Academic literature on the topic 'Yang-Mills instantons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yang-Mills instantons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Yang-Mills instantons"
Lai, Sheng-Hong, Jen-Chi Lee, and I.-Hsun Tsai. "Extended complex Yang–Mills instanton sheaves." International Journal of Geometric Methods in Modern Physics 17, no. 04 (March 2020): 2050061. http://dx.doi.org/10.1142/s0219887820500619.
Full textKim, Hongsu, and Yongsung Yoon. "Yang–Mills instantons in the gravitational instanton backgrounds." Physics Letters B 495, no. 1-2 (December 2000): 169–75. http://dx.doi.org/10.1016/s0370-2693(00)01224-7.
Full textMIYAGI, SAYURI. "YANG–MILLS INSTANTONS ON SEVEN-DIMENSIONAL MANIFOLD OF G2 HOLONOMY." Modern Physics Letters A 14, no. 37 (December 7, 1999): 2595–604. http://dx.doi.org/10.1142/s0217732399002728.
Full textKronheimer, Peter B., and Hiraku Nakajima. "Yang-Mills instantons on ALE gravitational instantons." Mathematische Annalen 288, no. 1 (December 1990): 263–307. http://dx.doi.org/10.1007/bf01444534.
Full textOH, JOHN J., and HYUN SEOK YANG. "EINSTEIN MANIFOLDS AS YANG–MILLS INSTANTONS." Modern Physics Letters A 28, no. 21 (July 7, 2013): 1350097. http://dx.doi.org/10.1142/s0217732313500971.
Full textBelitsky, A. V., S. Vandoren, and P. van Nieuwenhuizen. "Yang-Mills and D -instantons." Classical and Quantum Gravity 17, no. 17 (August 23, 2000): 3521–70. http://dx.doi.org/10.1088/0264-9381/17/17/305.
Full textEtesi, G�bor, and Tam�s Hausel. "On Yang-Mills Instantons over Multi-Centered Gravitational Instantons." Communications in Mathematical Physics 235, no. 2 (April 1, 2003): 275–88. http://dx.doi.org/10.1007/s00220-003-0806-8.
Full textColladay, Don, and Patrick McDonald. "Yang–Mills instantons with Lorentz violation." Journal of Mathematical Physics 45, no. 8 (August 2004): 3228–38. http://dx.doi.org/10.1063/1.1767624.
Full textSegert, Jan. "Frobenius manifolds from Yang-Mills instantons." Mathematical Research Letters 5, no. 3 (1998): 327–44. http://dx.doi.org/10.4310/mrl.1998.v5.n3.a6.
Full textGroisser, David, and Thomas H. Parker. "Semiclassical Yang-Mills theory I: Instantons." Communications in Mathematical Physics 135, no. 1 (December 1990): 101–40. http://dx.doi.org/10.1007/bf02097659.
Full textDissertations / Theses on the topic "Yang-Mills instantons"
Stevenson, David. "Yang-Mills instantons over Hopf surfaces." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109472/.
Full textTavares, Gustavo Marques. "Instantons em espaços curvos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277048.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-09-24T14:09:39Z (GMT). No. of bitstreams: 1 Tavares_GustavoMarques_M.pdf: 695474 bytes, checksum: c437bafa3afb0c0768437e1a139eea12 (MD5) Previous issue date: 2010
Resumo: Neste trabalho estudamos os instantons da teoria de Yang-Mills nos espaços de Schwarzs-child e de Reissner-Nordstrom com grupo de gauge SU(2).Instantons são soluções clássicas da teoria de Yang-Mills definida em um espaço com métrica riemanniana (positiva-definida) e com ação finita. Primeiramente revisamos a formulação geométrica da teoria de Yang-Mills em uma variedade 4-dimensional,identificando os campos de gauge com conexões em um fibrado principal. Em seguida apresentamos os principais resultados clássicos relacionados aos instantons no espaço plano. Na segunda parte da dissertação realizamos um estudo sistemático das soluções da teoria de Yang-Mills nos espaços de Schwarzschild e de Reissner-Nordstrom euclidianos. Esta abordagem nos permitiu descobrir novas famílias de instantons neste contexto.Ainda,os resultados obtidos mostram que o número de famílias de instantons no espaço de Reissner- Nordstrom depende diretamente da carga elétrica que caracteriza esta geometria
Abstract: In this work we study instanton solutions of the Yang-Mills theory in Schwarzschild and Reissner-Nordstrom spaces with gauge group SU(2).Instantons are solutions to the classical field equations of Yang-Mills theory defined in a space with Riemannian (positive de finite)metric with finite action. We begin with a review of the geometric setting of Yang-Mills theory on a four dimensional manifold,which relates the gauge fields to connections on a fiber bundle.We proceed by presenting the main results related to instantons in flat space. In the second part of this thesis we perform a systematic study of the solutions of Yang-Mills theory in Euclidian Schwarzschild and Reissner-Nordstrom spaces.This approach led us to discover a new family of instantons de fined in those backgrounds. Moreover, our results show that the number of instanton families in the Reissner-Nordstrom space depends directly on the eletric charge which caracterizes this geometry
Mestrado
Física das Particulas Elementares e Campos
Mestre em Física
Cherkis, Sergey A., Clare O’Hara, and Dmitri Zaitsev. "A compact expression for periodic instantons." ELSEVIER SCIENCE BV, 2016. http://hdl.handle.net/10150/622368.
Full textTerra-Cunha, Marcelo de Oliveira 1973. "A geometria e os instantons da teoria de Yang & Mills SU(2)." [s.n.], 1997. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278325.
Full textDissertação (mestrado) - Universidade estadual de Campinas, Instituto de Fisica "Gleb Wataghin"
Made available in DSpace on 2018-09-24T17:49:07Z (GMT). No. of bitstreams: 1 Terra-Cunha_MarcelodeOliveira_M.pdf: 1190931 bytes, checksum: 3a5888d43c5ea59564f037a1cd77a9ed (MD5) Previous issue date: 1997
Resumo: Introduzimos a Teoria de Yang & Mills clássica com um enfoque geométrico. Vários argumentos são apresentados em favor da "realidade física" dos potenciais, mesmo no nível clássico. Especializamos para o caso do grupo SU(2) sobre espaço-tempo euclideano. Definimos os Instantons desta teoria e apresentamos um método para sua obtenção. Como subsídio ao leitor, apresentamos o conceito de Homotopia, incluindo as sequências exatas de fibração e alguns resultados da homotopia das esferas. Apresentamos a construção de [Rigas] de representantes de S3-fibrados sobre S4, que mostramos ser o ambiente matemático natural das soluções instantônicas desta teoria. Finalmente, adaptamos tal construção e apresentamos um novo método de construção do instanton e do anti-instanton fundamentais e apresentamos caminhos que podem levar à generalização deste método
Abstract: Classical Yang & Mills Theory is presented from a geometrical viewpoint. Many arguments leading to the "physical reality" of Yang & Mills potentials are given. Further, we specialize to SU(2) Lie group theory over Euclidean space-time. Instantons of this theory are defined and a way to compute them is shown. It is also given an introduction to Homotopy theory, starting from the very basic concepts and leading to exact sequences of fiber spaces and to some important results about the homotopy of spheres. The construction of S3-bundles over S4 representants given in [Rigas] is presented. Such mathematical objects are shown to be the natural place of instanton solutions of this theory. We adapt this construction and show how to find the fundamental instanton and anti-instanton solutions and also we give some possible ways to obtain the generalizations of this result to find multi-instantons
Mestrado
Física
Mestre em Física
Branco, Lucas Magalhães Pereira Castello 1988. "Mapas momento em teoria de calibre." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306010.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-22T22:29:57Z (GMT). No. of bitstreams: 1 Branco_LucasMagalhaesPereiraCastello_M.pdf: 1981391 bytes, checksum: 7ecd7674514f634b8bb527c0bcab1a06 (MD5) Previous issue date: 2013
Resumo: Neste trabalho os aspectos básicos da teoria de calibre são abordados, incluindo as noções de conexão e curvatura em fibrados principais e vetoriais, considerações sobre o grupo de transformações de calibre e o espaço de moduli de soluções para a equação anti-auto-dual em dimensão quatro (o espaço de moduli de instantons). Posteriormente, mapas momento e redução são introduzidos. Primeiramente, no contexto clássico de geometria simplética e depois no contexto de geometria hyperkähler. Por fim, são apresentadas aplicações da teoria de mapas momento e redução em teoria de calibre. As equações ADHM são introduzidas e mostra se que estas podem ser dadas como o conjunto de zeros de um mapa momento hyperkähler. Além disso, considerações são feitas acerca da construção ADHM de instantons, que relaciona soluções dessas equações com as soluções da equação de anti-auto-dualidade. O espaço de moduli de conexões planas é também abordado. Neste caso, a curvatura é vista como um mapa momento e os cálculos podem ser generalizados para o espaço de moduli de conexões planas sobre variedades Kähler de dimensões mais altas e para o espaço de moduli de instantons sobre variedades hyperkähler de dimensão quatro
Abstract: In this work it is developed the basic concepts of gauge theory, including the notions of connections and curvature on principal bundles and vector bundles, considerations on the group of gauge transformations and the moduli space of anti-self-dual connections in dimension four (the instanton moduli space). After, moment maps and reduction are introduced. First in the classical context of symplectic geometry, then in hyperkähler geometry. At last, applications to the theory of moment maps and reduction in gauge theory are given. The ADHM equations are introduced and it is shown that solutions to these equations can be given by the zeros of a hyperkähler moment map. Furthermore, the ADHM construction, that relates the ADHM equations to instanton solutions, is discussed. The moduli space of flat connections over a Riemann surface is also treated. In this case, the curvature is seen as a moment map and the calculations can be generalized to flat connections over higher-dimensional Kähler manifolds and to the instanton moduli space over four dimensional hyperkähler manifolds
Mestrado
Matematica
Mestre em Matemática
De, Martino Marcelo Gonçalves 1986. "Teoria de calibre em dimensões dois e quatro." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306013.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T09:52:31Z (GMT). No. of bitstreams: 1 DeMartino_MarceloGoncalves_M.pdf: 1604556 bytes, checksum: be41ad6ca9fd66921624adce95bf0939 (MD5) Previous issue date: 2012
Resumo: Este trabalho procurou apresentar os conhecimentos básicos necessários para trabalhar com a teoria de calibre em baixas dimensões e também mostrar algumas aplicações da mesma. Na parte básica da teoria, além de comentar aspectos da teoria de Hodge para variedades compactas, também se discute, com certo nível de detalhes, os conceitos de fibrados vetoriais e conexões, com ênfase dada para os cálculos locais com conexões e curvaturas. Duas aplicações mais concretas da teoria de calibre são apresentadas nesta dissertação. Primeiro, em dimensão quatro, discute-se a equação de Yang-Mills sobre 4-variedades e é apresentada uma solução para a equação anti-auto-dual, solução esta que é conhecida na literatura como ansatz de 't Hooft. Por fim, é apresentada a prova, baseado no artigo [DONALDSON, 1983], de um importante teorema devido a M. S. Narasimhan e C. S. Seshadri que relaciona os conceitos de estabilidade com o de existência de conexão unitária satisfazendo certa propriedade, em fibrados vetoriais complexos sobre superfícies de Riemann
Abstract: In this work it is developed the basic knowledge required to deal with gauge theory in low dimension and it is shown some applications of this theory. Regarding the basic knowledge, apart from discussing some aspects of Hodge theory over compact manifolds, it is also covered, with a certain deal of details, the concepts of vector bundles and connections, paying close attention to the local computations regarding connections and curvature. As for the applications of the theory, we start, in dimension four, by treating the Yang-Mills equation over 4-manifolds and it is showed a solution to the anti-self-dual Yang-Mills equation, solution that is known in the literature as the 't Hooft ansatz. At last, it is given a proof, following the paper [DONALDSON, 1983], of an important theorem due to M. S. Narasimhan and C. S. Seshadri that relates the algebro-geometric notion of stability to the differential-geometric notion of existence of unitary connection whose curvature satisfies a certain condition, on vector bundles over Riemann surfaces
Mestrado
Matematica
Mestre em Matemática
Koehl, Christian. "Geometry of supersymmetric sigma models and D-brane solitons." Thesis, Queen Mary, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325106.
Full textSlater, Matthew J. "Instanton effects in supersymmetric SU(N) gauge theories." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/4812/.
Full textContatto, Felipe. "Vortices, Painlevé integrability and projective geometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275099.
Full textTahiridimbisoa, Nirina Maurice Hasina. "Instantons in D=5 super-Yang-Mills theory." Thesis, 2014.
Find full textBooks on the topic "Yang-Mills instantons"
Stevenson, David. Yang-Mills instantons over Hopf surfaces. [s.l.]: typescript, 1992.
Find full textKachelriess, Michael. Anomalies, instantons and axions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0017.
Full textBook chapters on the topic "Yang-Mills instantons"
Christ, Norman H., Erick J. Weinberg, and Nancy K. Stanton. "General self-dual Yang-Mills solutions." In Instantons in Gauge Theories, 136–48. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0019.
Full textJackiw, R., and C. Rebbi. "Spinor Analysis of Yang-Mills Theory." In Instantons in Gauge Theories, 217–25. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0026.
Full textBELAVIN, A. A., A. M. POLYAKOV, A. S. SCHWARTZ, and Yu S. TYUPKIN. "PSEUDOPARTICLE SOLUTIONS OF THE YANG-MILLS EQUATIONS." In Instantons in Gauge Theories, 22–24. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0004.
Full textJackiw, R., and C. Rebbi. "Conformal properties of a Yang-Mills pseudoparticle." In Instantons in Gauge Theories, 90–96. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0011.
Full textJackiw, R., and C. Rebbi. "Vacuum Periodicity in a Yang-Mills Quantum Theory." In Instantons in Gauge Theories, 25–28. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0005.
Full textWitten, Edward. "Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory." In Instantons in Gauge Theories, 124–27. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812794345_0016.
Full textKanki, T. "Variational Calculation of Instanton-Based Yang-Mills Vacuum at Finite Temperature." In Variational Calculations In Quantum Field Theory, 215–22. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814390187_0019.
Full textde la Ossa, Xenia, Magdalena Larfors, and Eirik E. Svanes. "Restrictions of Heterotic G2 Structures and Instanton Connections." In Geometry and Physics: Volume II, 503–18. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802020.003.0020.
Full textConference papers on the topic "Yang-Mills instantons"
Helmke, Uwe. "Parametrizations for multi-mode systems and Yang-Mills instantons." In 1986 25th IEEE Conference on Decision and Control. IEEE, 1986. http://dx.doi.org/10.1109/cdc.1986.267339.
Full textNakajima, Hiroaki, Katsushi Ito, Shin Sasaki, Pyungwon Ko, and Deog Ki Hong. "Instanton Effective Action in Deformed Super Yang-Mills Theories." In SUPERSYMMETRY AND THE UNIFICATION OF FUNDAMENTAL INTERACTIONS. AIP, 2008. http://dx.doi.org/10.1063/1.3051987.
Full textOhta, Kazutoshi. "Instanton Counting, Two Dimensional Yang-Mills Theory and Topological Strings." In Proceedings of the International Sendai-Beijing Joint Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812779649_0012.
Full text