Journal articles on the topic 'X-ray structure'

To see the other types of publications on this topic, follow the link: X-ray structure.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'X-ray structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Acton, L. W. "General Structure of the X-ray Corona." International Astronomical Union Colloquium 144 (1994): 69–76. http://dx.doi.org/10.1017/s0252921100025021.

Full text
Abstract:
AbstractX-ray images have revealed the corona to comprise four basic morphologies. In order of X-ray luminosity these structures are: (1) Bright, relatively short, X-ray loops in active regions, (2) Less bright and larger X-ray structures of the so-called quiet corona, (3) X-ray bright points, and (4) Coronal holes. The soft X-ray telescope (SXT) onYohkohprovides good angular resolution with much improved time resolution and continuity of coverage as compared to the earlier observations. In the SXT movies these structures often appear to be interacting and change appearance on time scales from seconds to weeks. Flare, flare-like, and eruptive processes continuously alter the general structure of the corona. This paper will comment on the structure, changes and heating of the X-ray corona as revealed by theYohkohobservations.
APA, Harvard, Vancouver, ISO, and other styles
2

Ohfuji, Hiroaki, David Rickard, Mark E. Light, and Michael B. Hursthouse. "Structure of framboidal pyrite: a single crystal X-ray diffraction study." European Journal of Mineralogy 18, no. 1 (March 6, 2006): 93–98. http://dx.doi.org/10.1127/0935-1221/2006/0018-0093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Bob Baoping. "OS04W0057 Structure and stress analysis using two-dimensional X-ray diffraction." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS04W0057. http://dx.doi.org/10.1299/jsmeatem.2003.2._os04w0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oguz Er, Ali, Jie Chen, and Peter M. Rentzepis. "Ultrafast time resolved x-ray diffraction, extended x-ray absorption fine structure and x-ray absorption near edge structure." Journal of Applied Physics 112, no. 3 (August 2012): 031101. http://dx.doi.org/10.1063/1.4738372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TANIDA, Hajime, Makoto HARADA, Takanori TAKIUE, and Hirohisa NAGATANI. "X-ray Absorption Fine Structure." Oleoscience 12, no. 1 (2012): 11–16. http://dx.doi.org/10.5650/oleoscience.12.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KIKUTA, Seishi. "Atomic structure - X-ray analysis." Hyomen Kagaku 10, no. 10 (1989): 666–75. http://dx.doi.org/10.1380/jsssj.10.666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pouget, J. P., M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid. "X-ray structure of polyaniline." Macromolecules 24, no. 3 (May 1991): 779–89. http://dx.doi.org/10.1021/ma00003a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Izotova, L. Yu, S. A. Talipov, B. T. Ibragimov, B. Bekbulatova, and U. N. Zainutdinov. "X-ray structure of lagochirsine." Chemistry of Natural Compounds 40, no. 5 (September 2004): 484–87. http://dx.doi.org/10.1007/s10600-005-0016-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Józefowicz, M. E., A. J. Epstein, J. P. Pouget, J. G. Masters, A. Ray, Y. Sun, X. Tang, and A. G. Macdiarmid. "X-ray structure of polyanilines." Synthetic Metals 41, no. 1-2 (April 1991): 723–26. http://dx.doi.org/10.1016/0379-6779(91)91170-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perchiazzi, Natale, Petr Ondruš, and Roman Skála. "Ab initio X-ray powder structure determination of parascorodite, Fe(H2O)2AsO4." European Journal of Mineralogy 16, no. 6 (December 28, 2004): 1003–7. http://dx.doi.org/10.1127/0935-1221/2004/0016-1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Laufek, František, Richard Pažout, and Emil Makovicky. "Crystal structure of owyheeite, Ag1.5Pb4.43Sb6.07S14: refinement from powder synchrotron X-ray diffraction." European Journal of Mineralogy 19, no. 4 (September 13, 2007): 557–66. http://dx.doi.org/10.1127/0935-1221/2007/0019-1740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kihara, Kuniaki. "An X-ray study of the temperature dependence of the quartz structure." European Journal of Mineralogy 2, no. 1 (March 8, 1990): 63–78. http://dx.doi.org/10.1127/ejm/2/1/0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

AMEMIYA, Kenta. "Modern X-ray Spectroscopy IV. X-Ray Absorption Fine Structure Spectroscopy." Journal of the Spectroscopical Society of Japan 57, no. 4 (2008): 205–15. http://dx.doi.org/10.5111/bunkou.57.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Izumi, Yasuo, Dilshad Masih, Eric Roisin, Jean-Pierre Candy, Hajime Tanida, and Tomoya Uruga. "X-ray absorption fine structure combined with X-ray fluorescence spectrometry." Materials Letters 61, no. 18 (July 2007): 3833–36. http://dx.doi.org/10.1016/j.matlet.2006.12.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bukreeva, Inna, Andrea Sorrentino, Alessia Cedola, Ennio Giovine, Ana Diaz, Fernando Scarinci, Werner Jark, Leonid Ognev, and Stefano Lagomarsino. "Periodically structured X-ray waveguides." Journal of Synchrotron Radiation 20, no. 5 (July 24, 2013): 691–97. http://dx.doi.org/10.1107/s0909049513018657.

Full text
Abstract:
The properties of X-ray vacuum-gap waveguides (WGs) with additional periodic structure on one of the reflecting walls are studied. Theoretical considerations, numerical simulations and experimental results confirm that the periodic structure imposes additional conditions on efficient propagation of the electromagnetic field along the WGs. The transmission is maximum for guided modes that possess sufficient phase synchronism with the periodic structure (here called `super-resonances'). The field inside the WGs is essentially given at low incidence angle by the fundamental mode strongly coupled with the corresponding phased-matched mode. Both the simulated and the experimental diffraction patterns show in the far field that propagation takes place essentially only for low incidence angles, confirming the mode filtering properties of the structured X-ray waveguides.
APA, Harvard, Vancouver, ISO, and other styles
16

Inoue, Ichiro, Yuichi Inubushi, Takahiro Sato, Kensuke Tono, Tetsuo Katayama, Takashi Kameshima, Kanade Ogawa, et al. "Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme." Proceedings of the National Academy of Sciences 113, no. 6 (January 25, 2016): 1492–97. http://dx.doi.org/10.1073/pnas.1516426113.

Full text
Abstract:
Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.
APA, Harvard, Vancouver, ISO, and other styles
17

Pandey, S. K., S. Khalid, N. P. Lalla, and A. V. Pimpale. "Local distortion in LaCoO3and PrCoO3: extended x-ray absorption fine structure, x-ray diffraction and x-ray absorption near edge structure studies." Journal of Physics: Condensed Matter 18, no. 47 (November 13, 2006): 10617–30. http://dx.doi.org/10.1088/0953-8984/18/47/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shaw, Jeffrey P., Zoë Johnson, Frédéric Borlat, Catherine Zwahlen, Andreas Kungl, Karen Roulin, Axel Harrenga, Timothy N. C. Wells, and Amanda E. I. Proudfoot. "The X-Ray Structure of RANTES." Structure 12, no. 11 (November 2004): 2081–93. http://dx.doi.org/10.1016/j.str.2004.08.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Soni, S. N. "- x-ray multiplet structure in silicon." Journal of Physics B: Atomic, Molecular and Optical Physics 31, no. 8 (April 28, 1998): 1695–703. http://dx.doi.org/10.1088/0953-4075/31/8/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nosik, V. L. "Temporal structure of X-ray pulses." Crystallography Reports 62, no. 1 (January 2017): 13–19. http://dx.doi.org/10.1134/s1063774517010138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Parker, M. W. "Protein Structure from X-Ray Diffraction." Journal of Biological Physics 29, no. 4 (2003): 341–62. http://dx.doi.org/10.1023/a:1027310719146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Artioli, G., J. V. Smith, and J. J. Pluth. "X-ray structure refinement of mesolite." Acta Crystallographica Section C Crystal Structure Communications 42, no. 8 (August 1, 1986): 937–42. http://dx.doi.org/10.1107/s0108270186093939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chivers, Tristram, and Masood Parvez. "Preparation and X-Ray Structure of." Zeitschrift für Naturforschung B 52, no. 5 (May 1, 1997): 557–59. http://dx.doi.org/10.1515/znb-1997-0503.

Full text
Abstract:
Abstract The title compound was obtained in 82% yield by the intramolecular cyclization of 4-BrC6H4C(NSCCl3)[N(SiMe3)2] in CH2CI2 at 23°C. It crystallizes in the triclinic system, space group P1̄, a = 7.957(3) Å, b = 10.864(5) Å, c = 5.625(1) Å, α = 95.94(3)°, β = 97.79(2)°, γ = 100.72(3)°, V = 469.2(3) Å3, and Z =2. The bond lengths of the planar C2N2S ring indicate partial π-delocalization.
APA, Harvard, Vancouver, ISO, and other styles
24

Powell, Harold R. "Molecular structure from X-ray diffraction." Annual Reports Section "C" (Physical Chemistry) 102 (2006): 92. http://dx.doi.org/10.1039/b417155c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Harata, Kazuaki, Tomohiro Endo, Haruhisa Ueda, and Tsuneji Nagai. "X-Ray Structure of i-Cyclodextrin." Supramolecular Chemistry 9, no. 2 (May 1, 1998): 143–50. http://dx.doi.org/10.1080/10610279808034979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Osipov, Alexey V., Prakash Rucktooa, Igor E. Kasheverov, Sergey Yu Filkin, Vladislav G. Starkov, Tatyana V. Andreeva, Titia K. Sixma, Daniel Bertrand, Yuri N. Utkin, and Victor I. Tsetlin. "Dimeric α-Cobratoxin X-ray Structure." Journal of Biological Chemistry 287, no. 9 (January 5, 2012): 6725–34. http://dx.doi.org/10.1074/jbc.m111.322313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Zhongrui, Enkeleda Dervishi, Viney Saini, Liqiu Zheng, Wensheng Yan, Shiqiang Wei, Yang Xu, and Alexandru S. Biris. "X-ray Absorption Fine Structure Techniques." Particulate Science and Technology 28, no. 2 (March 19, 2010): 95–131. http://dx.doi.org/10.1080/02726350903328944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dewan, John C. "Structure Determination by X-ray Crystallography." Organometallics 5, no. 4 (April 1986): 828. http://dx.doi.org/10.1021/om00135a601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Powell, Harold R. "Molecular structure from X-ray diffraction." Annual Reports Section "C" (Physical Chemistry) 106 (2010): 192. http://dx.doi.org/10.1039/b811055g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sun, Wenxiu, Yunpu Wang, Ji Zhang, and Kaibei Yu. "X-ray structure analysis of lappaconitine." Natural Product Research 23, no. 10 (July 10, 2009): 960–62. http://dx.doi.org/10.1080/14786410902975616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Powell, Harold R. "Molecular structure by X-ray diffraction." Annual Reports Section "C" (Physical Chemistry) 109 (2013): 240. http://dx.doi.org/10.1039/c3pc90004e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tecle', Berhan, A. F. M. Maqsudur Rahman, and John P. Oliver. "X-ray crystal structure of trimethylsilylmethyllithium." Journal of Organometallic Chemistry 317, no. 3 (December 1986): 267–75. http://dx.doi.org/10.1016/0022-328x(86)80537-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hanson, A. L., S. Bajt, B. M. Johnson, M. Meron, and M. L. Rivers. "Below edge X-ray emission structure." Physics Letters A 184, no. 1 (December 1993): 143–47. http://dx.doi.org/10.1016/0375-9601(93)90362-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Richmond, T. J. "Chromatin structure by X-ray crystallography." Cell Differentiation and Development 27 (August 1989): 108. http://dx.doi.org/10.1016/0922-3371(89)90344-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ruck, K., H. Borrmann, and A. Simon. "X-ray structure analysis of YBa2Cu3O6.7." Solid State Communications 93, no. 11 (March 1995): 865–68. http://dx.doi.org/10.1016/0038-1098(94)00898-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hitchcock, Peter B. "Structure determination by X-ray crystallography." Journal of Organometallic Chemistry 297, no. 1 (December 1985): c15. http://dx.doi.org/10.1016/0022-328x(85)80408-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bridson, John N., Melbourne J. Schriver, and Shuguang Zhu. "X-ray structure of tetramethyl thiophenetetracarboxylate." Journal of Chemical Crystallography 24, no. 12 (December 1994): 801–3. http://dx.doi.org/10.1007/bf01668244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gillies, D. G., S. Luff, G. W. Smith, and L. H. Sutcliffe. "X-ray structure of tricyclohexylmethyl chloride." Journal of Chemical Crystallography 26, no. 8 (August 1996): 539–42. http://dx.doi.org/10.1007/bf01668412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Maślankiewicz, Andrzej, Mirosław Wyszomirski, and Tadeusz Głowiak. "X-ray structure of thioquinanthrenediinium dichloride." Journal of Crystallographic and Spectroscopic Research 20, no. 4 (August 1990): 375–80. http://dx.doi.org/10.1007/bf01274146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ramaker, D. E., B. L. Mojet, D. C. Koningsberger, and W. E. O'Grady. "Understanding atomic x-ray absorption fine structure in x-ray absorption spectra." Journal of Physics: Condensed Matter 10, no. 39 (October 5, 1998): 8753–70. http://dx.doi.org/10.1088/0953-8984/10/39/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kawai, Jun, Kouichi Hayashi, and Yasuhiro Awakura. "Extended X-Ray Absorption Fine Structure (EXAFS) in X-ray Fluorescence Spectra." Journal of the Physical Society of Japan 66, no. 11 (November 15, 1997): 3337–40. http://dx.doi.org/10.1143/jpsj.66.3337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Guoguang, Frank Bridges, and George S. Brown. "Multielectron x-ray photoexcitation observations in x-ray-absorption fine-structure background." Physical Review Letters 68, no. 10 (March 9, 1992): 1609–12. http://dx.doi.org/10.1103/physrevlett.68.1609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tohji, Kazuyuki, and Yasuo Udagawa. "X-ray Raman scattering as a substitute for soft-x-ray extended x-ray-absorption fine structure." Physical Review B 39, no. 11 (April 15, 1989): 7590–94. http://dx.doi.org/10.1103/physrevb.39.7590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bindi, Luca, Oleg G. Safonov, Yuriy A. Litvin, Leonid L. Perchuk, and Silvio Menchetti. "Ultrahigh potassium content in the clinopyroxene structure: an X-ray single-crystal study." European Journal of Mineralogy 14, no. 5 (September 27, 2002): 929–34. http://dx.doi.org/10.1127/0935-1221/2002/0014-0929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yang, Ping, and Thomas Armbruster. "X-ray single-crystal structure refinement of NH4-exchanged heulandite at 100 K." European Journal of Mineralogy 10, no. 3 (June 22, 1998): 461–72. http://dx.doi.org/10.1127/ejm/10/3/0461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, H., M. C. Seabra, and J. Deisenhofer. "Preliminary X-ray structure analysis of Rab geranylgeranyl transferase." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (August 8, 1996): C112. http://dx.doi.org/10.1107/s0108767396094664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Jiliang, Julien Lhermitte, Ye Tian, Zheng Zhang, Dantong Yu, and Kevin G. Yager. "Healing X-ray scattering images." IUCrJ 4, no. 4 (May 24, 2017): 455–65. http://dx.doi.org/10.1107/s2052252517006212.

Full text
Abstract:
X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuseversussharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.
APA, Harvard, Vancouver, ISO, and other styles
48

Sirotkina, Ekaterina A., Luca Bindi, Andrey V. Bobrov, Anastasia Tamarova, Dmitry Yu Pushcharovsky, and Tetsuo Irifune. "X-ray single-crystal structural characterization of Na2MgSiO4 with cristobalite-type structure synthesised at 22 GPa and 1800 °C." European Journal of Mineralogy 30, no. 3 (September 1, 2018): 485–89. http://dx.doi.org/10.1127/ejm/2017/0029-2687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Deckman, H. W., B. F. Flannery, J. H. Dunsmuir, and K. D' Amico. "X-ray microtomography." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 998–99. http://dx.doi.org/10.1017/s0424820100107058.

Full text
Abstract:
We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.
APA, Harvard, Vancouver, ISO, and other styles
50

De Crescenzi, M., E. Colavita, U. Del Pennino, P. Sassaroli, S. Valeri, C. Rinaldi, L. Sorba, and S. Nannarone. "X-ray absorption near-edge structure and extended x-ray absorption fine-structure investigation of Pd silicides." Physical Review B 32, no. 2 (July 15, 1985): 612–22. http://dx.doi.org/10.1103/physrevb.32.612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography