Academic literature on the topic 'X-Pinch'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-Pinch.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-Pinch"

1

Pikuz, S. A., T. A. Shelkovenko, and D. A. Hammer. "X-pinch. Part I." Plasma Physics Reports 41, no. 4 (April 2015): 291–342. http://dx.doi.org/10.1134/s1063780x15040054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pikuz, S. A., T. A. Shelkovenko, and D. A. Hammer. "X-pinch. Part II." Plasma Physics Reports 41, no. 6 (June 2015): 445–91. http://dx.doi.org/10.1134/s1063780x15060045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Riordan, James R. "X-pinch flash photography." Physics Today 54, no. 12 (December 2001): 9. http://dx.doi.org/10.1063/1.4796251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tong, Zhao, Zou Xiao-Bing, Zhang Ran, and Wang Xin-Xin. "X-ray backlighting of two-wire Z-pinch plasma using X-pinch." Chinese Physics B 19, no. 7 (July 2010): 075205. http://dx.doi.org/10.1088/1674-1056/19/7/075205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lebedev, S. V., F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, M. Zakaullah, S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer. "X-ray backlighting of wire array Z-pinch implosions using X pinch." Review of Scientific Instruments 72, no. 1 (January 2001): 671–73. http://dx.doi.org/10.1063/1.1315647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, J., L. Wang, A. Qiu, J. Han, M. Li, T. Lei, P. Cong, M. Qiu, H. Yang, and M. Lv. "Experimental investigations of X-pinch backlighters on QiangGuang-1 generator." Laser and Particle Beams 29, no. 2 (March 22, 2011): 155–60. http://dx.doi.org/10.1017/s0263034611000024.

Full text
Abstract:
AbstractExperiments of the return current post installed X-pinches were carried out on the 1-MA “QiangGuang-1” facility with the purpose of understanding X-pinch characteristics under this setup and establishing X-pinch backlighting diagnostics for the wire-array Z-pinches. Different wire-array loads along with the two-wire 30 µm Mo X-pinch backlighter were tested. The X-pinches emit the X-ray radiation with the burst time variation of ± 4 ns and the bright spot size of ~30 µm. X-ray backlighting shadowgraphy images of the over-mass and radiation-suppressed Z-pinch wire array were obtained.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Shen, Xinlei Zhu, Ran Zhang, Haiyun Luo, Xiaobing Zou, and Xinxin Wang. "Current division between two paralleled X-pinches." Laser and Particle Beams 32, no. 3 (July 15, 2014): 437–42. http://dx.doi.org/10.1017/s0263034614000354.

Full text
Abstract:
AbstractIn order to use two paralleled X-pinches as X-ray sources for the time-resolved backlighting of wire-array Z-pinch plasma, it is necessary to make these two X-pinches emit X-rays at different but roughly preset time instants. The timing of the X-ray burst from an X-pinch independence of the current, and the wire mass of the X-pinch was investigated. The currents flowing through two paralleled X-pinches were measured and it was found that the total current is almost equally divided between these two X-pinches no matter how different the wires for these two X-pinches are. The reason for the equal current division between two paralleled X-pinches was given based on the inductance calculation of the X-pinch circuit.
APA, Harvard, Vancouver, ISO, and other styles
8

Skoulakis, A., G. Koundourakis, A. Ciardi, E. Kaselouris, I. Fitilis, J. Chatzakis, M. Bakarezos, et al. "High performance simulations of a single X-pinch." Plasma Physics and Controlled Fusion 64, no. 2 (December 30, 2021): 025003. http://dx.doi.org/10.1088/1361-6587/ac3deb.

Full text
Abstract:
Abstract The dynamics of plasmas produced by low current X-pinch devices are explored. This comprehensive computational study is the first step in the preparation of an experimental campaign aiming to understand the formation of plasma jets in table-top pulsed power X-pinch devices. Two state-of-the-art magneto-hydro-dynamic codes, GORGON and PLUTO, are used to simulate the evolution of the plasma and describe its key dynamic features. GORGON and PLUTO are built on different approximation schemes and the simulation results obtained are discussed and analyzed in relation to the physics adopted by each code. Both codes manage to accurately handle the numerical demands of the X-pinch plasma evolution and provide precise details on the mechanisms of the plasma expansion, the jet-formation, and the pinch generation. Furthermore, the influence of electrical resistivity, radiation transport and optically thin losses on the dynamic behaviour of the simulated X-pinch produced plasma is studied in PLUTO. Our findings highlight the capabilities of the GORGON and PLUTO codes in simulating the wide range of plasma conditions found in X-pinch experiments, enabling a direct comparison to the scheduled experiments.
APA, Harvard, Vancouver, ISO, and other styles
9

Valdivia, M. P., G. W. Collins IV, F. Conti, and F. N. Beg. "Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics." Plasma Physics and Controlled Fusion 64, no. 3 (January 28, 2022): 035011. http://dx.doi.org/10.1088/1361-6587/ac4b95.

Full text
Abstract:
Abstract Talbot–Lau x-ray deflectometry (TXD) enables refraction-based imaging for high-energy-density physics experiments, and thus, it has been studied and developed with the goal of diagnosing plasmas relevant to inertial confinement and magnetic liner inertial fusion. X-pinches, known for reliably generating fast (∼1 ns), small (∼1 µm) x-ray sources, were driven on the compact current driver generator for ablation structure and implosion studies (∼200 kA, 150 ns) as a potential backlighter source for TXD. Considering that different X-pinch configurations have characteristic advantages and drawbacks as x-ray generating loads, three distinct copper X-pinch configurations were studied: the wire X-pinch, the hybrid X-pinch, and the laser-cut X-pinch. The Cu K-shell emission from each configuration was characterized and analyzed regarding the specific backlighter requirements for an 8 keV TXD system: spatial and temporal resolution, number of sources, time of emission, spectrum, and reproducibility. Recommendations for future experimental improvements and applications are presented. The electron density of static objects was retrieved from Moiré images obtained through TXD. This allowed to calculate the mass density of static samples within 4% of the expected value for laser-cut X-pinches, which were found to be the optimal X-pinch configuration for TXD due to their high reproducibility, small source size (⩽5 µm), short duration (∼1 ns), and up to 106 W peak power near 8 keV photon energy. Plasma loads were imaged through TXD for the first-time using laser-cut X-pinch backlighting. Experimental images were compared with simulations from the x-ray wave-front propagation code, demonstrating that TXD can be a powerful x-ray refraction-based diagnostic for dense Z-pinch loads. Future plans for Talbot–Lau interferometry diagnostics in the pulsed-power environment are described.
APA, Harvard, Vancouver, ISO, and other styles
10

Shelkovenko, T. A., S. A. Pikuz, R. D. McBride, P. F. Knapp, G. Wilhelm, D. B. Sinars, D. A. Hammer, and N. Yu Orlov. "Symmetric multilayer megampere X-pinch." Plasma Physics Reports 36, no. 1 (January 2010): 50–66. http://dx.doi.org/10.1134/s1063780x10010046.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "X-Pinch"

1

Beg, Farhat Nadeem. "X-ray and optical studies of z-pinch plasmas." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nave, Gillian. "Soft X-ray spectroscopy of gas-puff z-pinch." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Challis, C. D. "X-ray observations of an annular gas-puff z-pinch." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hammel, Benjamin Diethelm. "Study Of Intense Energetic Electron Beams In X-Pinch Experiments." Thesis, University of Nevada, Reno, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10161337.

Full text
Abstract:

High-energy electron beams, with electron kinetic energies (∼1 MeV) much greater than the surrounding plasma temperature (<1 keV), are a common feature in Z-pinch pulsed power experiments. Their existence is indicated by non-thermal spectral signatures, such as high-energy Bremsstrahlung photons from the anode hardware and characteristic X-ray emission not representative of the pinch "hot-spot" temperatures. Despite their regular occurrence, the properties of these beams (kinetic energy, current) are not well known.

This dissertation describes an experimental study of X-pinch generated high-intensity electron beams, performed on the 1 MA pulsed power generator at the Nevada Terawatt Facility, and the feasibility of a novel method for inferring the total kinetic energy in the beam, through time-resolved measurements of the beam-induced shock that propagates through the anode.

APA, Harvard, Vancouver, ISO, and other styles
5

Badaye, Massoud. "Investigation and improvement of a Z-pinch plasma X-ray source." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39468.

Full text
Abstract:
A thorough investigation of a pulsed plasma x-ray source is presented with the intent of improving its design and maximizing its x-ray emission efficiency. In this approach a hollow gas column is puffed in the z-pinch diode by magnetically ionizing and compressing an inert gas in an annular plenum. This gas column is preionized by the radiation coming out from the plasma in the plenum and pinched by a fast electrical discharge.
It is shown that the system can be improved considerably by modifying the gas puff design. Three gas puffs developed in this work are optimized for x-ray emission from argon, krypton, and neon gases. In the optimized conditions the output x-ray energies of 0.5 J from Ar-K shell, 2 J from Kr-L shell, and more than 2 J from Ne-K shell are obtained.
The implosion dynamics is studied with different gases under varying conditions. The average implosion velocity, the final pinch diameter, the current waveform, and the emitted x-ray energy are measured. The pinched plasma parameters such as temperature, density, and the average ionic state are estimated using the corona model calculations, and the pinched current waveforms. The spectrum of the neon radiation clearly shows the characteristic H-like and He-like lines. The neon spectrum is used to estimate the plasma temperature.
The dynamic performance of the magnetically induced compression gas puff is studied carefully. A special ion probe was developed for studying the dynamic parameters of the gas puff. The ion measurements with the probe have led to the characterization of the gas puff performance under varying operating conditions. It is shown that ions are generated through photoionization of the injected gas by the UV light emitted from the inside of the gas puff plenum through the nozzle. It is found that the jet velocity and ion density can be in excess of $3 times10 sp3$ m/s and $2 times10 sp{14}$ cm$ sp{-3}$, respectively.
A theoretical model is developed to simulate the plasma evolution in the gas puff. This model uses the magneto hydrodynamic (MHD) equations solved by the finite difference method. The magnetic field in the vacuum is calculated using the Laplace equation and self consistent boundary conditions. The model predicts the evolution of plasma variables such as density, temperature, velocity, and magnetic field. It also calculates the variation of the total mass flow rate, optical output, and the ionic signal. The simulation results are shown to compare favourably with the experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
6

ROSCH, RUDOLF. "Etude de l'emission x dans les plasmas d'aluminium de type z-pinch." Paris 11, 1999. http://www.theses.fr/1999PA112020.

Full text
Abstract:
Le pincement magnetique d'une decharge axiale, phenomene couramment qualifie de z-pinch, constitue un moyen d'obtenir une source de rayonnement x intense et breve, a partir du plasma chaud et dense ainsi cree. Toutefois, le developpement d'instabilites rayleigh-taylor limite le rendement de conversion de l'energie en x. La configuration etudiee ici, vise a reduire ces instabilites : le courant est delivre dans une gaine cylindrique de vapeur d'aluminium (facilement ionisable), comprimee sur un fil central micrometrique. La vapeur d'aluminium (50 g/cm) est produite par l'explosion d'une feuille de 3 m d'epaisseur, a partir d'un banc de condensateurs externe. La simulation numerique de l'implosion de la charge a l'aide d'un code de magnetohydrodynamique radiative permet de degager les ordres de grandeur des parametres significatifs (vitesse de compression, energie rayonnee par zone spectrale), et de rechercher des configurations qui optimisent le rendement x. Les experiences, realisees sur le generateur haute puissance pulsee ambiorix (0,5 , 2 tw, 2 ma, 50 ns) comprennent de nombreux diagnostics : une camera a balayage de fente visible (phase hydrodynamique), des spectrometres a haute resolution (1 ev), pour evaluer l'energie contenue dans les raies k (phase radiative), un systeme d'imagerie x, un ensemble de detecteurs photoelectriques et photoconducteurs. L'effet du fil central et de sa nature, sur la stabilite, l'homogeneite, la reproductibilite et le rendement x est etudie. Les configurations de jet al sur fil central en al ameliorent d'un facteur 2, la quantite d'energie rayonnee dans les raies k de l'aluminium (1,5 kev ou 7,7 a). L'interpretation des resultats, a l'aide d'un modele collisionnel-radiatif hors equilibre thermodynamique local, est en bon accord avec un plasma, compose d'un cur froid et dense (t#e = 350 ev, n#e = 10#2#0 cm##3), entoure d'une couronne chaude et peu dense (t#e = 900 ev, n#e = 10#1#9 cm##3).
APA, Harvard, Vancouver, ISO, and other styles
7

Bonomo, Federica. "Experimental Measurements of Soft X-Ray Emissivity Distribution and Electron Temperature Profile in Reversed Field Pinch Plasmas." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425153.

Full text
Abstract:
This thesis reports the work performed during the three years of my Ph.D. course at the Physics Department of the University of Padova. Most of my research activity has been performed in Consorzio RFX (Padova) where the RFX experiment is located. RFX (Reversed Field eXperiment) is the largest toroidal device to study magnetically confined plasmas of thermonuclear interest in the so-called reversed field pinch (RFP) configuration. The RFP is one of the main configurations used to confine plasmas in toroidal devices with the purpose of studying controlled thermonuclear fusion as an energy source. The energy production by fusion in magnetically confined plasmas is an ambitious and important goal, which could contribute to solve the problem of a sustainable energy source for mankind. To be an efficient energy source, a sufficiently dense and hot plasma must be confined for a sufficiently long time. In order to fulfill this goal, energy and particle losses need to be understood and eventually controlled. In RFPs, transport is at present dominated by magnetic chaos, even if, under some circumstances that will be presented in this thesis, it can decrease to lower levels. The RFX experiment has been modified in order to investigate in a controlled way the effect of the magnetic boundary on plasma performances. In order to obtain such these information, my research activity has been focused on performing spatially resolved measurements of the plasma emissivity in the soft x-ray (SXR) energy range. In particular, I was involved in experimental and laboratory activities, in diagnostic operation and optimization, along with the design and realization of a new SXR diagnostic. I also analyzed SXR data, allowing a characterization of the plasma column and of the MHD plasma activity. The tomographic algorithms applied to the SXR signals allow for the reconstruction of the SXR emissivity distribution 2, which reflects the plasma magnetic topology. Such information can be completed by the estimation of the electron temperature (Te) profile, calculated with the two-foil technique. During my Ph.D., I was also involved in the collaboration between RFX and the University of Wisconsin, Madison, where the Madison Symmetric Torus (MST) experiment is located. My activity has been part of the collaboration between RFP groups for experimental studies on MHD processes and was focused on operating the SXR tomographic diagnostic installed in MST and realized by the RFX group. Data analysis was aimed at obtaining 2D profiles of the plasma electron temperature. My personal contribution has concerned the optimization of the geometry of the detection system and the electronic system, as well as the diagnostic operation. Moreover, I was directly involved in dedicated experimental campaigns and in the data analysis: the results are presented in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
8

Delaunay, Alice. "Polymorphisme (β-γ-δ) et fusion de l’étain sous sollicitations dynamiques : analyses macroscopique et cristallographique." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0028.

Full text
Abstract:
Les transitions polymorphiques et la fusion de l’étain sont étudiées sous choc en combinant la technique classique de vélocimétrie avec celle de la diffraction X afin de recueillir respectivement des données sur la pression de transition et sur l’identification des phases en présence. Dans la littérature, des différences significatives sont plus particulièrement constatées pour la pression de transition β-γ entre les régimes statique et dynamique. De plus, pour un même régime, plusieurs pressions de transition sont observées. Pour comprendre ces différences, il est nécessaire de caractériser les conditions de formation de la phase γ sous choc : la diffraction X apporte de nouvelles informations sur l’évolution de la microstructure dans les temps de la sollicitation, sur les phases en présence, sur les mécanismes de transition et leur cinétique. Des hypothèses sur la relation d’orientation, le maclage et la cinétique de transformation existent basées sur des concepts expérimentaux et théoriques. Des expériences précédentes ont été menées au CEA Gramat et au synchrotron de l’Advanced Photon Source(APS) de Chicago sur des monocristaux d’étain essentiellement d’orientation (110), en combinant un chargement dynamique par impact de plaque avec une source de rayonnement X très brève. Pour approfondir cette étude et tester les hypothèses émises précédemment, une configuration a été élaborée et optimisée pour mettre en évidence la phase γ à partir des orientations (110), (100) et (001) de la phase β initiale. De nouveaux essais ont été réalisés au CEA Gramat avec un générateur X-Pinch pour des instants d’observation par diffraction X différents : sous choc ou en détente. Ainsi, pour une même orientation et à différents instants, l’évolution des figures de diffraction est observée, donnant des informations sur la modification de la microstructure et la cinétique de la transition. Des essais complémentaires réalisés au synchrotron de l’APS ont permis de sonder l’évolution temporelle de la cible sur chaque tir, ce qui fournit des résultats supplémentaires sur les transitions de phases de l’étain sous sollicitation dynamique. L’ensemble des données collectées permet de proposer des hypothèses sur la cinétique de la transition directe se produisant entre β et γ. De plus, le mécanisme de cette transition correspond à celui théorique proposé dans la littérature et validé récemment par des essais quasi-statiques en enclume diamant. D’autres transitions de phase directes et inverses entre les phases β, γ et δ ainsi que la fusion en détente ont également été observées, selon la pression appliquée. Tous ces résultats constituent une base de données pour améliorer les équations d’état multiphasiques utilisées dans les simulations
Polymorphic transitions and melting of tin were studied under dynamic loading by coupling velocimetry and X-ray diffraction in order to determine transition pressures and to identify phases in presence. In the literature, different onset pressures were measured for the β-γtransition between static and dynamic loading, and even for one same loading type. Thus, further work is needed to characterize the formation conditions of the γ phase: in-situ X-ray diffraction provides data on microstructure evolution in time, on phases in presence, on orientational relationship and on the kinetics of the transformation. These data can be used totest theoretical hypotheses on the transition mechanisms, kinetics, and possible twinning. Previous impact experiments were performed at CEA Gramat and at Advanced Photon Source(APS) facilities, on single crystal tin of (110) orientation with a launcher and a short X-raysource. The present investigation is a continuation of that exploratory study based on an optimized configuration to highlight the γ phase from three orientations of the β phase: (110),(100) and (001). Shock experiments were performed at CEA Gramat with an X-Pinch generator to obtain X-ray diffraction patterns both under shock compression and in release. For each orientation, varying the time delay between the shock and the X-ray probe allowed studying the evolution of diffraction patterns directly correlated with microstructural modifications and transition kinetics. Complementary shock experiments were performed at the synchrotron facilities of APS to probe a time-resolved evolution of the sample for each shot, which provided additional results. These data enable to propose kinetic hypothesis for the transition between β and γ. Furthermore they are consistent with the theoretical mechanism which was validated in quasi-static anvil cell experiments recently. Other direct and reverse transitions between β, γ and δ phases as well as melting on release were observed according to the applied pressure. All these results build up a database to improve multiphaseequations of state used in simulations of dynamic processes
APA, Harvard, Vancouver, ISO, and other styles
9

Bavay, Mathias. "Compression de flux magnétique dans le régime sub-microseconde pour l'obtention de hautes pressions et de rayonnement X intense." Paris 11, 2002. http://www.theses.fr/2002PA112100.

Full text
Abstract:
Afin de démontrer la faisabilité d'une source de rayonnement X intense pour la France, le Centre d'Études de Gramat (CEG) explore un certain nombre de voies technologiques. Le projet SYRINX étudie les possibilités offertes par les hautes puissances pulsées (HPP) pour des applications de compression isentropique, de cavités à hautes températures (hohlraum) et de durcissement (rayonnement X entre 1 et 10 keV produit par un Z-pinch). Il est alors nécessaire de disposer d'un étage d'amplification de la puissance électrique permettant d'atteindre des courants de l'ordre de 10 MA en une centaine de nano secondes. Les générateurs habituels utilisent des lignes de compression d'impulsion ou bien des commutateurs à plasma. Une autre possibilité, appelée compression de flux magnétique, est l'objet de ce travail. Elle a permis de comprimer l'impulsion de 100 ns du générateur Z des Sandia National Laboratories en une impulsion de 40 ns et l'impulsion de 1 ms du générateur ECF du CEG en une impulsion de 100 ns. Cette voie offre l'avantage d'un temps caractéristique d'implosion inférieur à la micro seconde et évite alors un grand nombre de problèmes posés par les compresseurs de flux à explosifs. Ce travail a consisté tout d'abord à paramétrer des codes numériques divers (codes circuit, codes plasma,. . . ) afin de les adapter à la problématique de la compression de flux. Les outils numériques ainsi mis au point ont ensuite servis aux dimensionnements d'expériences, réalisées sur les générateurs Z et ECF, qui ont permis d'atteindre 5 Mbar sous choc et plus de 2 Mbar en compression isentropique ainsi qu'une température de cavité voisine de 110 eV. Les enseignements issus de l'interprétation des tirs ont été confrontés à notre compréhension du système et des charges employées. Enfin, ceci a permis d'améliorer les outils numériques et d'optimiser le concept. Le travail réalisé doit permettre d'extrapoler le concept à un générateur de rayons X intenses de la classe 60 MA
In order to study the feasibility of creating an intense X ray source for France, the Centre d'Études de Gramat (CEG) is investigating several technologies. The Syrinx project is looking at the potential of High Pulse Power technologies for Isentropic Compression Experiments, High Temperatures Hohlraums and Radiation Hardening (X rays between 1 eV and 10 eV radiated by a Z-pinch). Then it is necessary to provide a power amplification stage allowing electrical currents of the order of 10 MA with a hundred nanoseconds rise rime to be delivered to the load. Usually, generators use pulse forming lines or plasma opening switches. Magnetic Flux Compression, another power amplification possibility, is studied in this dissertation. It has enabled the compression of the 100 ns pulse of the Z machine (Sandia National Laboratories) into a 40 ns pulse and the compression of the 1 ms pulse of the ECF generator (CEG) into a 100 ns pulse. This technology bas the advantage of a characteristic implosion time less than a micro second avoiding many of the problems the explosive driven flux compression ran into. This research work consisted initially in finding the right parameters for several codes (circuits codes, plasma codes. . . ) in order to adapt them to the Flux Compression. These numerical tools have then been used to design experiments on Z and ECF. These experiments have reached 5 Mbar with shock and more than 2 Mbar in isentropic compression as well as 110 eV in a hohlraum. Insights gleaned from the interpretation of the shots have been compared to our understanding of the power amplification system and of the loads. Finally, this allows us to improve our numerical tools and to optimize the Flux Compression concept. The work which has been done should lead to the extrapolation of the concept to an X ray generator of the 60 MA class
APA, Harvard, Vancouver, ISO, and other styles
10

Pandarus, Valerica. "Complexes pinceurs de type diphosphinito (POCOP) de Ni(II) / Ni(III)." Thèse, 2008. http://hdl.handle.net/1866/7845.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "X-Pinch"

1

Books, Bw Recipe. Pinch of Patience a Dash of Kindness: Funny 6 X 9 Inch Blank Recipe Book 120 Pages. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drake, Gwasg Addysgol. Prosiect X: Band 1 Pinc - Fy Nghartref. Drake Educational Associates Limted, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Notebook, PinchyZv, and PinchyZv Notebook. Notebook: Pinchy Pinchy , Journal for Writing, College Ruled Size 6 X 9 , 110 Pages. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "X-Pinch"

1

Robledo-Martinez, A., R. Aliaga-Rossel, I. H. Mitchell, J. P. Chittenden, A. E. Dangor, and M. G. Haines. "Hard X-Ray Diagnostic of Z-Pinch Discharges." In Plasma Physics, 491–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dasgupta, A., R. W. Clark, J. Davis, and J. G. Giuliani. "X-ray Spectroscopy of Astrophysical and Laboratory Z-pinch Plasmas." In Recent Advances in Spectroscopy, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10322-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bystritskii, Vitaly, Frank J. Wessel, Norman Rostoker, and Hafiz Rahman. "Novel Staged Z-Pinch Concept as Super Radiant X-Ray Source for ICF." In Current Trends in International Fusion Research, 347–64. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5867-5_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fidelman, Peggy, and Peter Stone. "The Chin Pinch: A Case Study in Skill Learning on a Legged Robot." In RoboCup 2006: Robot Soccer World Cup X, 59–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74024-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Divergence measurement of Ne-like Ar soft X-ray laser beam generated by capillary Z-pinch discharge." In X-Ray Lasers 2004, 189–92. CRC Press, 2005. http://dx.doi.org/10.1201/9781482269208-39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wakatani, Masahiro. "The Mhd Equilibrium Of A Toroidal Plasma In Three-Dimensional Geometry." In Stellarator and Heliotron Devices, 101–47. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195078312.003.0004.

Full text
Abstract:
Abstract In order to confine a plasma in a finite volume with a donut shape, macroscopic plasma motion must be suppressed and a local force balance between the expansion force due to the pressure gradient VP and the electromagnetic force J x B must be satisfied. As shown in chapter 2, a vacuum magnetic system with nested toroidal magnetic surfaces is appropriate for plasma confinement. Thus, the next question concerns the existence of nested magnetic surfaces satisfying the MHD equilibrium equations It is well-known that, when the system has a geometrical symmetry, such as axisymmetry or helical symmetry, the existence of nested magnetic surfaces can be proved. The tokamak, the Reversed Field Pinch (RFP), and the Spheromak are axisymmetric toroidal systems. In order to produce the rotational transform in these devices, a plasma current in the toroidal direction is required. The helically symmetric straight plasma satisfying the MHD equilibrium equations (4.1)-( 4.3) also has nested magnetic surfaces. However, in order to eliminate end-loss of the straight plasma column, the bending of the helically symmetric straight system into a toroidal stellarator or heliotron is a natural development from the point of view of high-temperature plasma confinement. Then, the resultant toroidal stellarator or heliotron loses helical symmetry. One significant characteristic of the toroidal heliotron is the possibility of plasma confinement without a net toroidal current as in tokamaks.
APA, Harvard, Vancouver, ISO, and other styles
7

Malpas, R. "Foreword to the first edition." In Pinch Analysis and Process Integration, xiii. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Notation." In Pinch Analysis and Process Integration, 381–82. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50016-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Index." In Pinch Analysis for Energy and Carbon Footprint Reduction, 537–48. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102536-9.09994-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bandyopadhyay, Santanu. "Design of renewable energy systems incorporating uncertainties through pinch analysis." In Computer Aided Chemical Engineering, 1994–98. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-54298-4.50177-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-Pinch"

1

Yao, Y., J. Struska, and S. Bland. "Portable x-pinch driver development for dense plasma measurements." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, J., Y. Yang, H. Liu, K. Deng, J. Yuan, W. Xie, and Q. Wu. "Development of X-Pinch based X-ray imaging technique for diagnosis of transient processes." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pikuz, S. A., P. A. Gourdain, T. A. Shelkovenko, I. N. Tilikin, J. B. Greenly, L. Atoyan, and D. A. Hammer. "Magnetized hybrid X-pinch." In 9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zou, X. B., X. X. Wang, and Rui Liu. "X-ray emission from an X-pinch." In 2009 IEEE 36th International Conference on Plasma Science (ICOPS). IEEE, 2009. http://dx.doi.org/10.1109/plasma.2009.5227701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ran, Tong Zhao, Xiaobing Zou, Xinlei Zhu, and Xinxin Wang. "X-pinch applications in X-ray radiography and design of compact table-top X-pinch device." In 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shelkovenko, Tatiana A., Sergey A. Pikuz, Adam D. Cahill, Jack T. Blanchard, David A. Hammer, and Daniel B. Sinars. "X pinch with conical electrodes." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blesener, I. C., P. U. Duselis, B. R. Kusse, M. D. Mitchell, S. A. Pikuz, and T. A. Shelkovenko. "Positive polarity x-pinch operation." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pikuz, Sergei A., ByungMoo Song, Tatyana A. Shelkovenko, Katherine M. Chandler, Marc D. Mitchell, and David A. Hammer. "X-pinch source size measurements." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by George A. Kyrala, Jean-Claude J. Gauthier, Carolyn A. MacDonald, and Ali M. Khounsary. SPIE, 2004. http://dx.doi.org/10.1117/12.508752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pikuz, Sergey A., Tatiana A. Shelkovenko, Cad L. Hoyt, Adam D. Cahill, David A. Hammer, and Ivan N. Tilikin. "X-ray absorption spectroscopy of X-pinch plasmas." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6635137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalantar, D. H., P. A. Hammer, N. Qi, and K. C. Mittal. "Dense X-pinch plasmas for X-ray microlithography." In 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110563.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X-Pinch"

1

Sanford, T. W. L., G. O. Allshouse, and B. M. Marder. X-ray power increase from symmetrized wire-array z-pinch implosions. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/369656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hammer, David A. Spectroscopic Determination of the Magnetic Fields in Exploding Wire and X-pinch Plasmas. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1111120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chartas, G., and S. Hokin. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/5218161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beg, Farhat N. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sanford, T. W. L., T. J. Nash, and B. M. Marder. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/211368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

David Hammer. Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/943298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BOWERS, RICHARD, GORDON A. CHANDLER, DAVID E. HEBRON, RAMON J. LEEPER, WALTER MATUSLKA, RAYMOND CECIL MOCK, THOMAS J. NASH, et al. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/14927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cordova, Steve Ray, Dean Curtis Rovang, Salvador Portillo, Bryan Velten Oliver, Nichelle Lee Bruner, and Derek Raymond Ziska. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/920805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hammer, David. X-Ray Spectroscopic Studies of X-Pinch Plasmas with 3-5 Picosecond Resolution: A Quest for Clear Experimental Evidence for Radiative Collapse in the X-ray Spectra (Final Report). Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1837836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bennett, Nichelle. A hybrid-kinetic simulation tool for non-thermal warm x-ray z-pinch sources, with gas-puff and wire array exemplars. Office of Scientific and Technical Information (OSTI), October 2024. https://doi.org/10.2172/2480192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography