Academic literature on the topic 'Y74C'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Y74C.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Y74C"

1

Tweardy, David John, Xu Xuejun, Naijie Jing, and Huang Shao. "Structural Determinants for Signal Transducer and Activator of Transcription (STAT) 3 Recruitment and Activation by the Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) at Phosphotyrosine Ligands 704 and 744." Blood 104, no. 11 (November 16, 2004): 2169. http://dx.doi.org/10.1182/blood.v104.11.2169.2169.

Full text
Abstract:
Abstract Four tyrosine (Y) residues within the cytoplasmic domain of the G-CSFR (Y704, Y228, Y744 and Y764 in the human receptor; Y703, Y227, Y743 and Y763 in the murine receptor) become phosphorylated by Jak kinases upon ligand binding leading to recruitment of Src homology (SH) 2 domain-containing proteins that link to programs for myeloid cell survival and differentiation (Stat3 recruitment to Y704 and Y744) and proliferation (SHP-2 and PI3K recruitment to Y04; Grb2, Shc and SHP-2 recruitment to Y764). While the preference of SH2 domain binding to specific phospho (p) Y peptide ligands was shown to map to the three residues immediately C-terminal to the pY (+1, +2, +3 residues), the structural basis for these preferences is poorly understood but could be exploited to specifically target deleterious G-CSFR-mediated signaling events such as aberrant Stat3 activation, which has been demonstrated in a subset of acute myelogenous leukemia (AML) patients whose cells contain Flt3 internal tandem duplications and who suffer relapse following initial chemotherapy. To establish the structural basis for Stat3 recruitment and activation by the G-CSFR at Y704 and Y744, we generated purified recombinant full-length Stat3 and phosphododecapeptides based on the sequence surrounding each Y within the G-CSFR. In peptide pull-down assays, recombinant Stat3 bound only to Y704 and Y744 phosphododecapeptide, which contain core pY motifs consisting of pYVLQ and pYLRC, respectively. In mirror resonance affinity assays employed to obtain quantitative binding information, Stat3 bound to each phosphododecapeptide with similar kinetics (e.g. KDs = 0.703 and 0.95 μM, respectively). We tested three models for Stat3 SH2-pY ligand binding proposed by us and others using wild type and mutant recombinant Stat3 proteins in peptide pull-down and mirror resonance affinity assays along with computer modeling of this interaction using the known structures of Statβ SH2 and EGFR pY ligand (EpY1068INQ). Our results revealed loss of binding of Stat3 to Y704 and Y744 phosphododecapeptides only in Stat3 mutated within the SH2 domain at K591 or R609, whose side chains interacted with the pY phosphate group, and in Stat3 mutated within the SH2 domain at E638, whose amide hydrogen bonded with oxygen within the +3 Q side chain (or with sulfur within the +3 C side chain) when the pY ligand assumes a β turn. G-CSF stimulation of cells co-expressing full-length G-CSFR and either wild type or mutant Stat3 constructs confirmed the requirements for the side chain of R609 and the amide hydrogen of E638 within the Stat3 SH2 domain for binding to the G-CSFR and subsequent phosphorylation of Stat3 on Y705. Thus, our findings identify for the first time the structural basis for recruitment and activation of Stat3 by the G-CSFR and reveal unique features of their interaction at Y704 and Y744 i.e. a β turn within the receptor pY motif and a key hydrogen bond formed between the polar side chain of the +3 residue and the amide hydrogen of E638 within the Stat3 SH2 domain. These features explain the preference of the Stat3 SH2 domain for pY peptide ligands with +3 Q or C as well as +3 T (pY705LKT within Stat3) and +3 S (pY743IRS within the murine G-CSFR) and can be exploited using a structure-assisted drug design strategy to develop new therapies for a subset of AML patients with poor prognosis whose cells demonstrate aberrant activation of Stat3.
APA, Harvard, Vancouver, ISO, and other styles
2

Stojanovic, Aleksandra, Panagiotis Flevaris, Xiaodong Xi, Athar Chisti, David Phillips, Stephen C. T. Lam, and Xiaoping Du. "Tyrosine Phosphorylation of the Integrin β3 Subunit Regulates β3 Cleavage by Calpain." Blood 108, no. 11 (November 16, 2006): 1524. http://dx.doi.org/10.1182/blood.v108.11.1524.1524.

Full text
Abstract:
Abstract Outside-in signaling of β3 integrins induces and requires phosphorylation at tyrosine-747 (Y747) and tyrosine-759 (Y759) of the β3 subunit, but the mechanism for this requirement is unclear. On the other hand, a key consequence of integrin signaling, cell spreading, is inhibited by calpain cleavage of β3 cytoplasmic domain. Here we show that tyrosine phosphorylation in the synthetic β3 cytoplasmic domain peptide inhibits calpain cleavage. In platelets, tyrosine phosphates inhibitor, sodium vanadate, enhances thrombin-induced phosphorylation at Y747 and Y759, which is associated with the reduced integrin cleavage by calpain. The effects of sodium vanadate is unlikely to be caused by its effects on calpain activity but is likely to be caused by the susceptibility of integrin cytoplasmic domain, because sodium vanadate did not affect the calpain cleavage of another substrate, fodrin, in platelets. To further support the protective effect of tyrosine phosphorylation against calpain cleavage, we show that mouse β3 (DiYF) with both Y759 and Y747 mutated to phenylalanine is more susceptible to calpain cleavage than wild type during thrombin-induced platelet aggregation. Furthermore, phosphorylation at Y747 and Y759 of β3 in the focal adhesion sites and the leading edge of spreading platelets was differentially regulated. Selective dephosphorylation of Y759 is associated with calpain cleavage at Y759. Thus, one mechanism by which tyrosine phosphorylation promotes integrin signaling and cell spreading is its inhibition of calpain cleavage of the β3 cytoplasmic domain.
APA, Harvard, Vancouver, ISO, and other styles
3

Chakraborty, Arup, Kevin F. Dyer, Michael Cascio, Timothy A. Mietzner, and David J. Tweardy. "Identification of a Novel Stat3 Recruitment and Activation Motif Within the Granulocyte Colony-Stimulating Factor Receptor." Blood 93, no. 1 (January 1, 1999): 15–24. http://dx.doi.org/10.1182/blood.v93.1.15.

Full text
Abstract:
Abstract Stat3 is essential for early embryonic development and for myeloid differentiation induced by the cytokines granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6). Two isoforms of Stat3 have been identified,  (p92) and β (p83), which have distinct transcriptional and biological functions. Activation of both Stat3 and Stat3β requires the distal cytoplasmic domain of the G-CSFR, which contains four Tyr at positions 704, 729, 744, and 764. The studies reported here were undertaken to determine which, if any, of these tyrosine residues participated in Stat3/β recruitment and activation. We showed that Stat3 and Stat3β were affinity purified using phosphopeptides containing Y704 and Y744 but not by nonphosphorylated peptide analogues or by phosphopeptides containing Y729 and Y764. Complementary results were obtained in studies examining the ability of these peptides to destabilize and inhibit DNA binding of activated Stat3. Both Y704 and Y744 contributed to optimal activation of Stat3/β in M1 murine myeloid leukemia cells containing wild-type and Y-to-F mutant G-CSFR constructs. Carboxy-terminal to Y704 at the +3 position is Gln; YXXQ represents a consensus Stat3 recruitment and activation motif. Y744 is followed at the +3 position by Cys (C); YXXC, represents a novel motif implicated in the recruitment and activation of Stat3. Modeling of the SH2 domain of Stat3 based on homologous SH2 domains of known structure revealed polar residues whose side chains contact the +3 position. This substitution may confer specificity for the Y704- and Y744-based ligands by allowing H-bond formation between the binding surface and the Gln or Cys found at the respective +3 position.
APA, Harvard, Vancouver, ISO, and other styles
4

Chakraborty, Arup, Kevin F. Dyer, Michael Cascio, Timothy A. Mietzner, and David J. Tweardy. "Identification of a Novel Stat3 Recruitment and Activation Motif Within the Granulocyte Colony-Stimulating Factor Receptor." Blood 93, no. 1 (January 1, 1999): 15–24. http://dx.doi.org/10.1182/blood.v93.1.15.401a46_15_24.

Full text
Abstract:
Stat3 is essential for early embryonic development and for myeloid differentiation induced by the cytokines granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6). Two isoforms of Stat3 have been identified,  (p92) and β (p83), which have distinct transcriptional and biological functions. Activation of both Stat3 and Stat3β requires the distal cytoplasmic domain of the G-CSFR, which contains four Tyr at positions 704, 729, 744, and 764. The studies reported here were undertaken to determine which, if any, of these tyrosine residues participated in Stat3/β recruitment and activation. We showed that Stat3 and Stat3β were affinity purified using phosphopeptides containing Y704 and Y744 but not by nonphosphorylated peptide analogues or by phosphopeptides containing Y729 and Y764. Complementary results were obtained in studies examining the ability of these peptides to destabilize and inhibit DNA binding of activated Stat3. Both Y704 and Y744 contributed to optimal activation of Stat3/β in M1 murine myeloid leukemia cells containing wild-type and Y-to-F mutant G-CSFR constructs. Carboxy-terminal to Y704 at the +3 position is Gln; YXXQ represents a consensus Stat3 recruitment and activation motif. Y744 is followed at the +3 position by Cys (C); YXXC, represents a novel motif implicated in the recruitment and activation of Stat3. Modeling of the SH2 domain of Stat3 based on homologous SH2 domains of known structure revealed polar residues whose side chains contact the +3 position. This substitution may confer specificity for the Y704- and Y744-based ligands by allowing H-bond formation between the binding surface and the Gln or Cys found at the respective +3 position.
APA, Harvard, Vancouver, ISO, and other styles
5

Yoon, Jeong Hyun, Min-Kyu Song, and Jang-Yeon Kwon. "Detection of Proton Carriers in Tyrosine-Rich Peptide Thin Film." ECS Meeting Abstracts MA2022-01, no. 18 (July 7, 2022): 1048. http://dx.doi.org/10.1149/ma2022-01181048mtgabs.

Full text
Abstract:
Traditional Von Neumann structure, where memory and computational units are separated, is now facing significant difficulties in terms of power consumption and computing speed in big data era. Therefore, human brain-like computing architecture is now paid attention in research field owing to its high parallelism, fault tolerance and robustness1-2. In this biological system, synaptic weight which plays crucial role in memory and learning is modulated by ionic species, especially protons transmitted between synapses. Here, we focused on short length peptide Y7C (YYACAYY) thin film which induces proton coupled electron transfer (PCET) due to its Tyrosine-rich structure. The Y7C film has shown an interesting behavior in which electrical conductivity varies with humidity3-4. By this modulation, bimodal memristor using both of voltage and humidity5 input and synaptic transistor which shows dynamic reponses through humidity have been demonstrated, but direct relation between current and proton conduction is still ambiguous. Therefore, we measured transient current flow between Pd and Au electrode and detected proton conduction of Y7C film. In previous studies, voltage & humidity controlled Y7C bimodal memristor has been reported. However, since the current regulation through humidity showed insufficient response than that through voltage, a definite relationship between moisture and current needs to be defined. To achieve that, thin film of the peptide material dissolved in Trifluoroacetic acid (TFA) 99% solution was spin coated on SiO2/Si substrate. By measuring the transient current of the Y7C film, presence of temporary charge carriers was observed. Also, the electrical impedance spectroscopy (EIS) of peptide layer showed a semicircle and a nonvertical tail, which indicate ionic conduction through the film. Lastly, film characterization of Y7C thin layer unveiled that the corresponding ions are protons as originally targeted. This research has showed principles of peptide thin film’s current increment driven by both of humidity and voltage through electrochemical reaction. Fig.1. Transient charge flowing through Y7C thin film measured in various atmospheric conditions and electrodes Acknowledgment This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2004864). References Pakkenberg B, Pelvig D, Marner L, Bundgaard M J, Gundersen H J G, Nyengaard J R and Regeur L 2003 Exp. Gerontol. 38 95 Abbott L F and Nelson S B 2000 Nat. Neurosci. 3 1178 Lee, Jaehun, et al. "Proton conduction in a tyrosine‐rich peptide/manganese oxide hybrid nanofilm." Advanced Functional Materials 27.35 (2017): 1702185. Sung, Taehoon, et al. "Effects of proton conduction on dielectric properties of peptides." RSC advances 8.59 (2018): 34047-34055. Song, Min-Kyu, et al. "Proton-enabled activation of peptide materials for biological bimodal memory." Nature Communications 11.1 (2020): 1-8. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
6

Boettiger, David, Francois Huber, Laura Lynch, and Scott Blystone. "Activation of αvβ3-Vitronectin Binding Is a Multistage Process in which Increases in Bond Strength Are Dependent on Y747 and Y759 in the Cytoplasmic Domain of β3." Molecular Biology of the Cell 12, no. 5 (May 2001): 1227–37. http://dx.doi.org/10.1091/mbc.12.5.1227.

Full text
Abstract:
Integrin receptors serve as mechanical links between the cell and its structural environment. Using αvβ3 integrin expressed in K562 cells as a model system, the process by which the mechanical connection between αvβ3 and vitronectin develops was analyzed by measuring the resistance of these bonds to mechanical separation. Three distinct stages of activation, as defined by increases in the αvβ3-vitronectinbinding strength, were defined by mutational, biochemical, and biomechanical analyses. Activation to the low binding strength stage 1 occurs through interaction with the vitronectin ligand and leads to the phosphorylation of Y747 in the β3 subunit. Stage 2 is characterized by a 4-fold increase in binding strength and is dependent on stage1 and the phosphorylation of Y747. Stage 3 is characterized by a further 2.5-fold increase in binding strength and is dependent on stage 2 events and the availability of Y759 for interaction with cellular proteins. The Y747F mutant blocked the transition from stage 1 to stage 2, and the Y759F blocked the transition from stage 2 to stage 3. The data suggest a model for tension-induced activation of αvβ3 integrin.
APA, Harvard, Vancouver, ISO, and other styles
7

Xi, Xiaodong, Richard J. Bodnar, Zhenyu Li, Stephen C. T. Lam, and Xiaoping Du. "Critical roles for the COOH-terminal NITY and RGT sequences of the integrin β3 cytoplasmic domain in inside-out and outside-in signaling." Journal of Cell Biology 162, no. 2 (July 8, 2003): 329–39. http://dx.doi.org/10.1083/jcb.200303120.

Full text
Abstract:
Bidirectional signaling of integrin αIIbβ3 requires the β3 cytoplasmic domain. To determine the sequence in the β3 cytoplasmic domain that is critical to integrin signaling, cell lines were established that coexpress the platelet receptor for von Willebrand factor (vWF), glycoprotein Ib-IX, integrin αIIb, and mutants of β3 with truncations at sites COOH terminal to T741, Y747, F754, and Y759. Truncation at Y759 did not affect integrin activation, as indicated by vWF-induced fibrinogen binding, but affected cell spreading and stable adhesion. Thus, the COOH-terminal RGT sequence of β3 is important for outside-in signaling but not inside-out signaling. In contrast, truncation at F754, Y747, or T741 completely abolished integrin activation. A point mutation replacing Y759 with alanine also abolished integrin activation. Thus, the T755NITY759 sequence of β3, containing an NXXY motif, is critical to inside-out signaling, whereas the intact COOH terminus is important for outside-in signaling. In addition, we found that the calcium-dependent protease calpain preferentially cleaves at Y759 in a population of β3 during platelet aggregation and adhesion, suggesting that calpain may selectively regulate integrin outside-in signaling.
APA, Harvard, Vancouver, ISO, and other styles
8

Katayama, Takane, Hideyuki Suzuki, Takashi Koyanagi, and Hidehiko Kumagai. "Cloning and Random Mutagenesis of the Erwinia herbicola tyrR Gene for High-Level Expression of Tyrosine Phenol-Lyase." Applied and Environmental Microbiology 66, no. 11 (November 1, 2000): 4764–71. http://dx.doi.org/10.1128/aem.66.11.4764-4771.2000.

Full text
Abstract:
ABSTRACT Tyrosine phenol-lyase (Tpl), which can synthesize 3,4-dihydroxyphenylalanine from pyruvate, ammonia, and catechol, is a tyrosine-inducible enzyme. Previous studies demonstrated that thetpl promoter of Erwinia herbicola is activated by the TyrR protein of Escherichia coli. In an attempt to create a high-Tpl-expressing strain, we cloned the tyrRgene of E. herbicola and then randomly mutagenized it. Mutant TyrR proteins with enhanced ability to activate tplwere screened for by use of the lac reporter system inE. coli. The most increased transcription oftpl was observed for the strain with the mutanttyrR allele involving amino acid substitutions of alanine, cysteine, and glycine for valine-67, tyrosine-72, and glutamate-201, respectively. A tyrR-deficient derivative of E. herbicola was constructed and transformed with a plasmid carrying the mutant tyrR allele (V67A Y72C E201G substitutions). The resultant strain expressed Tpl without the addition of tyrosine to the medium and produced as much of it as was produced by the wild-type strain grown under tyrosine-induced conditions. The regulatory properties of the mutant TyrRV67A, TyrRY72C, TyrRE201G, and TyrRV67A Y72C E201G proteins were examined in vivo. Interestingly, as opposed to the wild-type TyrR protein, the mutant TyrRV67A protein had a repressive effect on the tyrP promoter in the presence of phenylalanine as the coeffector.
APA, Harvard, Vancouver, ISO, and other styles
9

García-Peydró, Marina, Alberto Paradela, José R. Lamas, and José A. López de Castro. "Peptide Presentation to an Alloreactive CTL Clone Is Modulated Through Multiple Mechanisms Involving Polymorphic and Conserved Residues in HLA-B27." Journal of Immunology 163, no. 11 (December 1, 1999): 6060–64. http://dx.doi.org/10.4049/jimmunol.163.11.6060.

Full text
Abstract:
Abstract This study addressed the mechanisms by which HLA class I polymorphism modulates allorecognition. CTL 27S69 is an alloreactive clone raised against HLA-B*2705, with a known peptide epitope. This CTL cross-reacts with B*2702, which differs from B*2705 in the D77N, T80I, and L81A changes, but not with B*2701, which has D74Y, D77N, and L81A changes. To explain this differential recognition, B*2705 mutants mimicking subtype changes were used. The A81 mutant was not recognized, despite binding the natural epitope in vivo, suggesting that, when bound to this mutant, this peptide adopts an inappropriate conformation. The N77 and I80 mutations restored recognition in the N77A81 or I80A81 mutants. These compensatory effects explain the cross-reaction with B*2702. The Y74 and the Y74N77 mutants were weakly recognized or not recognized by CTL 27S69. This correlated with the absence or marginal presence of the peptide epitope in the Y74N77-bound pool. As with B*2701, exogenous addition of the peptide epitope sensitized Y74 and Y74N77 targets for lysis, indicating that failure to cross-react with B*2701 or these mutants was due to poor binding of the peptide in vivo and not to inappropriate presentation. The abrogating effect of Y74 was critically dependent upon the K70 residue, conserved among subtypes, as demonstrated with mutants at this position. Thus, HLA polymorphism affects allorecognition by modulating peptide binding or the conformation of bound peptides. Compensatory mutations and indirect effects of a polymorphic residue on residues conserved play a critical role.
APA, Harvard, Vancouver, ISO, and other styles
10

de Koning, John P., Amrita A. Soede-Bobok, Anita M. Schelen, Louise Smith, Daphne van Leeuwen, Valeria Santini, Boudewijn M. T. Burgering, Johannes L. Bos, Bob Löwenberg, and Ivo P. Touw. "Proliferation Signaling and Activation of Shc, p21Ras, and Myc Via Tyrosine 764 of Human Granulocyte Colony-Stimulating Factor Receptor." Blood 91, no. 6 (March 15, 1998): 1924–33. http://dx.doi.org/10.1182/blood.v91.6.1924.

Full text
Abstract:
Abstract The membrane-distal region of the cytoplasmic domain of human granulocyte colony-stimulating factor receptor (G-CSF-R) contains four conserved tyrosine residues: Y704, Y729, Y744, and Y764. Three of these (Y729, Y744, and Y764) are located in the C-terminal part of G-CSF-R, previously shown to be essential for induction of neutrophilic differentiation. To determine the role of the tyrosines in G-CSF–mediated responses, we constructed tyrosine-to-phenylalanine (Y-to-F) substitution mutants and expressed these in a differentiation competent subclone of 32D cells that lacks endogenous G-CSF-R. We show that all tyrosines can be substituted essentially without affecting the differentiation signaling properties of G-CSF-R. However, substitution of one specific tyrosine, ie, Y764, markedly influenced proliferation signaling as well as the timing of differentiation. 32D cells expressing wild-type (WT) G-CSF-R (or mutants Y704F, Y729F, or Y744F) proliferated in G-CSF–containing cultures until day 8 and then developed into mature neutrophils. In contrast, 32D/Y764F cells arrested in the G1 phase of the cell cycle within 24 hours and showed complete neutrophilic differentiation after 3 days of culture. This resulted in an average 30-fold reduction of neutrophil production as compared with the 32D/WT controls. Importantly, G-CSF–mediated activation of Shc, p21Ras and the induction of c-myc were severely reduced by substitution of Y764. These findings indicate that Y764 of G-CSF-R is crucial for maintaining the proliferation/differentiation balance during G-CSF–driven neutrophil development and suggest a role for multiple signaling mechanisms in maintaining this balance.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Y74C"

1

"Y74 Accessories for electrical services." In Spon's Estimating Costs Guide to Electrical Works, 72–88. Spon Press, 2007. http://dx.doi.org/10.1201/9781482266375-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Y74 Accessories for Electrical Services." In Spon's Estimating Costs Guide to Electrical Works, 59–70. Spon Press, 2003. http://dx.doi.org/10.4324/9781482265323-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Y74C"

1

Borodin, Evgeniy. "SEARCH FOR POTENTIAL LIGANDS FOR TRPM8 WITH THE HELP OF COMPUTER DESIGN." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b2fdca3.97577371.

Full text
Abstract:
A search was carried out for potential ligands to TRPM8 - a representative of the family of cationic channels with a transient receptor potential involved in the development of bronchial hypersensitivity and the occurrence of bronchospasm in response to low temperatures. We used a structural design and molecular docking using the autodock software package (http://autodock.scripps.edu/), which allows automated testing of many potential ligands for TRPM8. Docking was carried out with tyrosine 745 (Y745) amino acid residue as a critical residue for channel sensitivity to menthol, a classic TRPM8 agonist. The selection of potential candidates for the role of drugs intended for the treatment of bronchial cold hyperreactivity using in silico methods can be supplemented by testing their biological activity in vitro experiments with cell and tissue cultures and in vivo with experimental animals.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography