Academic literature on the topic 'X-ray diffraction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-ray diffraction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-ray diffraction"

1

Iqra Zubair Awan, Iqra Zubair Awan. "X-Ray Diffraction – The Magic Wand." Journal of the chemical society of pakistan 42, no. 3 (2020): 317. http://dx.doi.org/10.52568/000646.

Full text
Abstract:
This review paper covers one of the most important discoveries of the last century, viz. X-ray diffraction. It has made enormous contribution to chemistry, physics, engineering, materials science, crystallography and above all medical sciences. The review covers the history of X-rays detection and production, its uses/ applications. The scientific and medical community will forever be indebted to Rand#246;ntgen for this invaluable discovery and to those who perfected its application.
APA, Harvard, Vancouver, ISO, and other styles
2

Iqra Zubair Awan, Iqra Zubair Awan. "X-Ray Diffraction – The Magic Wand." Journal of the chemical society of pakistan 42, no. 3 (2020): 317. http://dx.doi.org/10.52568/000646/jcsp/42.03.2020.

Full text
Abstract:
This review paper covers one of the most important discoveries of the last century, viz. X-ray diffraction. It has made enormous contribution to chemistry, physics, engineering, materials science, crystallography and above all medical sciences. The review covers the history of X-rays detection and production, its uses/ applications. The scientific and medical community will forever be indebted to Rand#246;ntgen for this invaluable discovery and to those who perfected its application.
APA, Harvard, Vancouver, ISO, and other styles
3

Jung, Ji Eun, Yu Rim Jang, Ki-Wook Kim, Sangcheol Heo, and Ji-Sook Min. "The analytical application for cement using X-Ray diffraction and X-Ray fluorescence spectrometer." Analytical Science and Technology 26, no. 5 (October 25, 2013): 340–51. http://dx.doi.org/10.5806/ast.2013.26.5.340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ilinca, Gheorghe, and Emil Makovicky. "X-ray powder diffraction properties of pavonite homologues." European Journal of Mineralogy 11, no. 4 (July 16, 1999): 691–708. http://dx.doi.org/10.1127/ejm/11/4/0691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KOBAYASHI, Shintaro. "Surface X-ray Diffraction." Journal of the Japan Society of Colour Material 87, no. 1 (2014): 31–35. http://dx.doi.org/10.4011/shikizai.87.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takahashi, Toshio. "X-ray surface diffraction." Bulletin of the Japan Institute of Metals 28, no. 3 (1989): 203–7. http://dx.doi.org/10.2320/materia1962.28.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Robinson, I. K. "Surface X-ray diffraction." Acta Crystallographica Section A Foundations of Crystallography 43, a1 (August 12, 1987): C205. http://dx.doi.org/10.1107/s0108767387080024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wark, J. "Femtosecond X-ray diffraction." Acta Crystallographica Section A Foundations of Crystallography 62, a1 (August 6, 2006): s2. http://dx.doi.org/10.1107/s010876730609996x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Afanas'ev, Alexander M., Rafik M. Imamov, and Enver Kh Mukhmedzhanov. "Asymmetric X-Ray Diffraction." Crystallography Reviews 3, no. 2 (November 1992): 157–226. http://dx.doi.org/10.1080/08893119208032970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robinson, I. K., and D. J. Tweet. "Surface X-ray diffraction." Reports on Progress in Physics 55, no. 5 (May 1, 1992): 599–651. http://dx.doi.org/10.1088/0034-4885/55/5/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "X-ray diffraction"

1

Zora, J. A. "X-ray diffraction studies." Thesis, University of Sussex, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hinrichsen, Bernd. "Two-dimensional X-ray powder diffraction." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Genetu, Teggen Linda. "Material identification using X-ray diffraction." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-37122.

Full text
Abstract:
This study reviews the theoretical and experimental aspects of the X-ray diffraction (XRD) technique and evaluates its use in identifying toxic elements or compounds in waste that has been incinerated. Many industries incinerate materials that contain large significant amounts of toxic elements, and these elements should be identified and re-moved to reduce environmental pollution. The aim of this project is to identify the elemental content of an incinerated ash sample, and to recommend a proper identification method when using XRD. Here, we test two ash samples (raw ash without any treatment and ash that has been stabilized by washing) using the software DIFFRAC.EVA that is integrated into Bruker’s diffractometer D2Phaser to match different diffraction patterns to identify the contents of the ash sample. Finally concluding the results XRF is more suitable than XRD for ash surveil-lance.
APA, Harvard, Vancouver, ISO, and other styles
4

R, N. C. Maia Filipe. "Ultrafast Coherent X-ray Diffractive Nanoimaging." Doctoral thesis, Uppsala universitet, Molekylär biofysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122002.

Full text
Abstract:
X-ray lasers are creating unprecedented research opportunities in physics,chemistry and biology. The peak brightness of these lasers exceeds presentsynchrotrons by 1010, the coherence degeneracy parameters exceedsynchrotrons by 109, and the time resolution is 105 times better. In theduration of a single flash, the beam focused to a micron-sized spot has the samepower density as all the sunlight hitting the Earth, focused to a millimetresquare. Ultrafast coherent X-ray diffractive imaging (CXDI) with X-ray lasers exploitsthese unique properties of X-ray lasers to obtain high-resolution structures fornon-crystalline biological (and other) objects. In such an experiment, thesample is quickly vaporised, but not before sufficient scattered light can berecorded. The continuous diffraction pattern can then be phased and thestructure of a more or less undamaged sample recovered% (speed of light vs. speed of a shock wave).This thesis presents results from the first ultrafast X-ray diffractive imagingexperiments with linear accelerator-driven free-electron lasers and fromoptically-driven table-top X-ray lasers. It also explores the possibility ofinvestigating phase transitions in crystals by X-ray lasers. An important problem with ultrafast CXDI of small samples such as single proteinmolecules is that the signal from a single measurement will be small, requiringsignal enhancement by averaging over multiple equivalent samples. We present anumerical investigation of the problems, including the case where samplemolecules are not exactly identical, and propose tentative solutions. A new software package (Hawk) has been developed for data processing and imagereconstruction. Hawk is the first publicly available software package in thisarea, and it is released as an open source software with the aspiration offostering the development of this field.
APA, Harvard, Vancouver, ISO, and other styles
5

Dicken, A. "Diffraction enhanced kinetic depth X-ray imaging." Thesis, Department of Engineering and Applied Science, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8046.

Full text
Abstract:
An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction appoach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional source of information obtained from object disparity is explored as an alternative means of calculating sample loci. This offers a greater level of integration between these two complimentary techniques as object disparity could be used to reinforce the results produced by the linear diffraction geometry.
APA, Harvard, Vancouver, ISO, and other styles
6

Kegel, Ingo. "X-ray diffraction from semiconductor quantum dots." Diss., [S.l.] : [s.n.], 2000. http://edoc.ub.uni-muenchen.de/archive/00000330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Escudero, Adán Eduardo Carmelo. "High resolution X-ray single crystal diffraction." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/586278.

Full text
Abstract:
Aquesta tesi doctoral descriu l'ús de dades d'alta resolució de difracció de raigs X de monocristall per a la obtenció de mapes experimentals detallats de distribució de densitat de càrrega. Aquests mapes serveixen per evidenciar experimentalment l'existència d'interaccions intra- i inter-moleculars febles dins de l'estructura del vidre. Els mapes de densitat de càrrega s'obtenen mitjançant un refinament multipolar de l'estructura cristal·lina. En concret, aquest treball se centra en evidenciar experimentalment les interaccions atractives no covalent recentment descrites teòricament i que donen lloc a la formació d'enllaços de tipus "sigma i pi hole". Els termes enllaços de Triel, tetrel, pnictogen i chalcogen van ser recentment introduïts per referir-se a aquestes interaccions en funció del grup (14, 15 i 16) al qual pertany l'àtom implicat com a centre electrofílic. el fet que aquestes interaccions siguin molt febles fa necessari l'obtenció de mapes de densitat electrònica molt precisos. També s'han utilitzat aquests mapes de densitat electrònica per determinar experimental el moment quadrupolar i el potencial electrostàtic molecular d'una sèrie d'anells de fenil amb diferents substituents. Les dades experimentals obtingudes d'aquesta manera han servit per validar els resultats de càlculs teòrics.
Esta tesis doctoral describe el uso de datos de alta resolución de difracción de rayos X de monocristal para la obtención de mapas experimentales detallados de distribución de densidad de carga. Estos mapas sirven para evidenciar experimentalmente la existencia de interacciones intra- e inter-moleculares débiles dentro de la estructura del cristal. Los mapas de densidad de carga se obtienen mediante un refinamiento multipolar de la estructura cristalina. En concreto, este trabajo se centra en evidenciar experimentalmente las interacciones atractivas no covalente recientemente descritas teóricamente y que dan lugar a la formación de enlaces de tipo "sigma y pi hole". Los términos enlaces de Triel, tetrel, pnictogen y chalcogen fueron recientemente introducidos para referirse a estas interacciones en función del grupo (14, 15 y 16) al que pertenece el átomo implicado como centro electrofílico. El hecho de que estas interacciones sean muy débiles hace necesario la obtención de mapas de densidad electrónica muy precisos. También se han utilizado estos mapas de densidad electrónica para determinar experimental el momento cuadrupolar y el potencial electrostático molecular de una serie de anillos de fenilo con diferentes sustituyentes. Los datos experimentales obtenidos de esta forma han servido para validar los resultados de cálculos teóricos.
radiación de molibdeno para asignar la configuración absoluta de una serie de moléculas orgánicas. Las moléculas medidas fueron seleccionadas teniendo en cuenta que el elemento más pesado de su composición química fuera el oxígeno. Es bien conocido que la dispersión anómala de este tipo de compuestos es muy débil y dificulta la asignación de configuración absoluta mediante esta técnica. El resultados de este trabajo demuestran que la metodología empleada es muy efectivo para poder asignar inequívocamente la configuración absoluta correcta en este tipo de moléculas. This thesis uses high resolution single crystal X-ray diffraction data in order to obtain experimental detailed charge density distribution maps that can exhibit intra and intermolecular interactions. The charge density maps are obtained through the multipolar refinement. Particularly, this work focuses in lasts classified non-covalent attractive interactions due to sigma and pi holes, triel, tetrel, pnictogen and chalcogen bonds. The weakness of these interactions make necessary very accurate and precise maps. In the same manner, in this works they have been determined the quadrupolar moment and the molecular electrostatic potential of a series of phenyl rings substituted with different chemical groups. The experimental data obtained in this way have been used to validate theoretical predictions. Eventually in this work, high resolution single crystal X-ray diffraction data using molybdenum radiation has been employed to assign the absolute configuration of a series of organic molecules. The measured molecules were selected containing oxygen as heaviest atom since the anomalous dispersion of these kind of compounds is very weak. The use of high resolution data has been proved to be effective in order to unequivocally assign the correct absolute configuration in this kind of molecules.
APA, Harvard, Vancouver, ISO, and other styles
8

Anderoglu, Osman. "Residual stress measurement using X-ray diffraction." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1507.

Full text
Abstract:
This paper briefly describes the theory and methods of x-ray residual stress measurements. Residual stresses can be defined as the stresses which remain in a material in the absence of any external forces. There are many stress determination methods. Some of those methods are destructive and some are nondestructive. X-ray residual stress measurement is considered as a nondestructive method. X-ray diffraction together with the other diffraction techniques of residual stress measurement uses the distance between crystallographic planes as a strain gage. The deformations cause changes in the spacing of the lattice planes from their stress free value to a new value that corresponds to the magnitude of the residual stress. Because of Poisson’s ratio effect, if a tensile stress is applied, the lattice spacing will increase for planes perpendicular to the stress direction, and decrease for planes parallel to the stress direction. This new spacing will be the same in any similarly oriented planes, with respect to the applied stress. Therefore the method can only be applied to crystalline, polycrystalline and semi-crystalline materials. The diffraction angle, 2θ, is measured experimentally and then the lattice spacing is calculated from the diffraction angle, and the known x-ray wavelength using Bragg's Law. Once the d-spacing values are known, they can be plotted versus 2 sin ψ, ( ψ is the tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior as in the case of a homogenous isotropic sample in a biaxial stress state is included. The plot of d vs. 2 sin ψ is a straight line which slope is proportional to stress. On the other hand, the second set of samples showed oscillatory d vs. 2 sin ψ behavior. The oscillatory behavior indicates the presence of inhomogeneous stress distribution. In this case the xray elastic constants must be used instead of E and ν values. These constants can be obtained from the literature for a given material and reflection combination. It is also possible to obtain these values experimentally. Calculation of the residual stresses for these samples is beyond the scope of this paper and will not be discussed here.
APA, Harvard, Vancouver, ISO, and other styles
9

Falch, Thomas Løfsgaard. "3D Visualization of X-ray Diffraction Data." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18903.

Full text
Abstract:
X-ray diffraction experiments are used extensively in the sciences to study the structure, chemicalcomposition and physical properties of materials. The output of such experiments are samples of thediffraction pattern, which essentially constitutes a 3D unstructured dataset. In this thesis, wedevelop a method for visualizing such datasets.Our visualization method is based on volume ray casting, but operates directly on the unstructuredsamples, rather than resampling them to form voxels. We estimate the intensity of the X-raydiffraction pattern at points along the rays by interpolation using nearby samples, taking advantageof an octree to facilitate efficient range search. The method is implemented on both the CPUand the GPU.To test our method, actual X-ray diffraction datasets is used, consisting of up to 120M samples.We are able to generate images of good quality. The rendering time varies dramatically, between 5 sand 200 s, depending upon dataset, and settings used. A simple performance model is developedand empirically tested to better understand this variation. Our implementation scales exceptionallywell to more CPU cores, with a speedup of 5.9 on a 6-core CPU. Furthermore, the GPU implementationachieves a speedup of around 4.6 compared to the CPU version.
APA, Harvard, Vancouver, ISO, and other styles
10

He, Baoping. "X-ray diffraction from point-like imperfection." Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09232008-144700/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "X-ray diffraction"

1

Suryanarayana, C., and M. Grant Norton. X-Ray Diffraction. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Authier, André. Dynamical theory of x-ray diffraction. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greenberg, Joel, and Krzysztof Iniewski, eds. X-Ray Diffraction Imaging. Boca Raton : Taylor & Francis, CRC Press, 2018. | Series: Taylor and Francis series in devices, circuits, & systems: CRC Press, 2018. http://dx.doi.org/10.1201/9780429196492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Waseda, Yoshio, Eiichiro Matsubara, and Kozo Shinoda. X-Ray Diffraction Crystallography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16635-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Erko, A. I. Diffraction X-ray optics. Philadelphia, PA: Institute of Physics Pub., 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

G, Long Gabrielle, and National Institute of Standards and Technology (U.S.), eds. X-ray topography. Gaithersburg, Md.]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Turley, June W. X-ray diffraction patterns of polymers. Newtown Square, PA: International Centre for Diffraction Data (12 Campus Blvd., Newtown Square, 19073-3273), 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

European Symposium on Topography and High Resolution Diffraction (2nd 1994 Germany). X-ray topography and high resolution diffraction. Edited by Köhler R and Klapper H. Bristol: Institute of Physics Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

European Symposium on Topography and High Resolution Diffraction (2nd 1994 Germany). X-ray topography and high resolution diffraction. Edited by Köhler R and Klapper H. Bristol: Institute of Physics Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kasai, Nobutami, and Masao Kakudo. X-Ray Diffraction by Macromolecules. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-28353-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "X-ray diffraction"

1

Suryanarayana, C., and M. Grant Norton. "X-Rays and Diffraction." In X-Ray Diffraction, 3–19. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suryanarayana, C., and M. Grant Norton. "Quantitative Analysis of Powder Mixtures." In X-Ray Diffraction, 223–36. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suryanarayana, C., and M. Grant Norton. "Identification of an Unknown Specimen." In X-Ray Diffraction, 237–49. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suryanarayana, C., and M. Grant Norton. "Lattices and Crystal Structures." In X-Ray Diffraction, 21–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suryanarayana, C., and M. Grant Norton. "Practical Aspects of X-Ray Diffraction." In X-Ray Diffraction, 63–94. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suryanarayana, C., and M. Grant Norton. "Crystal Structure Determination. I: Cubic Structures." In X-Ray Diffraction, 97–123. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Suryanarayana, C., and M. Grant Norton. "Crystal Structure Determination. II: Hexagonal Structures." In X-Ray Diffraction, 125–52. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suryanarayana, C., and M. Grant Norton. "Precise Lattice Parameter Measurements." In X-Ray Diffraction, 153–66. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suryanarayana, C., and M. Grant Norton. "Phase Diagram Determination." In X-Ray Diffraction, 167–92. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suryanarayana, C., and M. Grant Norton. "Detection of Long-Range Ordering." In X-Ray Diffraction, 193–205. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-ray diffraction"

1

Jamet, Francis. "La Diffraction X Instantanee Flash X-Ray Diffraction." In 16th International Congress on High Speed Photography and Photonics, edited by Michel L. Andre and Manfred Hugenschmidt. SPIE, 1985. http://dx.doi.org/10.1117/12.967901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ben-Nun, M., T. J. Martínez, P. M. Weber, and Kent R. Wilson. "Ultrafast X-Ray Diffraction: Theory." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thd3.

Full text
Abstract:
Ever since their discovery by Röntgen (more than 100 years ago), x-rays have made the unseen visible. In particular, much of our experimental knowledge about the structure and electronic densities of atoms and molecules is due to x-ray and electron diffraction measurements. X-ray and electron diffraction have been used to measure the structures of almost all small molecules and x-ray diffraction has been the basis (along with nmr) of most of our structural knowledge about biomolecules. Recent advances in the production of ultrashort x-ray and electron pulses1-3 suggest that diffraction (and absorption) techniques may be used to observe evolving, non-equilibrium structures of systems that are undergoing chemical (or biochemical) reactions or physical changes such as a phase transition or annealing. In such an ultrafast diffraction (or absorption) experiment, an ultrashort optical pulse can be used to initiate a chemical reaction and a second delayed x-ray (or electron pulse) can interrogate the reacting system. By varying the time delay between the two pulses, the motions of atoms during a chemical reaction may be reconstructed.4-6 In addition to watching the nuclear motion, at least in principle, x-ray diffraction could be used to follow the dynamics of the electron density involved in chemical bonding and electron flow, and x-ray absorption in the form of chemical shifts of atomic absorption edges could be used to follow the charge or oxidation state of chosen types of atoms. Hence, time resolved x-ray absorption and diffraction may serve as direct ways to watch the evolution of chemical reactions en route from reactants to products, to observe the microscopic processes by which biomolecules perform their tasks and to observe ultrafast process in solid state materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Kämpfe, B., R. Arnhold, and B. Michel. "ENERGY - DISPERSIVE X-RAY DIFFRACTION." In Proceedings of the XIX Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702913_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freund, Andreas K. "High-energy x-ray diffraction." In San Diego '90, 8-13 July, edited by James P. Knauer and Gopal K. Shenoy. SPIE, 1991. http://dx.doi.org/10.1117/12.23325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zamponi, Flavio, Zunaira Ansari, Jens Dreyer, Michael Woerner, and Thomas Elsaesser. "Femtosecond X-Ray Powder Diffraction." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qwg2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uschmann, Ingo, Eckhart Foerster, Paul Gibbon, Christian Reich, Thomas Feurer, Andreas Morak, Roland A. Sauerbrey, et al. "Time-resolved x-ray diffraction with subpicosecond x-ray pulses." In International Symposium on Optical Science and Technology, edited by Dennis M. Mills, Horst Schulte-Schrepping, and John R. Arthur. SPIE, 2001. http://dx.doi.org/10.1117/12.413678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dent, Andrew J., G. Neville Greaves, John W. Couves, and John M. Thomas. "Combined x-ray absorption spectroscopy and x-ray powder diffraction." In Synchrotron radiation and dynamic phenomena. AIP, 1992. http://dx.doi.org/10.1063/1.42521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dent, Andrew J., Gareth E. Derbyshire, G. Neville Greaves, Christine A. Ramsdale, J. W. Couves, Richard Jones, C. R. A. Catlow, and John M. Thomas. "Combined x-ray absorption spectroscopy and x-ray powder diffraction." In San Diego, '91, San Diego, CA, edited by Dennis M. Mills. SPIE, 1991. http://dx.doi.org/10.1117/12.49471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Y., and M. F. DeCamp. "Time-Resolved x-ray diffraction with polycapillary x-ray optics." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jthb41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stock, Stuart R., John S. Okasinski, Jonathan D. Almer, Russel Woods, Antonino Miceli, David P. Siddons, J. Baldwin, et al. "Tomography with energy dispersive diffraction." In Developments in X-Ray Tomography XI, edited by Bert Müller and Ge Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2274567.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X-ray diffraction"

1

Thomlinson, W., Z. Zhong, D. Chapman, R. E. Johnston, and D. Sayers. Diffraction enhanced x-ray imaging. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/548746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morris, Marlene C., Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, Winnie Wong-Ng, Donna M. Gladhill, and Camden R. Hubbard. Standard x-ray diffraction powder patterns :. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.mono.25-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Phillips, Ian. Data Report: X-Ray Powder Diffraction. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1648320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwartz, Daniel S. INFL GUIDELINE ON X-RAY DIFFRACTION (XRD). Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1095199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coppens, P. (X-ray diffraction experiments with condenser matter). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5187190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Selig, W. S., G. S. Smith, K. K. Harding, and L. J. Summers. X-ray diffraction patterns of metal aurocyanides. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/5777169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roof, R. X-ray diffraction data for plutonium compounds. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/7257520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roof, R. X-ray diffraction data for plutonium compounds. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/7151158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lyman, Paul F., and Dilano K. Saldin. A Bayesian Approach to Surface X-ray Diffraction. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/895207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eggert, J. X-ray diffraction studies of dynamically compressed diamond. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1117990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography