Journal articles on the topic 'XPS'

To see the other types of publications on this topic, follow the link: XPS.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'XPS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Khyzhun, O. Yu, Yu M. Solonin, and V. D. Dobrovolsky. "Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies." Journal of Alloys and Compounds 320, no. 1 (May 2001): 1–6. http://dx.doi.org/10.1016/s0925-8388(00)01454-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ribeiro, Emerson Schwingel, Maria Suzana P. Francisco, Yoshitaka Gushikem, and José Eduardo Gonçalves. "Princípios básicos de XAS e XPS." Revista Chemkeys, no. 2 (September 17, 2018): 1–23. http://dx.doi.org/10.20396/chemkeys.v0i2.9610.

Full text
Abstract:
Os princípios básicos das espectroscopias de absorção e fotoeletrônica de raios-X (XAS e XPS) e seus principais equipamentos e métodos de tratamento de dados utilizados são introduzidos. É dada ênfase aos estudos das propriedades eletrônica e estrutural de materiais inorgânicos descrevendo alguns exemplos da literatura. Essas técnicas fornecem diferentes informações. A XPS permite a investigação da superfície, sendo principalmente usada na investigação de mudanças química e estrutural dos elementos presentes na superfície do material estudado. Por outro lado, a XAS fornece informações do volume (bulk) da amostra e sonda a ordem a curto alcance ao redor do átomo de interesse. Os exemplos descritos mostram que essas técnicas são complementares na caracterização de materiais.
APA, Harvard, Vancouver, ISO, and other styles
3

Kotani, A., K. Okada, S. Tanaka, and Y. Seino. "Theory of Cu 2pcore XPS, XES and XAS in high-Tcsuperconducting materials." Physica Scripta 41, no. 4 (April 1, 1990): 569–73. http://dx.doi.org/10.1088/0031-8949/41/4/043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khyzhun, O. Yu, E. A. Zhurakovsky, A. K. Sinelnichenko, and V. A. Kolyagin. "Electronic structure of tantalum subcarbides studied by XPS, XES, and XAS methods." Journal of Electron Spectroscopy and Related Phenomena 82, no. 3 (December 1996): 179–92. http://dx.doi.org/10.1016/s0368-2048(96)03057-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khyzhun, O. Yu. "XPS, XES and XAS studies of the electronic structure of tungsten oxides." Journal of Alloys and Compounds 305, no. 1-2 (June 2000): 1–6. http://dx.doi.org/10.1016/s0925-8388(00)00697-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ebel, H., M. F. Ebel, and H. Krocza. "Quantitative surface analysis by XPS and XAS." Surface and Interface Analysis 12, no. 2 (July 1988): 137–43. http://dx.doi.org/10.1002/sia.740120214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohai, M. "XPS MultiQuant: multimodel XPS quantification software." Surface and Interface Analysis 36, no. 8 (August 2004): 828–32. http://dx.doi.org/10.1002/sia.1775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zampieri, G., M. Abbate, F. Prado, A. Caneiro, and E. Morikawa. "XPS and XAS spectra of CaMnO3 and LaMnO3." Physica B: Condensed Matter 320, no. 1-4 (July 2002): 51–55. http://dx.doi.org/10.1016/s0921-4526(02)00618-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagra, Hassan, Nipon Deka, Marco Favaro, Axel Knop-Gericke, and Rik Mom. "The Chemistry of Interfacial Ions: In Situ XPS and XAS." ECS Meeting Abstracts MA2023-02, no. 55 (December 22, 2023): 2665. http://dx.doi.org/10.1149/ma2023-02552665mtgabs.

Full text
Abstract:
The choice of electrolyte ions has significant impact on the performance of electrochemical systems, affecting properties such as the electrocatalytic activity and capacitance. To understand how ions influence electrochemical processes, a key step is to determine the chemical behavior of ions at the electrode-electrolyte interface. Here, I will show how X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) allow one to obtain such information. Traditionally, these techniques are vacuum-based, only providing a detailed chemical analysis before or after electrochemistry. However, advanced spectro-electrochemical cell design now makes it possible to interface the vacuum needed for XPS and soft XAS with wet electrochemical environments, enabling us to study the electrode-electrolyte interface during electrocatalytic reactions. Using recent case studies from my group, I will show how operando XPS and soft XAS are able to detect the interfacial ion concentration, the hydration shell structure of the ions, and the electrostatic potential in the double layer. These insights allowed us, for example, to follow the intercalation of Na+ ions into NiFeOx and IrOx in alkaline electrolytes, and to obtain a measure of the double layer layer thickness at a RuOx electrode in 0.1 M H2SO4. Finally, I will give a perspective on how to bring operando XPS from the synchrotron to the laboratory, which will be an important step towards widespread implementation of the technology. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
10

Atuchin, V. V., I. B. Troitskaia, O. Yu Khyzhun, V. L. Bekenev, and Yu M. Solonin. "Electronic Structure of h-WO3 and CuWO4 Nanocrystals, Harvesting Materials for Renewable Energy Systems and Functional Devices." Applied Mechanics and Materials 110-116 (October 2011): 2188–93. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.2188.

Full text
Abstract:
— The electronic structure of hexagonal WO3 and triclinic CuWO4 nanocrystals, prospective materials for renewable energy production and functional devices, has been studied using the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) methods. The present XPS and XES results render that the W 5d-and O 2p-like states contribute throughout the whole valence-band region of the h-WO3 and CuWO4 nanocrystalline materialls, however maximum contributions of the O 2p-like states occur in the upper, whilst the W 5d-like states in the lower portions of the valence band, respectively.
APA, Harvard, Vancouver, ISO, and other styles
11

van Veenendaal, M. A., and G. A. Sawatzky. "Intersite interactions in CuL-edge XPS, XAS, and XES of doped and undoped Cu compounds." Physical Review B 49, no. 5 (February 1, 1994): 3473–82. http://dx.doi.org/10.1103/physrevb.49.3473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Khyzhun, O. Yu, and V. A. Kolyagin. "Electronic structure of cubic and rhombohedral tantalum carbonitrides studied by XPS, XES, and XAS methods." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 463–67. http://dx.doi.org/10.1016/j.elspec.2004.02.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ozawa, Kenichi, Yoshihiro Aiura, Daisuke Wakabayashi, Hirokazu Tanaka, Takashi Kikuchi, Akio Toyoshima, and Kazuhiko Mase. "Beamline commissioning for microscopic measurements with ultraviolet and soft X-ray beam at the upgraded beamline BL-13B of the Photon Factory." Journal of Synchrotron Radiation 29, no. 2 (February 16, 2022): 400–408. http://dx.doi.org/10.1107/s160057752200090x.

Full text
Abstract:
Beamline 13 of the Photon Factory has been in operation since 2010 as a vacuum ultraviolet and soft X-ray undulator beamline for X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and angle-resolved photoelectron spectroscopy (ARPES) experiments. The beamline and the end-station at branch B have been recently upgraded, enabling microscopic XPS, XAS, and ARPES measurements to be performed. In 2015, a planar undulator insertion device was replaced with an APPLE-II (advanced planar polarized light emitter II) undulator. This replacement allows use of linear, circular, and elliptical polarized light between 48 and 2000 eV with photon intensities of 109–1013 photons s−1. For microscopic measurements, a toroidal post-mirror was renewed to have more focused beam with profile sizes of 78 µm (horizontal) × 15 µm (vertical) and 84 µm × 11 µm at photon energies of 100 and 400 eV, respectively. A high-precision sample manipulator composed of an XYZ translator, a rotary feedthrough, and a newly developed goniometer, which is essential for microscopic measurements, has been used to control a sample specimen in six degrees of freedom, i.e. translation in the X, Y, and Z directions and rotation in the polar, azimuthal, and tilt directions. To demonstrate the performance of the focused beams, one- and two-dimensional XPS and XAS scan measurements of a copper grid have been performed. It was indicated from analysis of XPS and XAS intensity maps that the actual spatial resolution can be determined by the beam size.
APA, Harvard, Vancouver, ISO, and other styles
14

Mohan, Prajval, Pranav Narayan, Mythili Thirugnanam, and Supratim Sarkar. "XPS-MoSCoW." International Journal of Software Innovation 10, no. 1 (January 2022): 1–15. http://dx.doi.org/10.4018/ijsi.297989.

Full text
Abstract:
This paper presents a thorough analysis of the existing SCRUM model and the Extreme programming model for software testing and deployment and proposes a new hybrid model for software development. On reviewing the various static agile models, we concluded that the development process of the SCRUM model focused on the management aspect of software testing and deployment. In the case of Extreme programming, the engineering practices are applied to the project itself. No model effectively focuses on balancing management as well as the engineering practices of the software deployment cycle. In this paper, we have proposed an improved model called the XPS-MoSCoW Hybrid programming model that carefully integrates the features of both the SCRUM and Extreme programming models. The tasks executed using our hybrid model are prioritized using the MoSCoW prioritization rules, in which tasks with higher priorities enter first into the sprint backlog. Looking at the implementational results of this model when deployed in a startup, it is eminent how our hybrid model surpasses these static models.
APA, Harvard, Vancouver, ISO, and other styles
15

Kurosaki, Kazuo. "Surface (XPS)." Kobunshi 38, no. 7 (1989): 744–47. http://dx.doi.org/10.1295/kobunshi.38.744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Seah, M. P., I. S. Gilmore, and S. J. Spencer. "Quantitative XPS." Journal of Electron Spectroscopy and Related Phenomena 120, no. 1-3 (October 2001): 93–111. http://dx.doi.org/10.1016/s0368-2048(01)00311-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jollet, F., N. Thromat, M. Gautier, J. P. Duraud, and C. Noguera. "Final State Effects in XAS and XPS of Y2O3." Physica Scripta T41 (January 1, 1992): 251–54. http://dx.doi.org/10.1088/0031-8949/1992/t41/044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kotani, A., K. Okada, and M. Okada. "Theory of 3d-XPS and L3-XAS in CeF4." Solid State Communications 64, no. 12 (December 1987): 1479–82. http://dx.doi.org/10.1016/0038-1098(87)90362-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Vance, Andrew L., Trevor M. Willey, Tony van Buuren, A. J. Nelson, C. Bostedt, Glenn A. Fox, and Louis J. Terminello. "XAS and XPS Characterization of a Surface-Attached Rotaxane." Nano Letters 3, no. 1 (January 2003): 81–84. http://dx.doi.org/10.1021/nl025814n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Khyzhun, O. Yu, T. Strunskus, S. Cramm, and Yu M. Solonin. "Electronic structure of CuWO4: XPS, XES and NEXAFS studies." Journal of Alloys and Compounds 389, no. 1-2 (March 2005): 14–20. http://dx.doi.org/10.1016/j.jallcom.2004.08.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Musella, Elisa, Angelo Mullaliu, Thomas Ruf, Paula Huth, Domenica Tonelli, Giuliana Aquilanti, Reinhard Denecke, and Marco Giorgetti. "Detailing the Self-Discharge of a Cathode Based on a Prussian Blue Analogue." Energies 13, no. 15 (August 4, 2020): 4027. http://dx.doi.org/10.3390/en13154027.

Full text
Abstract:
Prussian Blue analogues (PBAs) are a promising class of electrode active materials for batteries. Among them, copper nitroprusside, Cu[Fe(CN)5NO], has recently been investigated for its peculiar redox system, which also involves the nitrosyl ligand as a non-innocent ligand, in addition to the electroactivity of the metal sites, Cu and Fe. This paper studies the dynamics of the electrode, employing surface sensitive X-ray Photoelectron spectroscopy (XPS) and bulk sensitive X-ray absorption spectroscopy (XAS) techniques. XPS provided chemical information on the layers formed on electrode surfaces following the self-discharge process of the cathode material in the presence of the electrolyte. These layers consist mainly of electrolyte degradation products, such as LiF, LixPOyFz and LixPFy. Moreover, as evidenced by XAS and XPS, reduction at both metal sites takes place in the bulk and in the surface of the material, clearly evidencing that a self-discharge process is occurring. We observed faster processes and higher amounts of reduced species and decomposition products in the case of samples with a higher amount of coordination water.
APA, Harvard, Vancouver, ISO, and other styles
22

SAITO, Takeru. "Smoothing of XPS Spectrum." Hyomen Kagaku 37, no. 4 (2016): 184–86. http://dx.doi.org/10.1380/jsssj.37.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vu, Tuan V., A. A. Lavrentyev, B. V. Gabrelian, Dat D. Vo, Pham D. Khang, L. I. Isaenko, S. I. Lobanov, A. F. Kurus’, and O. Y. Khyzhun. "Optical and electronic properties of lithium thiogallate (LiGaS2): experiment and theory." RSC Advances 10, no. 45 (2020): 26843–52. http://dx.doi.org/10.1039/d0ra03280h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Artyushkova, K., A. Ferryman, J. Farrar, and J. E. Fulghum. "Laboratory XPS Imaging:." Journal of Surface Analysis 9, no. 3 (2002): 332–38. http://dx.doi.org/10.1384/jsa.9.332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gerber, Bob. "Informix online XPS." ACM SIGMOD Record 24, no. 2 (May 22, 1995): 463. http://dx.doi.org/10.1145/568271.223877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fantauzzi, Marzia, Davide Atzei, Stefania Da Pelo, Bernhard Elsener, Franco Frau, Piero Franco Lattanzi, and Antonella Rossi. "Enargite by XPS." Surface Science Spectra 9, no. 1 (December 2002): 266–74. http://dx.doi.org/10.1116/11.20030801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mansour, Azzam N., Bruce C. Beard, Donald T. Cronce, and Russell P. Brown. "Fluorescein by XPS." Surface Science Spectra 1, no. 3 (September 1992): 301–5. http://dx.doi.org/10.1116/1.1247656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miller, A. C., and G. W. Simmons. "Nickel by XPS." Surface Science Spectra 1, no. 3 (September 1992): 312–17. http://dx.doi.org/10.1116/1.1247658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vasquez, Richard P. "SrBr2 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 43–49. http://dx.doi.org/10.1116/1.1247669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vasquez, Richard P. "SrCl2 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 68–74. http://dx.doi.org/10.1116/1.1247672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ackeret, Michael. "Polytetrafluoroethylene by XPS." Surface Science Spectra 1, no. 1 (March 1992): 100–103. http://dx.doi.org/10.1116/1.1247678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vasquez, Richard P. "SrSO4 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 117–21. http://dx.doi.org/10.1116/1.1247681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vasquez, Richard P. "SrTiO3 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 129–35. http://dx.doi.org/10.1116/1.1247683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vasquez, Richard P. "SrI2 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 17–23. http://dx.doi.org/10.1116/1.1247685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vasquez, Richard P. "SrF2 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 24–30. http://dx.doi.org/10.1116/1.1247687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vasquez, Richard P. "SrCO3 by XPS." Surface Science Spectra 1, no. 1 (March 1992): 112–16. http://dx.doi.org/10.1116/1.1247696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Poirier, D. M., and J. H. Weaver. "CdS by XPS." Surface Science Spectra 2, no. 3 (July 1993): 249–55. http://dx.doi.org/10.1116/1.1247706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Way, Wayne K., Scott W. Rosencrance, Nicholas Winograd, and David A. Shirley. "Polystyrene by XPS." Surface Science Spectra 2, no. 1 (January 1993): 67–70. http://dx.doi.org/10.1116/1.1247712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stranick, Michael A., and Anthony Moskwa. "SnO by XPS." Surface Science Spectra 2, no. 1 (January 1993): 45–49. http://dx.doi.org/10.1116/1.1247723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Stranick, Michael A., and Anthony Moskwa. "SnO2 by XPS." Surface Science Spectra 2, no. 1 (January 1993): 50–54. http://dx.doi.org/10.1116/1.1247724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Miller, A. C., and G. W. Simmons. "Copper by XPS." Surface Science Spectra 2, no. 1 (January 1993): 55–60. http://dx.doi.org/10.1116/1.1247725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Nakajima, Kazuhiro, Sean P. McGinnis, and Michael A. Kelly. "Si by XPS." Surface Science Spectra 2, no. 1 (January 1993): 61–66. http://dx.doi.org/10.1116/1.1247726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vasquez, Richard P. "CuCl by XPS." Surface Science Spectra 2, no. 2 (April 1993): 138–43. http://dx.doi.org/10.1116/1.1247732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vasquez, Richard P. "CuBr by XPS." Surface Science Spectra 2, no. 2 (April 1993): 144–48. http://dx.doi.org/10.1116/1.1247733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vasquez, Richard P. "CuI by XPS." Surface Science Spectra 2, no. 2 (April 1993): 149–54. http://dx.doi.org/10.1116/1.1247734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vasquez, Richard P. "CuF2 by XPS." Surface Science Spectra 2, no. 2 (April 1993): 155–59. http://dx.doi.org/10.1116/1.1247735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vasquez, Richard P. "CuCl2 by XPS." Surface Science Spectra 2, no. 2 (April 1993): 160–64. http://dx.doi.org/10.1116/1.1247736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vasquez, Richard P. "CuBr2 by XPS." Surface Science Spectra 2, no. 2 (April 1993): 165–69. http://dx.doi.org/10.1116/1.1247737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rosencrance, Scott W., Wayne K. Way, Nicholas Winograd, and David A. Shirley. "Polymethylmethacrylate by XPS." Surface Science Spectra 2, no. 1 (January 1993): 71–75. http://dx.doi.org/10.1116/1.1247740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hoflund, Gar B., Jason F. Weaver, and William S. Epling. "Ag2O XPS Spectra." Surface Science Spectra 3, no. 2 (April 1994): 157–62. http://dx.doi.org/10.1116/1.1247778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography