Academic literature on the topic 'X-rays'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-rays.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-rays"

1

KUMAGAI, Masayoshi. "X-rays, Laser, X-rays again." Journal of the Society of Materials Science, Japan 67, no. 8 (August 15, 2018): 828. http://dx.doi.org/10.2472/jsms.67.828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Millman, C. K. "X-rays." British Dental Journal 196, no. 10 (May 2004): 599. http://dx.doi.org/10.1038/sj.bdj.4811312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

&NA;. "X-rays." Back Letter 4, no. 5 (1990): 3. http://dx.doi.org/10.1097/00130561-199004050-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vandenhoff, Stephen. "X-rays." Journal of General Internal Medicine 22, no. 10 (August 1, 2007): 1481. http://dx.doi.org/10.1007/s11606-007-0305-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prabhu, Sangeetha, Divya Kumari Naveen, Sandhya Bangera, and B. Subrahmanya Bhat. "Production of X-RAYS using X-RAY Tube." Journal of Physics: Conference Series 1712 (December 2020): 012036. http://dx.doi.org/10.1088/1742-6596/1712/1/012036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kövér, László. "X-ray photoelectron spectroscopy using hard X-rays." Journal of Electron Spectroscopy and Related Phenomena 178-179 (May 2010): 241–57. http://dx.doi.org/10.1016/j.elspec.2009.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumagai, S. "X-Rays and γ-Rays from SN 1987A." International Astronomical Union Colloquium 145 (1996): 173–81. http://dx.doi.org/10.1017/s0252921100008046.

Full text
Abstract:
Theoretical light curves and spectra of X-rays and γ-rays from SN 1987A are calculated by the Monte Carlo method, based on a model built up from the early observations of neutrinos and optical light. Comparison of the predicted radiation with observational results obtained later confirms the radiation mechanism of supernovae: γ-rays are emitted in the decays of radioactive 56Co and X-rays are generated by the Compton degradation of these γ-rays. It also suggests that large scale mixing occurred and clumpy structure was formed inside the ejecta. These findings lead us to construct the model with a new distribution of elements, which is determined through comparisons of observations of X-rays and γ-rays with numerical simulations based on the assumed distribution. Using this model, the subsequent X-ray and γ-ray emission is predicted: the light curves of X-rays and γ-rays as well as their spectral evolution are in very good agreement with that expected from the radioactive decays of 56Co and 57Co. The mass of newly synthesized 44Ti and the emission from the neutron star will be determined by future satellite and balloon-borne observations.
APA, Harvard, Vancouver, ISO, and other styles
8

Babic, Rade, Stankovic Babic, Strahinja Babic, and Nevena Babic. "120 years since the discovery of X-rays." Medical review 69, no. 9-10 (2016): 323–30. http://dx.doi.org/10.2298/mpns1610323b.

Full text
Abstract:
This paper is intended to celebrate the 120th anniversary of the discovery of X-rays. X-rays (Roentgen-rays) were discovered on the 8th of November, 1895 by the German physicist Wilhelm Conrad Roentgen. Fifty days after the discovery of X-ray, on December 28, 1895, Wilhelm Conrad Roentgen published a paper about the discovery of X-rays - ?On a new kind of rays? (Wilhelm Conrad Roentgen: ?ber eine neue Art von Strahlen. In: Sitzungsberichte der W?rzburger Physik.-Medic.-Gesellschaft. 1895.). Therefore, the date of 28th of December, 1895 was taken as the date of X-rays discovery. This paper describes the work of Wilhelm Conrad Roentgen, Nikola Tesla, Mihajlo Pupin and Maria Sklodowska-Curie about the nature of X-rays. The fantastic four - Wilhelm Conrad Roentgen, Nikola Tesla, Mihajlo Idvorski Pupin and Maria Sklodowska-Curie set the foundation of radiology with their discovery and study of X-rays. Five years after the discovery of X-rays, in 1900, Dr Avram Vinaver had the first X-ray machine installed in Sabac, in Serbia at the time when many developed countries did not have an X-ray machine and thus set the foundation of radiology in Serbia.
APA, Harvard, Vancouver, ISO, and other styles
9

Dermer, Charles D. "X-rays from γ-ray bursts." Nature 350, no. 6319 (April 1991): 559–60. http://dx.doi.org/10.1038/350559a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Witherspoon, Kenny C., Brian J. Cross, and Mandi D. Hellested. "Combined Electron Excitation and X-Ray Excitation for Spectrometry in the SEM." Microscopy Today 21, no. 4 (July 2013): 24–28. http://dx.doi.org/10.1017/s1551929513000709.

Full text
Abstract:
Energy-dispersive X-ray spectrometry (EDS) is an analytical technique used to determine elemental composition. It is a powerful, easy-to-use, non-destructive technique that can be employed for a wide variety of materials. In this technique the electron beam of the scanning electron microscope (SEM) impinges on the sample and excites atomic electrons causing the production of characteristic X rays. These characteristic X rays have energies specific to elements in the sample. The EDS detector collects these X rays as a signal and produces a spectrum. Samples also can be excited by X rays. Collimated and focused X rays from an X-ray source produce characteristic X rays that can be detected by the same EDS detector. When X rays are used as the source of excitation, the method is then called X-ray fluorescence (XRF) or micro-XRF.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "X-rays"

1

Puls, Joachim. "Discussion : X-rays." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1800/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Torney, Martin. "Modelling cometary x-rays." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Osborne, Michael James. "Higher order parametric x-rays." Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/26574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MOSTACCI, DOMIZIANO VALERIO. "X-RAY EMISSION FROM LASER-HEATED SPHERICAL PLASMAS." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/188093.

Full text
Abstract:
A model has been developed for calculating x-ray line emission from spherical plasmas. The main features of this method are: (1) Plasma parameters are obtained from a one-dimensional Lagrangian hydrodynamics and heat flow code. (2) Multi-frequency groups: the line structure can be reproduced with the desired accuracy by adjusting the number of frequency groups. (3) Self consistent, time dependent excited level populations and radiation fluxes: the code starts with coronal populations, calculates the ensuing radiation flux and then recalculates the populations and so on, iterating until convergence is reached. (4) Goemetrical groups of rays groups by spherical impact parameters. (5) Line broadening due to ionic thermal agitation and Doppler shift due to the net plasma flow velocity. Inclusion of the flow velocity shift would be different without the multi-frequency group treatment. The method has been applied to an aluminum target, and the results are in good agreement with previous experimental work. The total energy, summed over all lines, as well as the line intensity ratios (which are a sensitive measure of agreement with experiment) were predicted with good accuracy. The pictures that would be seen by a pinhole camera are also calculated by the code.
APA, Harvard, Vancouver, ISO, and other styles
5

Wallyn, Justine. "Stealth nanoparticles for preclinical X-rays imaging and multimodal X-rays/MRI (magnetic resonance imaging) imaging." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF074.

Full text
Abstract:
L’imagerie biomédicale est aujourd’hui un outil essentiel pour établir un diagnostic grâce à l’observation des tissus et des fluides biologiques. L’usage d’instruments à imagerie combinée avec des produits de contraste est la clé pour réussir à distinguer précisément un tissu ciblé via l’accumulation de produit de contraste dans le tissu. Les deux principaux appareils à imagerie utilisés sont le scanner à rayons X et l’imagerie à résonance magnétique (IRM). Ils sont fréquemment employés en complément de l’un et l’autre. Typiquement, de petites molécules iodées hydrophiles sont utilisées comme produit de contraste pour la radiographie à rayons X tandis que l’IRM implique des matériaux magnétiques tels que des nanoparticules d’oxyde de fer. Dans le cadre de ce projet doctoral, nous avons donc proposé deux nouveaux produits de contraste dont le premier visait à constituer une alternative aux produits iodés dont la rapide élimination et la toxicité rénale forment deux problèmes récurrents et un second produit, cette fois-ci bimodale, afin de faciliter les procédures d’imagerie bimodale. Pour le premier point, des nanoparticules de polymères iodés pour l’imagerie à rayons X ont été formulées et ce, par une technique de nanoprécipitation. Les paramètres de formulation ont été élucidés de telle sorte que les nanoparticules possédaient une distribution de taille adaptée pour l’administration par voie intraveineuse et une teneur en iode suffisante en iode pour contraster sous rayons X. Une étude in vivo a révélé le potentiel du produit de contraste à visualiser distinctement le foie et la rate et ce, tout en ne présentant pas les principaux problèmes des produits iodés commerciaux. La seconde étude a eu pour but de formuler des nano-véhicules lipidiques capables de générer un contraste pour l’imagerie à rayons X et l’IRM de par l’incorporation d’huile iodée et de nanoparticules d’oxyde de fer dans le coeur de nano-émulsions. Ceci avait pour objectif de fournir une plateforme nanoparticulaire bimodale pour réaliser efficacement et rapidement des procédures d’imagerie multimodale. Nous avons réussi à produire un efficace agent de contraste bimodal permettant d’observer distinctement le foie et les reins par IRM et le foie et la rate par imagerie à rayons X. La pharmacocinétique de la substance administrée a ainsi pu être mise en avant grâce à la bimodalité de l’agent. Employer l’IRM a permis de montrer qu’une fraction de la dose injectée était éliminée par voie rénale tandis que l’imagerie à rayons X a confirmé que les deux tissus, foie et rate,étaient passivement ciblés par l’agent de contraste. Ces deux études ont donc fournies de potentielles solutions pour répondre aux besoins en produits pour l’imagerie à rayons X et en formulations facilitant l’imagerie bimodale des tissus mous
Biomedical imaging is nowadays an essential tool to establish a diagnosis by means of observation of tissues and biological fluids. Combination of imaging instrument with contrast enhancers is a key to obtain clear delineation of a desired tissue by accumulation of a contrast agent into this specific target. The two main imagers are the X-ray scanner and the magnetic resonance imaging (MRI).These imagers are frequently used in conjuncture. Typically, small hydrosoluble iodinated molecules are used as contrasting material for radiography whereas MRI involves magnetic materials like iron oxide nanoparticles. In this work, we proposed two novel contrast agents, the first one was aiming to form an alternative to iodinated contrast agents suffering from fast excretion and causing renal toxicity whereas the second one was aiming at providing bimodal contrasting ability to facilitate access to bimodal imaging procedure in clinics. In the first case, iodinated polymeric nanoparticles, serving for preclinical X-ray imaging were formulated by nanoprecipitation technique. Parameters of formulation were elucidated to provide nanoparticles with size distribution suitable for in vivo administration and high iodine content for contrast enhancement. In vivo study revealed the efficacy of our nanoparticles to clearly visualize liver and spleen and limiting current issues associated with marketed radiopaque contrast agents. The second work achieved was aiming at formulating bimodal lipids-based nanocarriers capable of yielding contrast enhancement for X-ray imaging and MRI by combining iodinated oil and iron oxide nanoparticles within a nano-emulsion core. This would provide bimodal nanoparticulate platform to carry out fast and efficient dual modal imaging procedures. In this context we succeeded to generate efficient dual modal contrast agent yielding clear visualization of liver and kidney by MRI and liver and spleen by X-ray imaging. Pharmacokinetic profile was so determined thanks to bimodal imaging. Using MRI allowed to show that kidneys eliminated a fraction of the dose whereas X-ray imaging confirmed that both tissues, liver and spleen, were passively targeted. These two studies proposed solutions limiting current issues of radiopaque contrast agents and novel formulations to facilitate bimodal imaging for soft tissues imaging
APA, Harvard, Vancouver, ISO, and other styles
6

Mishra, Shrawan Kumar. "Polarized X-rays and magnetic interfaces /." kostenfrei, 2010. http://opus.kobv.de/tuberlin/volltexte/2010/2546/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Franka, Nathan Paul. "Visualizing fluidized beds with X-rays." [Ames, Iowa : Iowa State University], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

De, Filippis Elisabetta. "Clusters of galaxies in x-rays." Thesis, Liverpool John Moores University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bischi, Matteo. "X rays from laser-plasma accelerators." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8163/.

Full text
Abstract:
Uno dei maggiori obiettivi della ricerca nel campo degli acceleratori basati su interazione laser-plasma è la realizzazione di una sorgente compatta di raggi x impulsati al femtosecondo. L’interazione tra brevi impulsi laser e un plasma, a energie relativistiche, ha recentemente portato a una nuova generazione di sorgenti di raggi x con le proprietà desiderate. Queste sorgenti, basate sulla radiazione emessa da elettroni accelerati nel plasma, hanno in comune di essere compatte, produrre radiazione collimata, incoerente e impulsata al femtosecondo. In questa tesi vengono presentati alcuni metodi per ottenere raggi x da elettroni accelerati per interazione tra laser e plasma: la radiazione di betatrone da elettroni intrappolati e accelerati nel cosiddetto “bubble regime”, la radiazione di sincrotrone da elettroni posti in un ondulatore convenzionale con lunghezza dell’ordine dei metri e la radiazione ottenuta dal backscattering di Thomson. Vengono presentate: la fisica alla base di tali metodi, simulazioni numeriche e risultati sperimentali per ogni sorgente di raggi x. Infine, viene discussa una delle più promettenti applicazioni fornite dagli acceleratori basati su interazione tra laser e plasma: il Free-electron laser nello spettro dei raggi x, capace di fornire intensità 108-1010 volte più elevate rispetto alle altre sorgenti.
APA, Harvard, Vancouver, ISO, and other styles
10

FERNANDEZ, FELIX EUGENIO. "MULTILAYER REFLECTORS FOR SOFT X-RAYS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184211.

Full text
Abstract:
Current technology has made possible the fabrication of multilayered optical elements for soft x-ray radiation. These structures find a variety of important applications. Difficulties in the design and fabrication of multilayers for soft x-rays are related to the lack of information about the properties of materials in the very thin layers (~5-100 Å) required. Imperfections cause the measured optical properties of the multilayers to deviate strongly from ideal behavior. Realistic calculations of reflectance must take these imperfections into account. We review the pertinent theory, with attention to the problem of including non-ideal properties. We also review characterization techniques suitable for the measurement of relevant structural and stoichiometric parameters of the multilayer. A detailed characterization procedure is presented. This procedure is capable of accurately determining the layer thicknesses, material densities, interfacial rms roughness or diffusion values, crystalline structure, concentration of contaminants, and extent of surface oxidation. The techniques used included low-angle x-ray θ-2θ diffraction with parallel-beam and Bragg-Brentano geometries, wide-film Debye-Scherrer ("Read") camera and Seemann-Bohlin diffractometer, Rutherford backscattering spectroscopy, and transmission electron microscopy. Si/W multilayer mirrors were designed for normal-incidence 210 Å radiation. Samples were fabricated using a magnetically-confined-plasma dc-triode sputtering technique. Our characterization procedure was applied to these samples. To our knowledge, this is the first time such a comprehensive set of characterization techniques has been applied to a multilayer x-ray optical element. The same samples were tested with synchrotron radiation over a wide spectral range, and for several incidence angles. The measured reflectance is in excellent agreement with curves calculated using the information obtained from the characterization results, with no adjustable parameters. The Si/W combination is shown to have good layering characteristics. The near-normal reflectance of the multilayers was 20 to 30 times better than the reflectivity of the best single-surface mirrors at the same wavelengths.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "X-rays"

1

Andreena, Buckton, ed. X-rays. Auckland, N.Z: Red Rocket Books, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

ill, Black Don, ed. X-rays. [Santa Rosa, Calif.]: SRA, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goudeau, Philippe, and René Guinebretière. X-rays and materials. Hoboken, NJ: ISTE/Wiley, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

G, Long Gabrielle, and National Institute of Standards and Technology (U.S.), eds. X-ray topography. Gaithersburg, Md.]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

van Gelderen, Fred. Understanding X-Rays. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18941-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

J, Rocca Jorge, Da Silva Luiz B, and Society of Photo-optical Instrumentation Engineers., eds. Soft X-ray lasers and applications II: 28-29 July, 1997, San Diego, California. Bellingham, Washington: SPIE, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Kyrala George, Gauthier Jean-Claude J, Society of Photo-optical Instrumentation Engineers., and SPIE Conference on X Rays Generated from Laser and Other Bright Sources (1997 : San Diego, Calif.), eds. Applications of X rays generated from lasers and other bright sources: 31 July-1 August 1997, San Diego, California. Bellingham, Wash., USA: SPIE, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Authier, André. Dynamical theory of x-ray diffraction. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spiller, Eberhard. Soft X-ray optics. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Drít͡s, Viktor Anatolévich. X-ray diffraction by disordered lamellar structures: Theory and applications to microdivided silicates and carbons. Berlin: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "X-rays"

1

Wheaton, Bruce R. "X-Rays." In Compendium of Quantum Physics, 859–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holbrow, Charles H., James N. Lloyd, Joseph C. Amato, Enrique Galvez, and M. Elizabeth Parks. "X-Rays." In Modern Introductory Physics, 421–54. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79080-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holbrow, C. H., J. N. Lloyd, and J. C. Amato. "X-Rays." In Modern Introductory Physics, 353–83. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3078-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jensen, Lindsay G., Loren K. Mell, and Cherie Yaeger. "X-Rays." In Encyclopedia of Radiation Oncology, 967–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feeman, Timothy G. "X-rays." In Springer Undergraduate Texts in Mathematics and Technology, 1–10. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-92712-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feeman, Timothy G. "X-rays." In Springer Undergraduate Texts in Mathematics and Technology, 1–11. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22665-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arndt, U. W., D. C. Creagh, R. D. Deslattes, J. H. Hubbell, P. Indelicato, E. G. Kessler, and E. Lindroth. "X-rays." In International Tables for Crystallography, 191–258. Chester, England: International Union of Crystallography, 2006. http://dx.doi.org/10.1107/97809553602060000592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott, and David C. Joy. "X-Rays." In Scanning Electron Microscopy and X-Ray Microanalysis, 39–63. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grupen, Claus. "X Rays and X-Ray Regulations." In Introduction to Radiation Protection, 160–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02586-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ladd, Mark, and Rex Palmer. "X-Rays and X-Ray Diffraction." In Structure Determination by X-ray Crystallography, 111–59. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3954-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-rays"

1

Liang, Edison P. "X-rays from gamma ray bursts." In Gamma-ray bursts: Second workshop. AIP, 1994. http://dx.doi.org/10.1063/1.45921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lutovinov, Alexander, and Sergey Tsygankov. "Survey of X-ray pulsars in hard X-rays." In The Extreme sky: Sampling the Universe above 10 keV. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.096.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chambellan, D., O. Gal, S. Legoupil, and A. Vabre. "X-Rays for Fluid Flow Inspection." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62531.

Full text
Abstract:
X-rays techniques are widely used in the non-destructive evaluation field for mechanical inspection. However, development of new x-ray detectors and sources over the last decade has let to an intensive use of this technique in other fields. In this paper, we describe the use of X-rays techniques in the field of fluid flow engineering (fluidics and heat transfer). This technique is very attractive since measurements can be performed even if pressure, temperature require the use of opaque walls. In addition the X-ray technique is well suited to multiphase flows where optical technique can not be used if void fraction is larger than few percents. Specific gravity, mass or void fraction are the main accessible parameters.
APA, Harvard, Vancouver, ISO, and other styles
4

Chaney, Robert, Robert Cormia, and Ruth Siordia. "X-Ray Photoelectron Spectroscopy (XPS) Applications Using Microfocused X-Rays." In 30th Annual Technical Symposium, edited by Thomas W. Rusch. SPIE, 1986. http://dx.doi.org/10.1117/12.936604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Antiprotonic atoms X rays." In Exotic atoms and related topics 2005. Wien: Verlag der Österreichischen Akademie der Wissenschaften, 2009. http://dx.doi.org/10.1553/exa05s303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caivano, Danilo, Gerardo Canfora, Antonio Cocomazzi, Antonio Pirozzi, and Corrado Aaron Visaggio. "Ransomware at X-Rays." In 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2017. http://dx.doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eder, D. C., G. L. Strobel, R. A. London, M. D. Rosen, R. W. Falcone, and S. P. Gordon. "Photo-Ionized Inner-Shell X-Ray Lasers." In Shortwavelength V: Physics with Intense Laser Pulses. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/swv.1993.xrlaxr220.

Full text
Abstract:
Intense ultrashort optical lasers can be used to generate x rays that can photo-ionize inner-shell electrons in a range of elements. For a sufficiently intense and short pulse of x rays, lasing can occur in the filling of the inner-shell hole [1]. In these x-ray laser schemes, the very fast Auger decay of the upper laser level requires a very intense source of x-rays and the filling of the lower laser level requires a very fast rise time for the x rays. Inner-shell schemes are of particular interest because of their potential for lasing at short wavelengths. Collisional x-ray laser schemes using Ni-like ions have demonstrated lasing down to 35 Å (Ni-like Au) but cannot be extended below 20 Å (Ni-like U) [2]. Photoionization of the K-shell offers the possibility of x-ray lasing in the wavelength range from 15 down to 5 Å for elements from Ne to K.
APA, Harvard, Vancouver, ISO, and other styles
8

Shelkovenko, T. A., S. A. Pikuz, C. L. Hoyt, A. D. Cahill, D. A. Hammer, I. N. Tilikin, A. R. Mingaleev, and A. V. Agafonov. "Hard X-rays from hybrid X pinches." In 9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paul, Jacques. "X RAYS AND GAMMA RAYS FROM SPACE OBSERVATIONS." In 25th International Cosmic Ray Conference. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814529044_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Truran, James W., and Sumner Starrfield. "Gamma rays and X-rays from classical novae." In COMPTON GAMMA-RAY OBSERVATORY. AIP, 1993. http://dx.doi.org/10.1063/1.44165.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X-rays"

1

Tao, Yang, Victor Alchanatis, and Yud-Ren Chen. X-ray and stereo imaging method for sensitive detection of bone fragments and hazardous materials in de-boned poultry fillets. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7695872.bard.

Full text
Abstract:
As Americans become increasingly health conscious, they have increased their consumptionof boneless white and skinless poultry meat. To the poultry industry, accurate detection of bonefragments and other hazards in de-boned poultry meat is important to ensure food quality andsafety for consumers. X-ray imaging is widely used for internal material inspection. However,traditional x-ray technology has limited success with high false-detection errors mainly becauseof its inability to consistently recognize bone fragments in meat of uneven thickness. Today’srapid grow-out practices yield chicken bones that are less calcified. Bone fragments under x-rayshave low contrast from meat. In addition, the x-ray energy reaching the image detector varieswith the uneven meat thickness. Differences in x-ray absorption due to the unevenness inevitablyproduce false patterns in x-ray images and make it hard to distinguish between hazardousinclusions and normal meat patterns even by human visual inspection from the images.Consequently, the false patterns become camouflage under x-ray absorptions of variant meatthickness in physics, which remains a major limitation to detecting hazardous materials byprocessing x-ray images alone.Under the support of BARD, USDA, and US Poultry industries, we have aimed todeveloping a new technology that uses combined x-ray and laser imaging to detect bonefragments in de-boned poultry. The technique employs the synergism of sensors of differentprinciples and has overcome the deficiency of x-rays in physics of letting x-rays work alone inbone fragment detection. X-rays in conjunction of laser-based imaging was used to eliminatefalse patterns and provide higher sensitivity and accuracy to detect hazardous objects in the meatfor poultry processing lines.Through intensive research, we have met all the objectives we proposed during the researchperiod. Comprehensive experiments have proved the concept and demonstrated that the methodhas been capable of detecting frequent hard-to-detect bone fragments including fan bones andfractured rib and pulley bone pieces (but not cartilage yet) regardless of their locations anduneven meat thickness without being affected by skin, fat, and blood clots or blood vines.
APA, Harvard, Vancouver, ISO, and other styles
2

Blume, M. Scattering of X-Rays. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1253960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boothman, D. A. Role of x-ray-induced transcripts in adaptive responses following x-rays. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7249666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pivovaroff, M., and R. Soufli. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays. Office of Scientific and Technical Information (OSTI), March 2007. http://dx.doi.org/10.2172/909641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dr. Khalid Chouffani El Fassi. Hybrid-K-edge/X-ray Fluorescense Densitometry with Laser-Compton Scattered X-rays. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/988363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matthews, D., J. Trebes, R. Falcone, and L. Da Silva. Producing dense plasmas with x-rays. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6930891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leising, M. D., J. D. Kurfess, D. D. Clayton, D. A. Grabelsky, J. E. Grove, W. N. Johnson, G. V. Jung, et al. Hard X Rays from Supernova 1993J. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada464493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwari, Ganesh. Compound refractive lenses for X-rays. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2281960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hazi, A. Lightweight Target Generates Bright, Energetic X-Rays. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Durbin, Stephen M. Optoelectronic Picosecond Detection of Synchrotron X-rays. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1373875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography