Academic literature on the topic 'X-ray structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-ray structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-ray structure"

1

Acton, L. W. "General Structure of the X-ray Corona." International Astronomical Union Colloquium 144 (1994): 69–76. http://dx.doi.org/10.1017/s0252921100025021.

Full text
Abstract:
AbstractX-ray images have revealed the corona to comprise four basic morphologies. In order of X-ray luminosity these structures are: (1) Bright, relatively short, X-ray loops in active regions, (2) Less bright and larger X-ray structures of the so-called quiet corona, (3) X-ray bright points, and (4) Coronal holes. The soft X-ray telescope (SXT) onYohkohprovides good angular resolution with much improved time resolution and continuity of coverage as compared to the earlier observations. In the SXT movies these structures often appear to be interacting and change appearance on time scales from seconds to weeks. Flare, flare-like, and eruptive processes continuously alter the general structure of the corona. This paper will comment on the structure, changes and heating of the X-ray corona as revealed by theYohkohobservations.
APA, Harvard, Vancouver, ISO, and other styles
2

Ohfuji, Hiroaki, David Rickard, Mark E. Light, and Michael B. Hursthouse. "Structure of framboidal pyrite: a single crystal X-ray diffraction study." European Journal of Mineralogy 18, no. 1 (March 6, 2006): 93–98. http://dx.doi.org/10.1127/0935-1221/2006/0018-0093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Bob Baoping. "OS04W0057 Structure and stress analysis using two-dimensional X-ray diffraction." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS04W0057. http://dx.doi.org/10.1299/jsmeatem.2003.2._os04w0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oguz Er, Ali, Jie Chen, and Peter M. Rentzepis. "Ultrafast time resolved x-ray diffraction, extended x-ray absorption fine structure and x-ray absorption near edge structure." Journal of Applied Physics 112, no. 3 (August 2012): 031101. http://dx.doi.org/10.1063/1.4738372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TANIDA, Hajime, Makoto HARADA, Takanori TAKIUE, and Hirohisa NAGATANI. "X-ray Absorption Fine Structure." Oleoscience 12, no. 1 (2012): 11–16. http://dx.doi.org/10.5650/oleoscience.12.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KIKUTA, Seishi. "Atomic structure - X-ray analysis." Hyomen Kagaku 10, no. 10 (1989): 666–75. http://dx.doi.org/10.1380/jsssj.10.666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pouget, J. P., M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid. "X-ray structure of polyaniline." Macromolecules 24, no. 3 (May 1991): 779–89. http://dx.doi.org/10.1021/ma00003a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Izotova, L. Yu, S. A. Talipov, B. T. Ibragimov, B. Bekbulatova, and U. N. Zainutdinov. "X-ray structure of lagochirsine." Chemistry of Natural Compounds 40, no. 5 (September 2004): 484–87. http://dx.doi.org/10.1007/s10600-005-0016-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Józefowicz, M. E., A. J. Epstein, J. P. Pouget, J. G. Masters, A. Ray, Y. Sun, X. Tang, and A. G. Macdiarmid. "X-ray structure of polyanilines." Synthetic Metals 41, no. 1-2 (April 1991): 723–26. http://dx.doi.org/10.1016/0379-6779(91)91170-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perchiazzi, Natale, Petr Ondruš, and Roman Skála. "Ab initio X-ray powder structure determination of parascorodite, Fe(H2O)2AsO4." European Journal of Mineralogy 16, no. 6 (December 28, 2004): 1003–7. http://dx.doi.org/10.1127/0935-1221/2004/0016-1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "X-ray structure"

1

Marchesini, Stefano. "X ray fluorescence holography." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10012.

Full text
Abstract:
Dans de nombreux cas la structure atomique des solides ne peut etre resolue par les techniques traditionnelles de la cristallographie. Cela peut etre le cas, par exemple, pour les etudes locales d'impuretes diluees, les interfaces enterrees et plus generalement les systemes non periodiques. En 1996 une nouvelle methode structurale, l'holographie x a resolution atomique est apparue. Elle a pour origine la technique d'imagerie holographique, inventee par gabor il y a 50 ans. Dans ce travail, nous presentons d'abord le principe et le cadre theorique de l'holographie par fluorescence, fondes sur le concept de source / detecteur interne. Puis nous decrivons les developpements techniques que nous avons progressivement obtenus, afin de transposer cette methode des rayons x de laboratoire vers la source synchrotron esrf ; ceci sous le double point vue du montage experimental et de l'analyse des donnees. Des resultats intermediaires interessants sont l'imagerie des configurations des lignes de kossel et des ondes stationnaires, a partir desquelles des informations structurales - parametre de reseau, symetrie et orientation cristallines - peuvent etre deduites. Puis l'hologramme et la reconstruction atomique de monocristaux modeles tels que coo(111) sont presentes, avec - pour la premiere fois, une resolution isotrope de 0,5 a et une qualite d'image qui n'avait pas ete obtenue jusqu'a present. Enfin, la premiere application de l'holographie par fluorescence aux films epitaxiques est donnee. Des differences significatives entre des films d'alliages fept chimiquement ordonne et desordonne ont ete obtenus, ouvrant la voie a l'etude de l'ordre a courte distance directionnel dans de tels systemes, au-dela des possibilites de la spectroscopie xafs. De nouvelles perspectives sont offertes en conclusion, concernant l'holographie atomique resolue en temps, ainsi que - sur la base d'une etude preliminaire d'holographie nucleaire - le potentiel de cette technique pour le magnetisme local et la selectivite en site.
APA, Harvard, Vancouver, ISO, and other styles
2

Lawson, David Mark. "X-ray structure determination of recombinant ferritins." Thesis, University of Sheffield, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oblezov, Alexandr Evgenievich. "Crystal structure determination at the Center for X-ray Crystallography a practical guide /." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0002700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stevenson, Clare E. M. "X-ray structure determination of small signalling proteins." Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poiarkova, Anna V. "X-ray absorption fine structure Debye-Waller factors /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/9731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tangouna, Liambo Bissa Marie-Louise. "Host-guest compounds : structure and thermal behaviour." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2442.

Full text
Abstract:
Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2016.
Inclusion compounds of two hydroxyl hosts with a variety of guests have been investigated. These host compounds are bulky molecules and have the ability to interact with smaller organic guests to form new compounds. The host 9-(1-naphthyl)-9H-xanthen-9-ol (H1), forms inclusion compounds with pyridine (PYR), N,N-dimethylacetamide (DMA), morpholine (MORP) and N-methyl-2-pyrrolidinone (NMP). The crystal structures of H1•NMP, H1•DMA and H1•MORP1 were successfully solved in the triclinic space group PĪ, whereas the inclusion compound H1•PYR crystallised in the monoclinic space group P21/c. A different inclusion compound involving morpholine, H1•MORP2 resulted from dissolution of H1 in a 1:1 molar ratio of MORP: DMA. H1•MORP2 crystallised in the space group PĪ. All of the abovementioned inclusion compounds demonstrated a host: guest ratio of 1:1 except for H1•MORP1 (host: guest ratio = 1: ). H1 interacts with pyridine and morpholine guests via (Host)O-H•••N(Guest) hydrogen bonds and via (Host)OH•••O(Guest) hydrogen bonds with N-methyl-2-pyrrolidinone and N,N-dimethylacetamide.
APA, Harvard, Vancouver, ISO, and other styles
7

Buchanan, Piers. "The structure of liquid semiconductors, superionic conductors and glasses by neutron scattering, X-ray diffraction and extended X-ray absorption fine structure." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Benach-Andreu, Jordi. "X-ray structure analysis of short-chain dehydrogenases/reductases /." Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3498-3/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bean, R. J. "Domain structure imaging by Bragg geometry X-ray ptychography." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1418466/.

Full text
Abstract:
Domain structure in materials is important for their physical properties, technological uses and response to external perturbations. Domains are small regions within a material with a consistent atomic structure that may have different ordering origins or different orientations. Domain structure is present in any material which exhibits super-structure ordering with correlation lengths shorter than the extent of the sample. The domain size is controlled by the strength of the ordering interactions and growth conditions. Domains are present in a huge range of materials from con¬densed matter to biological samples with a structure unique to the individual sample. For domains in crystalline samples with sizes of Angstroms to nanometres X-rays are an ideal probe. Many domain systems exhibit no X-ray amplitude contrast, i.e. all domains attenuate the X-ray beam uniformly, the domain structure is apparent only in the deviation of the phase of the incident X-ray beam. An imaging method is required which is sensitive to these phase differences. Coherent X-ray Diffraction Imaging (CXDI) is a method which exploits the Fourier transform relationship between the sample and its far field diffraction pattern collected at a pixellated detector to iteratively solve the phase problem and reconstruct an amplitude and phase image of the sample. Support based coherent X-ray diffraction methods have been successfully applied to the three dimensional imaging of crystalline structures by collecting the scattering around the sample Bragg peaks in reflection geometry. In general, phase retrieval algorithm constraints require that the sample is isolated within the X-ray beam and as a result these methods have not been successful at imaging extended domain systems. Ptychography is a combined experimental and analysis procedure that can overcome the requirement for the sample to be isolated by collecting a series of diffraction patterns from overlapping regions of the sample. This thesis develops the ptychography algorithms and experimental methods for use in Bragg geometry with the goal of imaging phase domain structures in extended crystalline samples. Bragg coherent diffraction imaging and ptychography methods are reviewed before the adaptations of the experimental method and algorithm for the application of ptychography in Bragg geometry are discussed and detailed. Simulations of ptychography on phase domain structures and a Bragg geometry ptychography X-ray experiment with a specifically designed phase domain test sample confirm that the method is capable of providing accurate quantitative phase information on the domain structure of extended samples. A coherent diffraction experimental setup for ptychography is developed at Diamond beamline I16. Bragg ptychography is applied to the investigation of domain structure in a niobium thin film and anti-phase domain structure in the binary alloy Fe65Al35 and the results of the reconstructions are presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Khuzaee, Jafar Hameed. "X-ray absorption edge structure in hot dense plasmas." Thesis, University of Essex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424128.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "X-ray structure"

1

1952-, Hasnain S. S., ed. X-ray absorption fine structure. New York: E. Horwood, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crystal structure determination. Oxford: Oxford University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anomalous X-ray scattering for materials characterization: Atomic-scale structure determination. New York: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ladd, Mark. Structure Determination by X-ray Crystallography. Boston, MA: Springer US, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1936-, Palmer R. A., ed. Structure determination by X-ray crystallography. 2nd ed. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ladd, M. F. C. Structure Determination by X-ray Crystallography. Boston, MA: Springer US, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ladd, M. F. C. Structure Determination by X-Ray Crystallography. Boston, MA: Springer US, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1936-, Palmer R. A., ed. Structure determination by X-ray crystallography. 3rd ed. New York: Plenum Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1936-, Palmer R. A., ed. Structure determination by X-ray crystallography. 4th ed. New York: Kluwer Academic/Plenum Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ladd, M. F. C. Structure determination by X-ray crystallography. 3rd ed. New York: Plenum Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "X-ray structure"

1

Suryanarayana, C., and M. Grant Norton. "Crystal Structure Determination. I: Cubic Structures." In X-Ray Diffraction, 97–123. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suryanarayana, C., and M. Grant Norton. "Crystal Structure Determination. II: Hexagonal Structures." In X-Ray Diffraction, 125–52. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ladd, Mark, and Rex Palmer. "X-Rays and X-Ray Diffraction." In Structure Determination by X-ray Crystallography, 111–59. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3954-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Joly, Yves, and Stéphane Grenier. "Theory of X-Ray Absorption Near Edge Structure." In X-Ray Absorption and X-Ray Emission Spectroscopy, 73–97. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118844243.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ladd, Mark, and Rex Palmer. "I X-rays, X-ray Diffraction, and Structure Factors." In Structure Determination by X-ray Crystallography, 117–211. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0101-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gavezzotti, Angelo. "Computational Studies of Crystal Structure and Bonding." In Advanced X-Ray Crystallography, 1–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/128_2011_131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Massa, Werner. "The Geometry of X-Ray Diffraction." In Crystal Structure Determination, 13–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06431-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Massa, Werner. "The Geometry of X-Ray Diffraction." In Crystal Structure Determination, 13–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04248-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Speck, Ulrich. "Structure And Properties Of X-Ray Contrast Media." In X-Ray Contrast Media, 20–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56465-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Speck, Ulrich. "Structure and properties of X-ray contrast media." In X-Ray Contrast Media, 3–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02709-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-ray structure"

1

Hentschel, Manfred P., Karl-Wolfram Harbich, Joerg Schors, and Axel Lange. "X-Ray Refraction Characterization of the Interface Structure of Ceramics." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0061.

Full text
Abstract:
Advanced ceramics require specific methods for their nondestructive characterization. X-ray refraction techniques determine the specific surfaces and interfaces of high performance ceramics, composites and other low density materials down to nano-meter dimensions. X-ray refraction occurs due to the interference of phase shifted X-rays in ultra small angle X-ray scattering (USAXS) at objects above 100 nm size. Applications to monolithic ceramics and ceramic composites are presented. The well localized mean pore size of ceramics and the crack growth of ceramic composites are measured non-destructively.
APA, Harvard, Vancouver, ISO, and other styles
2

Wlochowicz, Andrzej, and Czeslaw Slusarczyk. "Fractal structure of polymer particles." In X-Ray Investigations of Polymer Structures, edited by Andrzej Wlochowicz, Jaroslaw Janicki, and Czeslaw Slusarczyk. SPIE, 1997. http://dx.doi.org/10.1117/12.267198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Janicki, Jaroslaw, Andrzej Wlochowicz, and Czeslaw Slusarczyk. "Structure investigations of PP-PA blends." In X-Ray Investigations of Polymer Structures, edited by Andrzej Wlochowicz, Jaroslaw Janicki, and Czeslaw Slusarczyk. SPIE, 1997. http://dx.doi.org/10.1117/12.267201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wiescher, Michael, Ani Aprahamian, Joachim Döring, and Joachim Görres. "The rp-process in x-ray bursts." In Nuclear structure 98. AIP, 1999. http://dx.doi.org/10.1063/1.59564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barcons, X. "X-ray sources as tracers of the large-scale structure in the universe." In X-RAY ASTRONOMY: Stellar Endpoints,AGN, and the Diffuse X-ray Background. AIP, 2001. http://dx.doi.org/10.1063/1.1434614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Filatova, Elena O., and A. S. Shulakov. "Glass surface atomic structure after technological treatments." In X-ray Optics and Surface Science, edited by Alexander V. Vinogradov. SPIE, 1995. http://dx.doi.org/10.1117/12.200269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grant, I. P. "Relativistic atomic structure and electron–atom collisions." In X-ray and inner-shell processes. AIP, 1990. http://dx.doi.org/10.1063/1.39829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noda, Daiji, Naoki Takahashi, Atsushi Tokuoka, Megumi Katori, and Tadashi Hattori. "Fabrication of Carbon Membrane X-Ray Mask for X-Ray Lithography." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40287.

Full text
Abstract:
X-ray radiographic imaging techniques have been applied in many fields. Previously we proposed a method for X-ray phase imaging using X-ray Talbot interferometry which requires the use of X-ray gratings. In this work, we fabricated the X-ray gratings needed for X-ray Talbot interferometry using an X-ray lithography technique. For X-ray lithography the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Conventionally a resin material is used for the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. For our new proposal we used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. This new type of X-ray mask is very easy to process, and it is expected that it will lead to more precise X-ray masks. We fabricated carbon membrane X-ray masks on 6 inch wafers with a 1:1 line-to-space ratio and a pitch of 5.3 μm, covering a large effective area of 100 × 100 mm2.
APA, Harvard, Vancouver, ISO, and other styles
9

Życki, P. "Structure of the circumnuclear region of Seyfert 2 galaxies—clues from RXTE observations of NGC 4945." In X-RAY ASTRONOMY: Stellar Endpoints,AGN, and the Diffuse X-ray Background. AIP, 2001. http://dx.doi.org/10.1063/1.1434800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Janicki, Jaroslaw, and Andrzej Wlochowicz. "Structure investigations of liquid crystal olygomers and HDPE blends." In X-Ray Investigations of Polymer Structures, edited by Andrzej Wlochowicz. SPIE, 2000. http://dx.doi.org/10.1117/12.401840.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X-ray structure"

1

Reader, J. Atomic structure of Ni-like soft x-ray lasing ions. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7043623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DeLucas, Lawrence J. Crystallization, X-Ray Structure Determination and Structure-Based Drug Design for Targeted Malarial Enzymes. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada360337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlisle, J. A., E. L. Shirley, and E. A. Hudson. Probing the graphite band structure with resonant soft-x-ray fluorescence. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Antonio, M. R., L. Soderholm, and I. Song. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/515522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mansour, A. N., and C. A. Melendres. X-Ray Absorption Spectra and Structure of Some Nickel Oxides (Hydroxides). Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada281305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamad, Kimberly Sue. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/776734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McBride, M. Determining the Structure of Biomaterials Interfaces using Synchrotron-based X-ray Diffraction. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/15005554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paesler, M., and D. Sayers. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Uehara, Y., J. H. Underwood, E. M. Gullikson, and R. C. C. Perera. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anders, S., T. Stammler, C. S. Bhatia, J. Stoehr, W. Fong, C. Y. Chen, and D. B. Bogy. Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/674744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography