Journal articles on the topic 'Xylose as substrate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Xylose as substrate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
van Bastelaere, P., W. Vangrysperre, and H. Kersters-Hilderson. "Kinetic studies of Mg2+-, Co2+- and Mn2+-activated d-xylose isomerases." Biochemical Journal 278, no. 1 (August 15, 1991): 285–92. http://dx.doi.org/10.1042/bj2780285.
Full textWang, Zi-Han, Jing-Yan Tan, Yu-Tong Zhang, Nan-Qi Ren, and Lei Zhao. "Evaluating Bio-Hydrogen Production Potential and Energy Conversion Efficiency from Glucose and Xylose under Diverse Concentrations." Fermentation 8, no. 12 (December 14, 2022): 739. http://dx.doi.org/10.3390/fermentation8120739.
Full textHermansyah, Hermansyah, Fachrijal Fachrijal, Miksusanti Miksusanti, Fatma Fatma, Getari Kasmiarti, and Almunadi T. Panagan. "Xylose and Arabinose Fermentation to Produce Ethanol by Isolated Yeasts from Durian (Durio zibethinus L.) Fruit." Molekul 14, no. 2 (November 30, 2019): 133. http://dx.doi.org/10.20884/1.jm.2019.14.2.562.
Full textZepeda, S., O. Monasterio, and T. Ureta. "NADP+-dependent d-xylose dehydrogenase from pig liver. Purification and properties." Biochemical Journal 266, no. 3 (March 15, 1990): 637–44. http://dx.doi.org/10.1042/bj2660637.
Full textMuñoz-Páez, Karla María, and Germán Buitrón. "Role of xylose from acidic hydrolysates of agave bagasse during biohydrogen production." Water Science and Technology 84, no. 3 (June 24, 2021): 656–66. http://dx.doi.org/10.2166/wst.2021.242.
Full textKratzer, Regina, Stefan Leitgeb, David K. Wilson, and Bernd Nidetzky. "Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis." Biochemical Journal 393, no. 1 (December 12, 2005): 51–58. http://dx.doi.org/10.1042/bj20050831.
Full textBrink, Daniel P., Celina Borgström, Viktor C. Persson, Karen Ofuji Osiro, and Marie F. Gorwa-Grauslund. "D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers." International Journal of Molecular Sciences 22, no. 22 (November 17, 2021): 12410. http://dx.doi.org/10.3390/ijms222212410.
Full textFurlan, Sandra A., and Heizir F. de Castro. "Xylitol production by Candida parapsilosis under fed-batch culture." Brazilian Archives of Biology and Technology 44, no. 2 (June 2001): 125–28. http://dx.doi.org/10.1590/s1516-89132001000200003.
Full textKuenz, Anja, Malee Jäger, Harri Niemi, Mari Kallioinen, Mika Mänttäri, and Ulf Prüße. "Conversion of Xylose from Birch Hemicellulose Hydrolysate to 2,3-Butanediol with Bacillus vallismortis." Fermentation 6, no. 3 (September 2, 2020): 86. http://dx.doi.org/10.3390/fermentation6030086.
Full textMilessi-Esteves, Thais, Felipe Corradini, Willian Kopp, Teresa Zangirolami, Paulo Tardioli, Roberto Giordano, and Raquel Giordano. "An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF)." Catalysts 9, no. 3 (March 1, 2019): 225. http://dx.doi.org/10.3390/catal9030225.
Full textBarthe, Manon, Josué Tchouanti, Pedro Henrique Gomes, Carine Bideaux, Delphine Lestrade, Carl Graham, Jean-Philippe Steyer, et al. "Availability of the Molecular Switch XylR Controls Phenotypic Heterogeneity and Lag Duration during Escherichia coli Adaptation from Glucose to Xylose." mBio 11, no. 6 (December 22, 2020): e02938-20. http://dx.doi.org/10.1128/mbio.02938-20.
Full textXu, Wei, Rong Shao, Yan Li, Ming Yan, and Ping Kai Ouyang. "Study on the Substrate Specificity of Xylose Isomerase N91D Mutant from Thermus thermophilus HB8 by Molecular Simulation." Advanced Materials Research 236-238 (May 2011): 968–73. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.968.
Full textMeijnen, Jean-Paul, Johannes H. de Winde, and Harald J. Ruijssenaars. "Engineering Pseudomonas putida S12 for Efficient Utilization of d-Xylose and l-Arabinose." Applied and Environmental Microbiology 74, no. 16 (June 27, 2008): 5031–37. http://dx.doi.org/10.1128/aem.00924-08.
Full textRamsay, Juliana A., Marie-Claire Aly Hassan, and Bruce A. Ramsay. "Hemicellulose as a potential substrate for production of poly(β-hydroxyalkanoates)." Canadian Journal of Microbiology 41, no. 13 (December 15, 1995): 262–66. http://dx.doi.org/10.1139/m95-195.
Full textXiong, Xiaochao, Xi Wang, and Shulin Chen. "Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains." Applied and Environmental Microbiology 78, no. 16 (May 25, 2012): 5483–91. http://dx.doi.org/10.1128/aem.08022-11.
Full textKarimaki, J., T. Parkkinen, H. Santa, O. Pastinen, M. Leisola, J. Rouvinen, and O. Turunen. "Engineering the substrate specificity of xylose isomerase." Protein Engineering Design and Selection 17, no. 12 (February 16, 2005): 861–69. http://dx.doi.org/10.1093/protein/gzh099.
Full textKanoh, Yoshitaka, Seiichiroh Uehara, Hideyuki Iwata, Kazunari Yoneda, Toshihisa Ohshima, and Haruhiko Sakuraba. "Structural insight into glucose dehydrogenase from the thermoacidophilic archaeonThermoplasma volcanium." Acta Crystallographica Section D Biological Crystallography 70, no. 5 (April 29, 2014): 1271–80. http://dx.doi.org/10.1107/s1399004714002363.
Full textTaguchi, Fumiaki, Naoki Mizukami, Katsushige Hasegawa, and Tatsuo Saito-Taki. "Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2." Canadian Journal of Microbiology 40, no. 3 (March 1, 1994): 228–33. http://dx.doi.org/10.1139/m94-037.
Full textBeck, Ashley E. "Metabolic Efficiency of Sugar Co-Metabolism and Phenol Degradation in Alicyclobacillus acidocaldarius for Improved Lignocellulose Processing." Processes 8, no. 5 (April 27, 2020): 502. http://dx.doi.org/10.3390/pr8050502.
Full textVangrysperre, W., M. Callens, H. Kersters-Hilderson, and C. K. De Bruyne. "Evidence for an essential histidine residue in d-xylose isomerases." Biochemical Journal 250, no. 1 (February 15, 1988): 153–60. http://dx.doi.org/10.1042/bj2500153.
Full textBazarnova, Yuliya, Olga Bolotnikova, Natalia Michailova, and Jing Pu. "Optimization of parameters of alcohol fermentation of xylose-containing inedible substrates using the yeast Pachysolen Tannophilus." MATEC Web of Conferences 245 (2018): 18006. http://dx.doi.org/10.1051/matecconf/201824518006.
Full textSimāo, R. C. G., C. G. M. Souza, and R. M. Peralta. "The use of methyl β-D-xyloside as a substrate for xylanase production by Aspergillus tamarii." Canadian Journal of Microbiology 43, no. 1 (January 1, 1997): 56–60. http://dx.doi.org/10.1139/m97-008.
Full textMeng, M., C. Lee, M. Bagdasarian, and J. G. Zeikus. "Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket." Proceedings of the National Academy of Sciences 88, no. 9 (May 1, 1991): 4015–19. http://dx.doi.org/10.1073/pnas.88.9.4015.
Full textHasona, Adnan, Youngnyun Kim, F. G. Healy, L. O. Ingram, and K. T. Shanmugam. "Pyruvate Formate Lyase and Acetate Kinase Are Essential for Anaerobic Growth of Escherichia coli on Xylose." Journal of Bacteriology 186, no. 22 (November 15, 2004): 7593–600. http://dx.doi.org/10.1128/jb.186.22.7593-7600.2004.
Full textLópez-Contreras, Ana M., Krisztina Gabor, Aernout A. Martens, Bernadet A. M. Renckens, Pieternel A. M. Claassen, John van der Oost, and Willem M. de Vos. "Substrate-Induced Production and Secretion of Cellulases by Clostridium acetobutylicum." Applied and Environmental Microbiology 70, no. 9 (September 2004): 5238–43. http://dx.doi.org/10.1128/aem.70.9.5238-5243.2004.
Full textAlencar, Bárbara Ribeiro Alves, Renan Anderson Alves de Freitas, Victor Emanuel Petrício Guimarães, Rayssa Karla Silva, Carolina Elsztein, Suzyanne Porfírio da Silva, Emmanuel Damilano Dutra, Marcos Antonio de Morais Junior, and Rafael Barros de Souza. "Meyerozyma caribbica Isolated from Vinasse-Irrigated Sugarcane Plantation Soil: A Promising Yeast for Ethanol and Xylitol Production in Biorefineries." Journal of Fungi 9, no. 8 (July 26, 2023): 789. http://dx.doi.org/10.3390/jof9080789.
Full textChen, Xiu Ju, Xiao Qin Liu, Fang Lian Xu, and Xin Peng Bai. "Degradation Kinetics of Xylose and Arabinose in Subcritical Water in Unitary and Binary System." Advanced Materials Research 450-451 (January 2012): 710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.450-451.710.
Full textHurlbert, Jason C., and James F. Preston. "Functional Characterization of a Novel Xylanase from a Corn Strain of Erwinia chrysanthemi." Journal of Bacteriology 183, no. 6 (March 15, 2001): 2093–100. http://dx.doi.org/10.1128/jb.183.6.2093-2100.2001.
Full textSchepers, Hans-Jürgen, Stephanie Bringer-Meyer, and Hermann Sahm. "Fermentation of D-Xylose to Ethanol by Bacillus macerans." Zeitschrift für Naturforschung C 42, no. 4 (April 1, 1987): 401–7. http://dx.doi.org/10.1515/znc-1987-0412.
Full textWagschal, Kurt, Diana Franqui-Espiet, Charles C. Lee, George H. Robertson, and Dominic W. S. Wong. "Enzyme-Coupled Assay for β-Xylosidase Hydrolysis of Natural Substrates." Applied and Environmental Microbiology 71, no. 9 (September 2005): 5318–23. http://dx.doi.org/10.1128/aem.71.9.5318-5323.2005.
Full textLiu, Yunyun, Yunqi Cao, Qiang Yu, Jingliang Xu, and Zhenhong Yuan. "Enhanced sugars production with high conversion efficiency from alkali-pretreated sugarcane bagasse by enzymatic mixtures." BioResources 15, no. 2 (April 6, 2020): 3839–49. http://dx.doi.org/10.15376/biores.15.2.3839-3849.
Full textYulianto, Wisnu Adi, Kapti Rahayu Kuswanto, Tranggono Tranggono, and Retno Indrati. "Pengaruh Konsentrasi Xilosa dan Kosubstrat Terhadap Produksi Xilitol oleh Candida shehatae Way 08." agriTECH 25, no. 3 (February 23, 2017): 143. http://dx.doi.org/10.22146/agritech.13352.
Full textLeandro, Maria José, Paula Gonçalves, and Isabel Spencer-Martins. "Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose–H+ symporter." Biochemical Journal 395, no. 3 (April 11, 2006): 543–49. http://dx.doi.org/10.1042/bj20051465.
Full textYoung, Eric, Ashley Poucher, Austin Comer, Alexandra Bailey, and Hal Alper. "Functional Survey for Heterologous Sugar Transport Proteins, Using Saccharomyces cerevisiae as a Host." Applied and Environmental Microbiology 77, no. 10 (March 18, 2011): 3311–19. http://dx.doi.org/10.1128/aem.02651-10.
Full textSiegbahn, Anna, Sophie Manner, Andrea Persson, Emil Tykesson, Karin Holmqvist, Agata Ochocinska, Jerk Rönnols, et al. "Rules for priming and inhibition of glycosaminoglycan biosynthesis; probing the β4GalT7 active site." Chem. Sci. 5, no. 9 (2014): 3501–8. http://dx.doi.org/10.1039/c4sc01244e.
Full textKlongklaew, Augchararat, Kridsada Unban, Apinun Kanpiengjai, Pairote Wongputtisin, Punnita Pamueangmun, Kalidas Shetty, and Chartchai Khanongnuch. "Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9." Fermentation 7, no. 2 (June 10, 2021): 95. http://dx.doi.org/10.3390/fermentation7020095.
Full textVogl, Michael, and Lothar Brecker. "Substrate binding to Candida tenuis xylose reductase during catalysis." RSC Advances 3, no. 48 (2013): 25997. http://dx.doi.org/10.1039/c3ra41448e.
Full textPateraki, Chrysanthi, Henrik Almqvist, Dimitris Ladakis, Gunnar Lidén, Apostolis A. Koutinas, and Anestis Vlysidis. "Modelling succinic acid fermentation using a xylose based substrate." Biochemical Engineering Journal 114 (October 2016): 26–41. http://dx.doi.org/10.1016/j.bej.2016.06.011.
Full textMardawati, Efri, Andi Trirakhmadi, MTAP Kresnowati, and Tjandra Setiadi. "Kinetic study on Fermentation of xylose for The Xylitol Production." Journal of Industrial and Information Technology in Agriculture 1, no. 1 (August 13, 2017): 1. http://dx.doi.org/10.24198/jiita.v1i1.12214.
Full textKim, In Seop, Kevin D. Barrow, and Peter L. Rogers. "Kinetic and Nuclear Magnetic Resonance Studies of Xylose Metabolism by Recombinant Zymomonas mobilisZM4(pZB5)." Applied and Environmental Microbiology 66, no. 1 (January 1, 2000): 186–93. http://dx.doi.org/10.1128/aem.66.1.186-193.2000.
Full textAhuja, Vishal, Aashima Sharma, Ranju Kumari Rathour, Vaishali Sharma, Nidhi Rana, and Arvind Kumar Bhatt. "In-Vitro and In-Silico Characterization of Xylose Reductase from Emericella nidulans." Current Chemical Biology 13, no. 2 (July 12, 2019): 159–70. http://dx.doi.org/10.2174/2212796812666180622103906.
Full textOHNISHI, Masatake, Yokox FUJIOKA, Shigeo TAKEWUTI, Takahito YOSHIDA, Chieko HASHIZUME, Keitaro HIROMI, and Benichiro TONOMURA. "Substrate binding site of Streptomyces xylose isomerase, studied by the fluorescence spectrophotometry using xylose and xylitol." Journal of the Japanese Society of Starch Science 38, no. 1 (1991): 41–44. http://dx.doi.org/10.5458/jag1972.38.41.
Full textAmbarsari, Laksmi, Suryani Suryani, Steffanus Gozales, and Puspa Julistia Puspita. "The Addition Effects of Glucose as a Co-substrate on Xylitol Production by Candida guilliermondii." Current Biochemistry 2, no. 1 (April 20, 2015): 13–21. http://dx.doi.org/10.29244/cb.2.1.13-21.
Full textPalnitkar, Sanjay, and Anil Lachke. "Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae." Canadian Journal of Microbiology 38, no. 3 (March 1, 1992): 258–60. http://dx.doi.org/10.1139/m92-043.
Full textLevin, Ana M., Ronald P. de Vries, Ana Conesa, Charissa de Bekker, Manuel Talon, Hildegard H. Menke, Noel N. M. E. van Peij, and Han A. B. Wösten. "Spatial Differentiation in the Vegetative Mycelium of Aspergillus niger." Eukaryotic Cell 6, no. 12 (October 19, 2007): 2311–22. http://dx.doi.org/10.1128/ec.00244-07.
Full textKarekar, Supriya, Keerthi Srinivas, and Birgitte Ahring. "Kinetic Study on Heterotrophic Growth of Acetobacterium woodii on Lignocellulosic Substrates for Acetic Acid Production." Fermentation 5, no. 1 (February 2, 2019): 17. http://dx.doi.org/10.3390/fermentation5010017.
Full textSwart, Reuben Marc, Hendrik Brink, and Willie Nicol. "Rhizopus oryzae for Fumaric Acid Production: Optimising the Use of a Synthetic Lignocellulosic Hydrolysate." Fermentation 8, no. 6 (June 15, 2022): 278. http://dx.doi.org/10.3390/fermentation8060278.
Full textPETSCHACHER, Barbara, Stefan LEITGEB, Kathryn L. KAVANAGH, David K. WILSON, and Bernd NIDETZKY. "The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography." Biochemical Journal 385, no. 1 (December 14, 2004): 75–83. http://dx.doi.org/10.1042/bj20040363.
Full textSarkar, Nibedita, and Kaustav Aikat. "Kinetic Study of Acid Hydrolysis of Rice Straw." ISRN Biotechnology 2013 (December 22, 2013): 1–5. http://dx.doi.org/10.5402/2013/170615.
Full textKopp, Dominik, Peter L. Bergquist, and Anwar Sunna. "Enzymology of Alternative Carbohydrate Catabolic Pathways." Catalysts 10, no. 11 (October 23, 2020): 1231. http://dx.doi.org/10.3390/catal10111231.
Full text