Academic literature on the topic 'Yang-Mills theory; Gauge theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yang-Mills theory; Gauge theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Yang-Mills theory; Gauge theory"

1

BENAOUM, H. B., and M. LAGRAA. "Uq(2) YANG–MILLS THEORY." International Journal of Modern Physics A 13, no. 04 (February 10, 1998): 553–68. http://dx.doi.org/10.1142/s0217751x98000238.

Full text
Abstract:
A Yang–Mills theory is presented using the Uq(2) quantum group. Unlike previous works, no assumptions are required — between the quantum gauge parameters and the quantum gauge fields (or curvature) — to get the quantum gauge variations of the different fields. Furthermore, an adequate definition of the quantum trace is presented. Such a definition leads to a quantum metric, which therefore allows us to construct a Uq(2) quantum Yang–Mills Lagrangian. The Weinberg angle θ is found in terms of this q metric to be [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
2

Dehnen, H., and F. Ghaboussi. "Gravity as Yang-Mills gauge theory." Nuclear Physics B 262, no. 1 (December 1985): 144–58. http://dx.doi.org/10.1016/0550-3213(85)90069-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stedile, E., and R. Duarte. "Yang-Mills gauge theory and gravitation." International Journal of Theoretical Physics 34, no. 6 (June 1995): 945–50. http://dx.doi.org/10.1007/bf00674452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Savvidy, G. "Generalization of the Yang–Mills theory." International Journal of Modern Physics A 31, no. 01 (January 10, 2016): 1630003. http://dx.doi.org/10.1142/s0217751x16300039.

Full text
Abstract:
We suggest an extension of the gauge principle which includes tensor gauge fields. In this extension of the Yang–Mills theory the vector gauge boson becomes a member of a bigger family of gauge bosons of arbitrary large integer spins. The proposed extension is essentially based on the extension of the Poincaré algebra and the existence of an appropriate transversal representations. The invariant Lagrangian is expressed in terms of new higher-rank field strength tensors. It does not contain higher derivatives of tensor gauge fields and all interactions take place through three- and four-particle exchanges with a dimensionless coupling constant. We calculated the scattering amplitudes of non-Abelian tensor gauge bosons at tree level, as well as their one-loop contribution into the Callan–Symanzik beta function. This contribution is negative and corresponds to the asymptotically free theory. Considering the contribution of tensorgluons of all spins into the beta function we found that it is leading to the theory which is conformally invariant at very high energies. The proposed extension may lead to a natural inclusion of the standard theory of fundamental forces into a larger theory in which vector gauge bosons, leptons and quarks represent a low-spin subgroup. We consider a possibility that inside the proton and, more generally, inside hadrons there are additional partons — tensorgluons, which can carry a part of the proton momentum. The extension of QCD influences the unification scale at which the coupling constants of the Standard Model merge, shifting its value to lower energies.
APA, Harvard, Vancouver, ISO, and other styles
5

MOFFAT, J. W., and S. M. ROBBINS. "YANG–MILLS THEORY AND NON-LOCAL REGULARIZATION." Modern Physics Letters A 06, no. 17 (June 7, 1991): 1581–87. http://dx.doi.org/10.1142/s0217732391001706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ELLWANGER, ULRICH, and NICOLÁS WSCHEBOR. "MASSIVE YANG–MILLS THEORY IN ABELIAN GAUGES." International Journal of Modern Physics A 18, no. 09 (April 10, 2003): 1595–612. http://dx.doi.org/10.1142/s0217751x03014198.

Full text
Abstract:
We prove the perturbative renormalizability of pure SU(2) Yang–Mills theory in the Abelian gauge supplemented with mass terms. Whereas mass terms for the gauge fields charged under the diagonal U(1) allow us to preserve the standard form of the Slavnov–Taylor identities (but with modified BRST variations), mass terms for the diagonal gauge fields require the study of modified Slavnov–Taylor identities. We comment on the renormalization group equations, which describe the variation of the effective action with the different masses. Finite renormalized masses for the charged gauge fields, in the limit of vanishing bare mass terms, are possible provided a certain combination of wave function renormalization constants vanishes sufficiently rapidly in the infrared limit.
APA, Harvard, Vancouver, ISO, and other styles
7

MAGPANTAY, JOSE A. "THE CONFINEMENT MECHANISM IN YANG–MILLS THEORY?" Modern Physics Letters A 14, no. 06 (February 28, 1999): 447–57. http://dx.doi.org/10.1142/s021773239900050x.

Full text
Abstract:
Using the recently proposed nonlinear gauge condition [Formula: see text] we show the area law behavior of the Wilson loop and the linear dependence of the instantaneous gluon propagator. The field configurations responsible for confinement are those in the nonlinear sector of the gauge-fixing condition (the linear sector being the Coulomb gauge). The nonlinear sector is actually composed of "Gribov horizons" on the parallel surfaces ∂ · Aa=fa≠0. In this sector, the gauge field [Formula: see text] can be expressed in terms of fa and a new vector field [Formula: see text]. The effective dynamics of fa suggests nonperturbative effects. This was confirmed by showing that all spherically symmetric (in 4-D Euclidean) fa(x) are classical solutions and averaging these solutions using a Gaussian distribution (thereby treating these fields as random) lead to confinement. In essence the confinement mechanism is not quantum mechanical in nature but simply a statistical treatment of classical spherically symmetric fields on the "horizons" of ∂ · Aa=fa(x) surfaces.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Tai Tsun, and Sau Lan Wu. "Yang–Mills gauge theory and Higgs particle." International Journal of Modern Physics A 30, no. 34 (December 9, 2015): 1530065. http://dx.doi.org/10.1142/s0217751x15300653.

Full text
Abstract:
Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang–Mills non-Abelian gauge theory with the group [Formula: see text], is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion–boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.
APA, Harvard, Vancouver, ISO, and other styles
9

Hořava, Petr. "Quantum criticality and Yang–Mills gauge theory." Physics Letters B 694, no. 2 (November 2010): 172–76. http://dx.doi.org/10.1016/j.physletb.2010.09.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Magpantay, Jose A., and Danilo B. Romero. "Gauge-invariant potentials from Yang-Mills theory." Annals of Physics 161, no. 2 (May 1985): 303–13. http://dx.doi.org/10.1016/0003-4916(85)90082-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Yang-Mills theory; Gauge theory"

1

Gongyo, Shinya. "The Gribov problem beyond Landau gauge Yang-Mills theory." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maas, Axel Torsten. "The high-temperature phase of Yang-Mills theory in Landau gauge." Phd thesis, [S.l. : s.n.], 2004. http://elib.tu-darmstadt.de/diss/000504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grosse, Harald, Thomas Krajewski, Raimar Wulkenhaar, and grosse@doppler thp univie ac at. "Renormalization of Noncommutative Yang-Mills Theories: A Simple Example." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi914.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Slater, Matthew J. "Instanton effects in supersymmetric SU(N) gauge theories." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4812/.

Full text
Abstract:
We investigate nonperturbative effects due to instantons in N = 2 supersymmetric SU(N) Yang-Mills models, with the aim of testing the exact results predicted for these models. In two separate semiclassical calculations we obtain the one-instanton contribution to the Higgs condensate u(_3) = (TrA(^3)) and to the prepotential F. Comparing our results with the exact predictions, we find complete agreement except when the number of flavours of fundamental matter hypermultiplets, N(_f), takes certain values. The source of the u(_3) discrepancy is an ambiguity in the parameterization of the hyperelliptic curves from which the exact predictions are derived when N(_f) ≥ N. This ambiguity can easily be fixed using the results of instanton calculations. The discrepancy associated with T appears in the finite N(_f) = 2N models. For these models we are unable to modify the curves to agree with the instanton calculations when N > 3. Our one-instanton calculation of the prepotential is facilitated by a multi-instanton calculus which we construct, starting from the general solution of Atiyah, Drinfeld, Hitchin and Manin. Our calculus comprises: (i) the super-multi-instanton background, (ii) the su persymmetric multi-instanton action and (iii) the supersymmetric semiclassical collective coordinate measure. Our calculus has application to supersymmetric Yang-Mills theory with gauge group U(N) or SU(_N). We employ our instanton calculus to derive results at arbitrary k-instanton levels. In N =2 supersymmetric SU(N) Yang-Mills theory, we derive a closed form expression for the A;-instanton contribution to the prepotential. This amounts to a solution, in quadratures, of the low-energy physics of the theory, obtained from first principles. In supersymmetric SU(2) Yang-Mills theory, we use our calculus to investigate multi-instanton contributions to higher-derivative terms in the Wilsonian effective action. Using a scaling argument, based on general properties of the SU(2) k-instanton action and measure, we show that in the finite, massless N = 2 and N = 4 models, all k-instanton contributions to the next-to- leading higher-derivative terms vanish. This confirms a nonperturbative nonrenormalization theorem due to Dine and Seiberg.
APA, Harvard, Vancouver, ISO, and other styles
5

Trocsanyi, Zoltan L. "Three-loop renormalization of Yang-Mills theory in background field gauge." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mariani, Alessandro. "Finite-group Yang-Mills lattice gauge theories in the Hamiltonian formalism." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21183/.

Full text
Abstract:
Nuovi sviluppi nel campo nelle tecniche sperimentali potrebbero presto permettere la realizzazione di simulatori quantistici, ovvero di sistemi quantomeccanici realizzabili sperimentalmente che descrivano una specifica Hamiltoniana di nostra scelta. Una volta costruito il sistema, si possono effettuare esperimenti per studiare il comportamento della teoria descritta dall'Hamiltoniana scelta. Un'interessante applicazione riguarda le teorie di gauge non-Abeliane come la Cromodinamica Quantistica, per le quali si hanno un certo numero di problemi irrisolti, in particolare nella regione a potenziale chimico finito. La principale sfida teorica per la realizzazione di un simulatore quantistico è quella di rendere lo spazio di Hilbert della teoria di gauge finito-dimensionale. Infatti in un esperimento si possono controllare realisticamente solo alcuni gradi di libertà del sistema quantistico, e certamente solo un numero finito. Seguendo alcune linee già tracciate in letteratura, nel presente lavoro ottieniamo uno spazio di Hilbert finito-dimensionale sostituendo il gruppo di gauge - un gruppo di Lie - con un gruppo finito, ad esempio uno dei suoi sottogruppi. Dopo una rassegna della teoria di Yang-Mills nel continuo e su reticolo, ne diamo la formulazione Hamiltoniana enfatizzando l'introduzione del potenziale chimico. A seguire, introduciamo le teorie basate su un qualsiasi gruppo di gauge finito, e proponiamo una soluzione ad un problema irrisolto di tali teorie, cioè la determinazione degli autovalori della densità di energia elettrica. Effettuiamo inoltre alcuni calcoli analitici della tensione di stringa in teorie con gruppo di gauge finito, e risolveremo esattamente alcune di esse in un caso semplificato. A finire, studieremo il comportamento dello stato fondamentale di tali teorie tramite un metodo variazionale, e offriremo alcune considerazioni conclusive.
APA, Harvard, Vancouver, ISO, and other styles
7

陶福臻 and Fook-tsun To. "Soliton solutions to gravitational field and Yang-Mills gauge field." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

To, Fook-tsun. "Soliton solutions to gravitational field and Yang-Mills gauge field /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13671728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kovalev, Alexei Gennadievich. "The geometry of dimensionally reduced anti-self-duality equations." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alvarez, José Luis Alejo. "Electric-magnetic duality in N = 2 supersymmetric gauge theory /." São Paulo, 2015. http://hdl.handle.net/11449/154699.

Full text
Abstract:
Orientador: Nathan Jacob Berkovits
Banca: Horatiu Stefan Nastase
Banca: Diego Trancanelli
Resumo: Nesta dissertação apresentamos uma descrição da dualidade elétrica-magnética e seus aspectos clássicos e quânticos. Nosso análise se inicia com os monopolos magéticos sugeridos por Dirac em 1931[1] e vai até o trabalho do Seiberg e Witten em 1994 [27]. Na descrição clássica, precisamos introduzir os monopolos magnéticos a fim de obter a dualidade elétrica-magnética manifesta. Mais tarde, a origem dos monopolos se mais torna mais clara quando começamos com uma teoria de Yang-Mills. Os aspectos clássicos da teoria foram explicados pela conjetura de Montonen e Olive 1977 [7]. Explorando os aspectos quânticos da teoria, notamos a importância de introduzir supersimetria, principalmente supersimetria estendida, onde tiramos vantagem da propiedade de holomorficidade, a qual nos leva aos teoremas não renormalizáveis, onde o cálculo é mais simples. Focamos na teoria de gauge supersimétrica N = 2 SU(2). A teoria é completamente resolvível para baixas energias. A maior parte do conteúdo deste trabalho é baseada nas várias revisões da dualidade de Seiberg-Witten [30],[31],[32]
Abstract: In this dissertation we present a description of the electric-magnetic duality and their classical and quantum aspects. Our analysis starts from the suggested magnetic monopoles by Dirac in 1931 [1] and goes until the work of Seiberg and Witten in 1994 [27]. In the classical description, we need to introduce the magnetic monopoles in order to make manifest the electricmagnetic duality. Later, the origin of monopoles becomes clear when we start from a Yang-Mills theory. The classical aspects of the E-M duality are covered in the Montonen-Olive conjecture 1977[7]. Working on the quantum aspects of the theory, we note the importance of introducing supersymmetry. Specially for extended supersymmetry, where we take advantage of the holomorphicity property, which leads us to the non-renormalizable theorems, where the computation is easier. We focus on theN = 2SU(2) supersymmetric gauge theories. It turns out that the theory is fully solvable at the low energies regime[27]. Most of this work is based on reviews about the Seiberg and Witten duality [30],[31],[32]
Mestre
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Yang-Mills theory; Gauge theory"

1

Noncovariant gauges: Quantization of Yang-Mills and Chern-Simons theory in axial-type gauges. Singapore: World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

G, Nardelli, and Soldati R, eds. Yang-Mills theories in algebraic non-covariant gauges: Canonical quantization and renormalization. Singapore: World Scientific, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

service), SpringerLink (Online, ed. On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Poenaru, Valentin. Introduzione alla geometria e alla topologia dei campi di Yang-Mills. Palermo: Sede della Società, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poenaru, Valentin. Introduzione alla geometria e alla topologia dei campi di Yang-Mills. Palermo: Circolo matematico di Palermo, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hsu, J. P. Space-time symmetry and quantum Yang-Mills gravity: How space-time translational gauge symmetry enables the unification of gravity with other forces. New Jersey: World Scientific, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang-Mills fields and extension theory. Providence, R.I., USA: American Mathematical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang-Mills measure on compact surfaces. Providence, R.I: American Mathematical Society, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The thermodynamics of quantum Yang-Mills theory: Theory and applications. Singapore: World Scientific, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1974-, Liu Chiu-Chu Melissa, ed. Yang-Mills connections on orientable and nonorientable surfaces. Providence, R.I: American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Yang-Mills theory; Gauge theory"

1

Mallios, Anastasios. "Abstract Yang–Mills Theory." In Modern Differential Geometry in Gauge Theories, 3–77. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4634-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mielke, Eckehard W. "Maxwell and Yang–Mills Theory." In Geometrodynamics of Gauge Fields, 37–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29734-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zeidler, Eberhard. "The Noncommutative Yang–Mills SU(N)-Gauge Theory." In Quantum Field Theory III: Gauge Theory, 843–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22421-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Böhm, Manfred, Ansgar Denner, and Hans Joos. "Quantum theory of Yang—Mills fields." In Gauge Theories of the Strong and Electroweak Interaction, 85–425. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-80160-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sardanashvily, Gennadi. "Yang–Mills Gauge Theory on Principal Bundles." In Noether's Theorems, 163–81. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-171-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huber, Markus Q. "Yang-Mills Theory and its Infrared Behavior." In On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions, 7–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27691-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burnel, A. "A New Gauge Without any Ghost for Yang-Mills Theory." In Fundamental Aspects of Quantum Theory, 423–24. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burnel, André. "Slavnov-Taylor Identities for Yang-Mills Theory." In Noncovariant Gauges in Canonical Formalism, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69921-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pestun, Vasily. "Super Yang-Mills Matrix Integrals For An Arbitrary Gauge Group." In Progress in String, Field and Particle Theory, 445–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0211-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ryzhov, Anton V. "Towards the Exact Dilatation Operator of $$ \mathcal{N}$$ = 4 Super Yang-Mills Theory." In String Theory: From Gauge Interactions to Cosmology, 371–77. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3733-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Yang-Mills theory; Gauge theory"

1

Brink, Lars. "Maximally Supersymmetric Yang–Mills Theory: The Story of N = 4 Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Tai Tsun, and Sau Lan Wu. "Yang–Mills Gauge Theory and Higgs Particle." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Svrcek, Peter, and Freddy Cachazo. "Lectures on Twistor String Theory and Perturbative Yang-Mills Theory." In RTN Winter School on Strings, Supergravity and Gauge Theories. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.019.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Savvidy, G. "Generalization of the Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zee, A. "Some Thoughts About Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maas, A. "Finite-Temperature Yang-Mills Theory in Landau Gauge." In QUARK CONFINEMENT AND THE HADRON SPECTRUM VI: 6th Conference on Quark Confinement and the Hadron Spectrum - QCHS 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1921014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reinhardt, Hugo. "Hamiltonian Flow in Coulomb Gauge Yang-Mills theory." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Creutz, Michael. "The Lattice and Quantized Yang–Mills Theory." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fujikawa, Kazuo. "Yang–Mills Theory and Fermionic Path Integrals." In Proceedings of the Conference on 60 Years of Yang–Mills Gauge Field Theories: C N Yang's Contributions to Physics. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814725569_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Catterall, Simon. "Gauge-gravity duality -- super Yang-Mills quantum mechanics." In The XXV International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.042.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Yang-Mills theory; Gauge theory"

1

Dixon, Lance. Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joseph, Anosh, Simon Catterall, and Joel Giedt. Twisted supersymmetries in lattice N=4 super Yang-Mills theory. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1083848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bern, Z. N=4 Super-Yang-Mills Theory, QCD and Collider Physics. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dixon, Lance. Two-Loop Helicity Amplitudes for Gluon-Gluon Scattering in QCD and Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/798962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dixon, Lance. Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Supersymmetric Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/812991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bern, Z. The Non-Maximally-Helicity-Violating One-Loop Seven-Gluon Amplitudes in N=4 Super-Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bern, Z. All Next-to-Maximally-Helicity-Violating One-Loop Gluon Amplitudes in N=4 Super-Yang-Mills Theory. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography