-self-duality equations." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282324.
Full textAlvarez, José Luis Alejo. "Electric-magnetic duality in N = 2 supersymmetric gauge theory /." São Paulo, 2015. http://hdl.handle.net/11449/154699.
Full textBanca: Horatiu Stefan Nastase
Banca: Diego Trancanelli
Resumo: Nesta dissertação apresentamos uma descrição da dualidade elétrica-magnética e seus aspectos clássicos e quânticos. Nosso análise se inicia com os monopolos magéticos sugeridos por Dirac em 1931[1] e vai até o trabalho do Seiberg e Witten em 1994 [27]. Na descrição clássica, precisamos introduzir os monopolos magnéticos a fim de obter a dualidade elétrica-magnética manifesta. Mais tarde, a origem dos monopolos se mais torna mais clara quando começamos com uma teoria de Yang-Mills. Os aspectos clássicos da teoria foram explicados pela conjetura de Montonen e Olive 1977 [7]. Explorando os aspectos quânticos da teoria, notamos a importância de introduzir supersimetria, principalmente supersimetria estendida, onde tiramos vantagem da propiedade de holomorficidade, a qual nos leva aos teoremas não renormalizáveis, onde o cálculo é mais simples. Focamos na teoria de gauge supersimétrica N = 2 SU(2). A teoria é completamente resolvível para baixas energias. A maior parte do conteúdo deste trabalho é baseada nas várias revisões da dualidade de Seiberg-Witten [30],[31],[32]
Abstract: In this dissertation we present a description of the electric-magnetic duality and their classical and quantum aspects. Our analysis starts from the suggested magnetic monopoles by Dirac in 1931 [1] and goes until the work of Seiberg and Witten in 1994 [27]. In the classical description, we need to introduce the magnetic monopoles in order to make manifest the electricmagnetic duality. Later, the origin of monopoles becomes clear when we start from a Yang-Mills theory. The classical aspects of the E-M duality are covered in the Montonen-Olive conjecture 1977[7]. Working on the quantum aspects of the theory, we note the importance of introducing supersymmetry. Specially for extended supersymmetry, where we take advantage of the holomorphicity property, which leads us to the non-renormalizable theorems, where the computation is easier. We focus on theN = 2SU(2) supersymmetric gauge theories. It turns out that the theory is fully solvable at the low energies regime[27]. Most of this work is based on reviews about the Seiberg and Witten duality [30],[31],[32]
Mestre
Books on the topic "Yang-Mills theory; Gauge theory"
Noncovariant gauges: Quantization of Yang-Mills and Chern-Simons theory in axial-type gauges. Singapore: World Scientific, 1994.
Find full textG, Nardelli, and Soldati R, eds. Yang-Mills theories in algebraic non-covariant gauges: Canonical quantization and renormalization. Singapore: World Scientific, 1991.
Find full textservice), SpringerLink (Online, ed. On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textPoenaru, Valentin. Introduzione alla geometria e alla topologia dei campi di Yang-Mills. Palermo: Sede della Società, 1986.
Find full textPoenaru, Valentin. Introduzione alla geometria e alla topologia dei campi di Yang-Mills. Palermo: Circolo matematico di Palermo, 1986.
Find full textHsu, J. P. Space-time symmetry and quantum Yang-Mills gravity: How space-time translational gauge symmetry enables the unification of gravity with other forces. New Jersey: World Scientific, 2013.
Find full textYang-Mills fields and extension theory. Providence, R.I., USA: American Mathematical Society, 1987.
Find full textYang-Mills measure on compact surfaces. Providence, R.I: American Mathematical Society, 2003.
Find full textThe thermodynamics of quantum Yang-Mills theory: Theory and applications. Singapore: World Scientific, 2012.
Find full text1974-, Liu Chiu-Chu Melissa, ed. Yang-Mills connections on orientable and nonorientable surfaces. Providence, R.I: American Mathematical Society, 2009.
Find full textBook chapters on the topic "Yang-Mills theory; Gauge theory"
Mallios, Anastasios. "Abstract Yang–Mills Theory." In Modern Differential Geometry in Gauge Theories, 3–77. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4634-9_1.
Full textMielke, Eckehard W. "Maxwell and Yang–Mills Theory." In Geometrodynamics of Gauge Fields, 37–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29734-7_3.
Full textZeidler, Eberhard. "The Noncommutative Yang–Mills SU(N)-Gauge Theory." In Quantum Field Theory III: Gauge Theory, 843–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22421-8_16.
Full textBöhm, Manfred, Ansgar Denner, and Hans Joos. "Quantum theory of Yang—Mills fields." In Gauge Theories of the Strong and Electroweak Interaction, 85–425. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80160-9_2.
Full textSardanashvily, Gennadi. "Yang–Mills Gauge Theory on Principal Bundles." In Noether's Theorems, 163–81. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-171-0_8.
Full textHuber, Markus Q. "Yang-Mills Theory and its Infrared Behavior." In On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions, 7–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27691-0_2.
Full textBurnel, A. "A New Gauge Without any Ghost for Yang-Mills Theory." In Fundamental Aspects of Quantum Theory, 423–24. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_52.
Full textBurnel, André. "Slavnov-Taylor Identities for Yang-Mills Theory." In Noncovariant Gauges in Canonical Formalism, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69921-7_6.
Full textPestun, Vasily. "Super Yang-Mills Matrix Integrals For An Arbitrary Gauge Group." In Progress in String, Field and Particle Theory, 445–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0211-0_35.
Full textRyzhov, Anton V. "Towards the Exact Dilatation Operator of $$ \mathcal{N}$$ = 4 Super Yang-Mills Theory." In String Theory: From Gauge Interactions to Cosmology, 371–77. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3733-3_26.
Full textConference papers on the topic "Yang-Mills theory; Gauge theory"
Brink, Lars. "Maximally Supersymmetric Yang–Mills Theory: The Story of N = 4 Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0003.
Full textWu, Tai Tsun, and Sau Lan Wu. "Yang–Mills Gauge Theory and Higgs Particle." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0008.
Full textSvrcek, Peter, and Freddy Cachazo. "Lectures on Twistor String Theory and Perturbative Yang-Mills Theory." In RTN Winter School on Strings, Supergravity and Gauge Theories. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.019.0004.
Full textSavvidy, G. "Generalization of the Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0015.
Full textZee, A. "Some Thoughts About Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0016.
Full textMaas, A. "Finite-Temperature Yang-Mills Theory in Landau Gauge." In QUARK CONFINEMENT AND THE HADRON SPECTRUM VI: 6th Conference on Quark Confinement and the Hadron Spectrum - QCHS 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1921014.
Full textReinhardt, Hugo. "Hamiltonian Flow in Coulomb Gauge Yang-Mills theory." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0283.
Full textCreutz, Michael. "The Lattice and Quantized Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0004.
Full textFujikawa, Kazuo. "Yang–Mills Theory and Fermionic Path Integrals." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0012.
Full textCatterall, Simon. "Gauge-gravity duality -- super Yang-Mills quantum mechanics." In The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0051.
Full textReports on the topic "Yang-Mills theory; Gauge theory"
Dixon, Lance. Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815610.
Full textJoseph, Anosh, Simon Catterall, and Joel Giedt. Twisted supersymmetries in lattice N=4 super Yang-Mills theory. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1083848.
Full textBern, Z. N=4 Super-Yang-Mills Theory, QCD and Collider Physics. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839969.
Full textDixon, Lance. Two-Loop Helicity Amplitudes for Gluon-Gluon Scattering in QCD and Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/798962.
Full textDixon, Lance. Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/812991.
Full textBern, Z. The Non-Maximally-Helicity-Violating One-Loop Seven-Gluon Amplitudes in N=4 Super-Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839608.
Full textBern, Z. All Next-to-Maximally-Helicity-Violating One-Loop Gluon Amplitudes in N=4 Super-Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839716.
Full text