To see the other types of publications on this topic, follow the link: (x)BiScO3-(1-x)PbTiO3.

Journal articles on the topic '(x)BiScO3-(1-x)PbTiO3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '(x)BiScO3-(1-x)PbTiO3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wu, Youngsoo, Yeryeong Jin, Bongju Kim, Daeyoung Kwon, and Bog G. Kim. "Epitaxial growth and piezoelectric characterization of the (1−x)BiScO3−(x)PbTiO3 ultrathin film." Journal of Applied Physics 109, no. 6 (March 15, 2011): 064109. http://dx.doi.org/10.1063/1.3567297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Yi, De Jun Lan, Qiang Chen, Ding Quan Xiao, Xi Yue, and Jian Guo Zhu. "Stability of the Perovskite Structure in BSPT-Based Ferroelectric Ceramics." Key Engineering Materials 336-338 (April 2007): 231–34. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.231.

Full text
Abstract:
(1-x)BiScO3-xPbTiO3 (BSPT) based ferroelectric ceramics were prepared by conventional solid state process. X-ray diffraction analysis revealed that the morphotropic phase boundary (MPB) separating the rhombohedral and tetragonal phases for the BSPT system exited near x=0.62. It was found that the stability of perovskite structure of the BSPT system was improved with the increase of PbTiO3 content. For the 0.36BiScO3-0.64Pb1-ySryTiO3 (BSPST) system, because of higher amount of ionic bonding, the stability of perovskite structure for BSPT compounds containing strontium is larger than that of non-strontium compound.
APA, Harvard, Vancouver, ISO, and other styles
3

Alekseev, S. G., I. M. Kotelyanskii, G. D. Mansfel’d, A. G. Segalla, and E. N. Khazanov. "Structural analysis of the (BiScO3)1−x -(PbTiO3) x ceramic materials using the resonance and phonon spectroscopy." Journal of Communications Technology and Electronics 57, no. 8 (August 2012): 842–47. http://dx.doi.org/10.1134/s1064226912080116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Yabin, Hua Wang, Guobao Liu, Hang Xie, Ling Yang, Changrong Zhou, Guohua Chen, Changlai Yuan, and Jiwen Xu. "Effects of BiScO3 Doping on the Phase Structure, Ferroelectric, Energy Storage, Strain, and Dielectric Properties of Bi0.5Na0.5TiO3 Ceramics." Journal of Nanoelectronics and Optoelectronics 15, no. 3 (March 1, 2020): 345–52. http://dx.doi.org/10.1166/jno.2020.2746.

Full text
Abstract:
In this study, (1–x)Bi0.5Na0.5TiO3– xBiScO3 (BNT–xBS) ceramics were synthesized via conventional solidstate reaction sintering. The effects of the BiScO3 content on the surface microstructure, energy storage, strain, and dielectric properties of BNT–xBS ceramics were systemically investigated. Results indicated that the phase structure of BNT–xBS ceramics transformed from the rhombohedral phase into the pseudo-cubic phase. As the increasing BiScO3 content, the average grain size decreased. BiScO3 destroyed the long-range ordered ferroelectric phase, enhancing relaxor behavior. Energy storage density initially increased and then decreased, reaching a maximum of 0.17 J/cm3 at x = 0.1. In addition, the maximum energy storage efficiency was 59% at x = 0.2. The BiScO3 content significantly affected the electrical properties of BNT– xBS ceramics.
APA, Harvard, Vancouver, ISO, and other styles
5

Kowalski, B., A. Sayir, and A. Sehirlioglu. "Aliovalent MnTi and GaTi substitution in high-temperature piezoelectric (x)Bi(Zn0.5Zr0.5)O3—(y)BiScO3—(100 – x − y)PbTiO3." Journal of Materials Science 51, no. 14 (April 25, 2016): 6761–69. http://dx.doi.org/10.1007/s10853-016-9963-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Porokhonskyy, V., S. Kamba, A. Pashkin, M. Savinov, J. Petzelt, R. E. Eitel, and C. A. Randall. "Broadband dielectric spectroscopy of (1−x)BiScO3–xPbTiO3 piezoelectrics." Applied Physics Letters 83, no. 8 (August 25, 2003): 1605–7. http://dx.doi.org/10.1063/1.1604945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tai, C. W., K. Z. Baba-kishi, H. L. W. Chan, F. G. Shin, and C. L. Choy. "Characterization of (1-x)[Bi12In0.5O18.75+γ-Bi2O3]:(x)PbTiO3 ceramics." Materials Science and Engineering: B 99, no. 1-3 (May 2003): 151–54. http://dx.doi.org/10.1016/s0921-5107(02)00460-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kowalski, Ben A., Alp Sehirlioglu, Fred W. Dynys, and Ali Sayir. "Characterization of the High-Temperature Ferroelectric (100−x −y )BiScO3 -(x )Bi(Zr0.5 Zn0.5 )O3 -(y )PbTiO3 Perovskite Ternary Solid Solution." Journal of the American Ceramic Society 97, no. 2 (December 5, 2013): 490–97. http://dx.doi.org/10.1111/jace.12648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, F., P. Wu, and D. C. Sinclair. "Electrical conductivity and conduction mechanisms in (Na0.5Bi0.5TiO3)1−x(BiScO3)x (0.00 ≤ x ≤ 0.25) solid solutions." Journal of Materials Chemistry C 6, no. 43 (2018): 11598–607. http://dx.doi.org/10.1039/c8tc04679d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Wei, Xiaohui Wang, Junjie Hao, Hai Wen, and Longtu Li. "Preparation and Characterization of Nanocrystalline (1-x)BiScO3-xPbTiO3 Powder." Journal of the American Ceramic Society 89, no. 4 (April 2006): 1200–1204. http://dx.doi.org/10.1111/j.1551-2916.2005.00860.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Winotai, Pongtip, Nitinai Udomkan, and Siwaporn Meejoo. "Piezoelectric properties of Fe2O3-doped (1−x)BiScO3–xPbTiO3 ceramics." Sensors and Actuators A: Physical 122, no. 2 (August 2005): 257–63. http://dx.doi.org/10.1016/j.sna.2005.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Shaopeng, Xiaohui Wang, and Longtu Li. "Raman Spectra and Phase Transition in (1−x)BiScO3−xPbTiO3Nanopowders." Ferroelectrics 450, no. 1 (January 2013): 28–34. http://dx.doi.org/10.1080/00150193.2013.838463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Wei, Xiaohui Wang, Longtu Li, and Zhilun Gui. "Synthesis of nanosized (1 − x)BiScO3 − xPbTiO3 ferroelectric ceramic powders." Journal of Electroceramics 21, no. 1-4 (August 20, 2007): 625–28. http://dx.doi.org/10.1007/s10832-007-9248-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Eitel, R. E., S. J. Zhang, T. R. Shrout, C. A. Randall, and I. Levin. "Phase Diagram of the Perovskite System (1−x)BiScO3-xPbTiO3." Journal of Applied Physics 96, no. 5 (September 2004): 2828–31. http://dx.doi.org/10.1063/1.1777810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Duan, Runrun, Michael S. Haluska, and Robert F. Speyer. "Multiple dielectric anomalies in xBiLaO3–(1 − x)PbTiO3 piezoelectrics." Journal of Materials Research 23, no. 2 (February 2008): 565–69. http://dx.doi.org/10.1557/jmr.2008.0074.

Full text
Abstract:
Compositions of xBiLaO3–(1 − x) PbTiO3 over the range 0 ≤ x ≤ 0.225 were calcined and sintered. The dielectric constant with temperature and differential scanning calorimetry measurements were in excellent agreement with respect to Curie-like tetragonal to cubic transformations starting at 495 °C for pure PbTiO3, shifting to lower temperatures with increasing x. For compositions of x ≥ 0.05, a second higher-temperature (∼600 °C) endotherm, and matching dielectric anomaly, were consistently observed, for which there were no structural changes indicated by hot-stage x-ray diffraction. This transformation was speculated to be based on a thermally induced desegregation of B-site cations.
APA, Harvard, Vancouver, ISO, and other styles
16

Yao, Zhonghua, Hanxing Liu, Yang Liu, Zhaohui Wu, Minghe Cao, and Hua Hao. "High-temperature relaxor cobalt-doped (1−x)BiScO3-xPbTiO3 piezoelectric ceramics." Applied Physics Letters 92, no. 14 (April 7, 2008): 142905. http://dx.doi.org/10.1063/1.2904615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Topolov, V. Yu. "Heterophase states and a bridging phase in (1-x)BiScO3−xPbTiO3." Crystal Research and Technology 47, no. 10 (July 30, 2012): 1054–63. http://dx.doi.org/10.1002/crat.201200243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pham-Thi, Mai, Henri Hemery, and Hichem Dammak. "X ray investigation of high oriented (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics." Journal of the European Ceramic Society 25, no. 12 (January 2005): 2433–35. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Skidmore, Thomas A., Timothy P. Comyn, and Steven J. Milne. "Dielectric and Piezoelectric Properties in the System: (1−x)[(Na0.5K0.5NbO3)0.93-(LiTaO3)0.07]-x[BiScO3]." Journal of the American Ceramic Society 93, no. 3 (March 2010): 624–26. http://dx.doi.org/10.1111/j.1551-2916.2009.03470.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Singh, K., N. S. Negi, R. K. Kotnala, and M. Singh. "Dielectric and magnetic properties of (BiFeO3)1−x(PbTiO3)x ferromagnetoelectric system." Solid State Communications 148, no. 1-2 (October 2008): 18–21. http://dx.doi.org/10.1016/j.ssc.2008.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Singh, Ajay, Vishal Singh, and K. K. Bamzai. "Structural and magnetic studies on (x)PbTiO3 – (1 − x)SrFe12O19 composite multiferroics." Materials Chemistry and Physics 155 (April 2015): 92–98. http://dx.doi.org/10.1016/j.matchemphys.2015.02.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, Xiaoming, Chao He, Ying Liu, Xiuzhi Li, Zujian Wang, Shujuan Han, Shilie Pan, and Xifa Long. "Structural and Electrical Characteristics of (1−x )Pb(Lu1/2 Nb1/2 )O3 -x PbTiO3 Ceramics with Low PbTiO3." Journal of the American Ceramic Society 99, no. 10 (June 16, 2016): 3325–29. http://dx.doi.org/10.1111/jace.14321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Бехтин, М. А., А. А. Буш, and А. Г. Сегалла. "Получение и электрофизические свойства керамики (1–x)BiScO3⇒xPbTiO3с добавками MnO2и Ni2O3." Неорганические материалы 50, no. 1 (2014): 104–10. http://dx.doi.org/10.7868/s0002337x14010023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhuang, Jian, Jinming Lu, Alexei A. Bokov, Nan Zhang, Jie Zhang, Hua Wu, Wei Ren, and Zuo-Guang Ye. "Magnetic properties of multiferroic (1-x)PbTiO3-xDyFeO3 system." Ferroelectrics 534, no. 1 (October 3, 2018): 206–11. http://dx.doi.org/10.1080/00150193.2018.1473689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zou, Ting Ting, Xiao Hui Wang, and Long Tu Li. "Preparation and Characterization of (1-x)BiScO3-xPbTiO3 Ceramics by Two-Step Sintering." Key Engineering Materials 368-372 (February 2008): 8–10. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.8.

Full text
Abstract:
High-performance fine-grain (1-x)BiScO3-xPbTiO3 ceramics were prepared by two-step sintering method. Influences of sintering temperature, holding time, and composition on the microstructure and properties were discussed. The BSPT ceramics obtained via two-step sintering reaches density higher than 95% at a low temperature of 800°C without any sintering aid, and the grain size of the ceramics is also effectively controlled. Excellent piezoelectric properties between the composition of x=0.63 and x=0.64 reveals a probable MPB in this range, suggesting a potential approach to pursue high performance BSPT ceramics.
APA, Harvard, Vancouver, ISO, and other styles
26

Singh, K., Ashish Gautam, K. Sen, R. K. Kotnala, Mahesh Kumar, P. Gautam, and M. Singh. "Room temperature long range ferromagnetic ordering in (BiFeO3)1−x (PbTiO3)x nanocrystallites." Journal of Applied Physics 109, no. 12 (June 15, 2011): 123911. http://dx.doi.org/10.1063/1.3592281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ansell, Troy Y., David P. Cann, Eva Sapper, and Jürgen Rödel. "Thermal Depolarization in the High-Temperature Ternary Piezoelectric System x PbTiO3 -y BiScO3 -z Bi(Ni1/2 Ti1/2 )O3." Journal of the American Ceramic Society 98, no. 2 (October 13, 2014): 455–63. http://dx.doi.org/10.1111/jace.13268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bilalodin, Bilalodin. "PENUMBUHAN DAN KARAKTERISASI LAPISAN TIPIS PbTiO3 YANG DISIAPKAN DENGAN TEKNIK SPIN COATING." Molekul 3, no. 1 (May 1, 2008): 48. http://dx.doi.org/10.20884/1.jm.2008.3.1.47.

Full text
Abstract:
The growth of PbTiO3 ferroelectric thin films have successfully done. Thin films were made from bulk (powder) PbTiO3 dissolved in methanol solution. The condensation was mixed during 1 hour to get homogeneous condensation. Thin films were grown above corning substrates by spin coating method. Optimation was done by various of annealing temperature. The physical properties of thin films were characterized by Energi Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), Scanning and Electron Microscopy (SEM). EDS measurement showed that the stoichiometry composition ratio of Pb/Ti is 1/1.26 at annealing temperature 600oC and 1/1.29 at annealing temperature 700oC. The result of XRD pattern showed that crystal structure of PbTiO3 thin films are tetragonal. The calculated lattice parameters ontained from Chohen Method are a=b= 3.873 Å dan c= 4.130Å. The result of SEM PbTiO3 thin film showed that thin film has globular grain size.
APA, Harvard, Vancouver, ISO, and other styles
29

Eitel, Richard E., Thomas R. Shrout, and Clive A. Randall. "Tailoring Properties and Performance of (1-x)BiScO3–xPbTiO3Based Piezoceramics by Lanthanum Substitution." Japanese Journal of Applied Physics 43, no. 12 (December 9, 2004): 8146–50. http://dx.doi.org/10.1143/jjap.43.8146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Si, Xianlin Dong, Chaoliang Mao, and Fei Cao. "Thermal Stability of (1?x)BiScO3?xPbTiO3Piezoelectric Ceramics for High-Temperature Sensor Applications." Journal of the American Ceramic Society 89, no. 10 (October 2006): 3270–72. http://dx.doi.org/10.1111/j.1551-2916.2006.01201.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zou, Tingting, Xiaohui Wang, Han Wang, Caifu Zhong, Longtu Li, and I.-Wei Chen. "Bulk dense fine-grain (1−x)BiScO3–xPbTiO3 ceramics with high piezoelectric coefficient." Applied Physics Letters 93, no. 19 (November 10, 2008): 192913. http://dx.doi.org/10.1063/1.2995861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, X. Z., Q. Wei, Z. J. Wang, and X. F. Long. "Relaxor behaviour of (1−x)Ba(Sc1/2Nb1/2)O3−x PbTiO3 solid solution." Materials Research Innovations 14, no. 2 (April 2010): 110–12. http://dx.doi.org/10.1179/143307510x12599329343763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Surowiak, Z., M. F. Kupriyanov, A. E. Panich, and R. Skulski. "The properties of the non-stoichiometric ceramics (1−x)PbMg1/3Nb2/3O3–(x)PbTiO3." Journal of the European Ceramic Society 21, no. 15 (January 2001): 2783–86. http://dx.doi.org/10.1016/s0955-2219(01)00363-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rai, Radheshyam, Abinhav Sinha, Seema Sharmac, and N. K. P. Sinha. "Investigation of structural and electrical properties of (1−x) Bi0.5Mg0.5TiO3–(x) PbTiO3 ceramic system." Journal of Alloys and Compounds 486, no. 1-2 (November 2009): 273–77. http://dx.doi.org/10.1016/j.jallcom.2009.06.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Martín-Arias, L., A. Castro, and M. Algueró. "Ferroelectric phases and relaxor states in the novel lead-free (1 − x) Bi1/2K1/2TiO3 − x BiScO3 system (0 ≤ x ≤ 0.3)." Journal of Materials Science 47, no. 8 (January 7, 2012): 3729–40. http://dx.doi.org/10.1007/s10853-011-6222-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ivanov, Oleg, Elena Danshina, Yulia Tuchina, and Viacheslav Sirota. "Diffuse Phase Transition and Ferroelectric Properties of Ceramic Solid Solutions in New SrTiO3-BiScO3 System." Advances in Science and Technology 67 (October 2010): 59–63. http://dx.doi.org/10.4028/www.scientific.net/ast.67.59.

Full text
Abstract:
Ceramic solid solutions of (1-x)SrTiO3-(x)BiScO3 system with x=0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 have been for the first time synthesized via solid-state processing techniques. Both of end compounds in this system are not ferroelectric materials. X-ray diffraction analysis revealed that at room temperature the samples under study at x=0.2, 0.3, 0.4 and 0.5 consist of mixture of center-symmetric cubic Pm3m phase and polar tetragonal P4mm phase. Anomalous behaviour of dielectric permittivity and dielectric losses for these samples is found to be specific one for ferroelectrics with diffuse phase transitions. Furthermore, examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops in the ferroelectric phase.
APA, Harvard, Vancouver, ISO, and other styles
37

Tu, Chi-Shun, C. L. Tsai, V. Hugo Schmidt, Haosu Luo, and Zhiwen Yin. "Dielectric, hypersonic, and domain anomalies of (PbMg1/3Nb2/3O3)1−x(PbTiO3)x single crystals." Journal of Applied Physics 89, no. 12 (June 15, 2001): 7908–16. http://dx.doi.org/10.1063/1.1370998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, R., S. Peng, D. Xiao, Y. Wang, B. Yang, J. Zhu, P. Yu, and W. Zhang. "Preparation and Characterization of (1 —x) Pb(Mg1/3Nb2/3) O3 —x PbTiO3 Electrocaloric Ceramics." Crystal Research and Technology 33, no. 5 (1998): 827–32. http://dx.doi.org/10.1002/(sici)1521-4079(1998)33:5<827::aid-crat827>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kwon, Do-Kyun, Clive A. Randall, Thomas R. Shrout, and Michael T. Lanagan. "Dielectric Properties and Relaxation in (1−x)BiScO3-xBa(Mg1/3Nb2/3)O3Solid Solutions." Journal of the American Ceramic Society 87, no. 6 (June 2004): 1088–92. http://dx.doi.org/10.1111/j.1551-2916.2004.01088.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Yihang, Baoquan Qin, Yi Zhao, Yuzhi Jiang, Wei Shi, Qishou Li, Dingquan Xiao, and Jianguo Zhu. "Phase Transition, Piezoelectric Properties, and Thermal Stability of (1−x−y)BiScO3-yBiGaO3-xPbTiO3Ceramics." Journal of the American Ceramic Society 91, no. 9 (September 2008): 2943–46. http://dx.doi.org/10.1111/j.1551-2916.2008.02580.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tao, Hong, and JiaGang Wu. "Composition dependence of phase structure and electrical properties of (1−y)Bi1−x Nd x FeO3−y BiScO3 ceramics." Science China Technological Sciences 59, no. 7 (June 2, 2016): 1029–35. http://dx.doi.org/10.1007/s11431-016-6051-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shi, Wei, Ying Pei, Jianshuai Wei, Qiang Chen, Dingquan Xiao, and Jianguo Zhu. "Dielectric and Piezoelectric Properties of (1-x)(0.36BiScO3-0.64 PbTiO3)-xBiYbO3Ceramics." Ferroelectrics 409, no. 1 (November 2010): 3–7. http://dx.doi.org/10.1080/00150193.2010.485836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Peng, Xin, Huajun Kang, Laijun Liu, Changzheng Hu, Liang Fang, Jun Chen, and Xianran Xing. "Multiferroic properties and enhanced magnetoelectric coupling in (1 − x)PbTiO3 − xNdFeO3." Solid State Sciences 15 (January 2013): 91–94. http://dx.doi.org/10.1016/j.solidstatesciences.2012.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhukov, S. G., V. V. Chernyshov, and S. B. Vakhrushev. "Structural peculiarities of (PbMg1/3Nb2/3O3)1-x-(PbTiO3)xsolid solutions." Ferroelectrics 235, no. 1 (December 1999): 143–49. http://dx.doi.org/10.1080/00150199908214874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hu, Penghao, Jun Chen, Xueyi Sun, Jinxia Deng, Xi Chen, Ranbo Yu, Lijie Qiao, and Xianran Xing. "Zero thermal expansion in (1−x)PbTiO3–xBi(Mg,Ti)1/2O3 piezoceramics." Journal of Materials Chemistry 19, no. 11 (2009): 1648. http://dx.doi.org/10.1039/b816822a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tawfik, A., D. M. Hemeda, M. Z. Said, and M. M. Yousef. "Structural Properties of the Ferroelectric Nanocomposite (1-x) BaTiO3–(x) PbTiO3 Prepared by Tartrate Acid Method." Physical Science International Journal 20, no. 1 (November 17, 2018): 1–17. http://dx.doi.org/10.9734/psij/2018/44797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ranjith, R., and S. B. Krupanidhi. "Antiferroelectriclike polarization behavior in compositionally varying (1−x) Pb(Mg1∕3Nb2∕3)O3–(x) PbTiO3 multilayers." Applied Physics Letters 91, no. 8 (August 20, 2007): 082907. http://dx.doi.org/10.1063/1.2775044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Xinyang, Thomas J. Kennedy, Eugene V. Colla, M. B. Weissman, and D. D. Viehland. "Non-equilibrium strain relaxation noise in the relaxor ferroelectric (PbMg1/3Nb2/3O3)1-x(PbTiO3)x." Journal of Applied Physics 124, no. 23 (December 21, 2018): 234102. http://dx.doi.org/10.1063/1.5049816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Randall, C. A., R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward, and I. M. Reaney. "Investigation of a high Tc piezoelectric system: (1−x)Bi(Mg1/2Ti1/2)O3–(x)PbTiO3." Journal of Applied Physics 95, no. 7 (April 2004): 3633–39. http://dx.doi.org/10.1063/1.1625089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zou, Tingting, Xiaohui Wang, Wei Zhao, and Longtu Li. "Preparation and Properties of Fine-Grain (1−x)BiScO3−xPbTiO3 Ceramics by Two-Step Sintering." Journal of the American Ceramic Society 91, no. 1 (December 17, 2007): 121–26. http://dx.doi.org/10.1111/j.1551-2916.2007.01903.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography