Academic literature on the topic 'Wu 113 p9522 2014'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wu 113 p9522 2014.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wu 113 p9522 2014"

1

HE, JINGCHAO, XIAOLEI LIU, and FENG ZHANG. "Two new species of Clubiona Latreille (Araneae: Clubionidae) from China." Zootaxa 4208, no. 5 (December 19, 2016): 494. http://dx.doi.org/10.11646/zootaxa.4208.5.7.

Full text
Abstract:
Clubiona Latreille, 1804, comprising approximately 78% of all Clubionidae species described so far, is the largest genus in the family. Of the 476 Clubiona species worldwide, 113 have been reported from China (World Spider Catalog 2016, Li & Lin 2016). However, the diversity of this genus in China is still insufficiently known and several new species have been described in the last few years (Wu & Zhang 2014a; Wu & Zhang 2014b; Dankittipakul & Singtripop 2014; Wang, Wu & Zhang 2015; Wu, Zheng & Zhang 2015). Among several species groups proposed to accommodate the species of the genus (Mikhailov 1995), the Corticalis group is one of the most well known in China, computing 19 species described so far for that country (Wang, Wu & Zhang 2015; Wu, Zheng & Zhang 2015). While examining spiders collected in Yunnan and Hunan provinces, China, we found two new Clubiona species of the Corticalis group, which are described below.
APA, Harvard, Vancouver, ISO, and other styles
2

Dybov, Vladislav А., Dmitrii V. Serikov, Galina S. Ryzhkova, and Aleksey I. Dontsov. "Роста и субструктура пленок ниобата лития." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 1 (March 6, 2019): 51–59. http://dx.doi.org/10.17308/kcmf.2019.21/716.

Full text
Abstract:
Проведены исследования начальных стадий роста пленок ниобата лития на Si в процессе ВЧМР, исследовано влияние условий ВЧМР и последующих обработок (ТО, ИФО, БТО) на структуру, субструктуру и ориентацию получаемых покрытий. Установлено, что начальные стадии роста пленок ниобата лития в процессе ВЧМР на подогретой до 550 °С Si подложке характеризуются островковым зарождением кристаллитов и последующей их коалесценцией. Показана возможность управления текстурой пленок ниобата лития в процессе ВЧМР в условиях воздействия плазмы ВЧ-разряда, путем изменения состава рабочего газа. Показан эффект ИФО в кристаллизации аморфных пленок состава ниобата лития, заключающийся в формировании однофазной нанокристаллической пленки ниобата лития, в процессе обработки на воздухе. ИСТОЧНИК ФИНАНСИРОВАНИЯ Исследование выполнено при финансовой поддержке РФФИ, проект № 18-33-00836. ЛИТЕРАТУРА Lu Y, Dekker P., Dawes J.M. Journal of Crystal Growth, 2009, vol. 311, pp. 1441-1445. https://doi.org/10.1016/j.jcrysgro.2008.12.035 Poghosyan A. R., Guo R., Manukyan A. L., Grigoryana S. G. SPIE, 2007, vol. 6698, pp. 1-5. https://doi.org/10.1117/12.734353 Kadota M., Suzuki Y., Ito Y. Japanese Journal of Applied Physics, 2011, vol. 50, pp. 1-5. DOI: https://doi.org/10.1143/jjap.50.07hd10 Hao L., Li Y., Zhu J., Wu Z., Wang J., Liu X., Zhang W. Journal of Alloys and Compounds, 2014, vol. 599, pp. 108-113. https://doi.org/10.1016/j.jallcom.2014.02.078 Gupta V., Bhattacharya P., Yuzyuk Yu. I., Katiyar R. S. Mater. Res., 2004, vol. 19, N 8, pp. 2235-2239. https://doi.org/10.1557/jmr.2004.0322 Tan S., Gilbert T., Hung C.-Y., and Schlesinger T. E. Phys. Lett., 1996, vol. 68, p. 2651. https://doi.org/10.1063/1.116270 Shih W.-C., Sun X.-Y. Physica B: Condensed Matter, 2010, vol. 405, no. 6, pp. 1619–623. https://doi.org/10.1016/j.physb.2009.12.054 Barinov S. M., Belonogov E. K., Ievlev V. M., et al. DokladyPhysical Chemistry, 2007, vol. 412, no. 1, pp. 15-18. https://doi.org/10.1134/s0012501607010058 Hansen P. J., Terao Y., Wu Y., York R. A., Mishra U. K., Speck J. S. Vac. Sci. Technol., 2005, vol. 23, № 1, pp. 162-167. https://doi.org/10.1116/1.1850106 Sumets M., Ievlev V., Kostyuchenko A., Vakhtel V., Kannykin S., Kobzev A. Thin Solid Films, 2014, vol. 552, pp. 32–38. https://doi.org/10.1016/j.tsf.2013.12.005 Seok-Won Choi, et al. The Korean Journal of Ceramics, 2000, vol. 6, no. 20, pp. 138-142. Ievlev V. M., Soldatenko S. A., Kushhev S. B., Gorozhankin Ju. V. Inorganic Materials, 2008, vol. 44, no. 7, pp. 705-712. https://doi.org/10.1134/s0020168508070066 Ievlev V. M., Turaeva T. L., Latyshev A. N., et al. The Physics of Metals and Metallography, 2007, vol. 103, no. 1, pp. 58-63. https://doi.org/10.1134/s0031918x07010073
APA, Harvard, Vancouver, ISO, and other styles
3

Orzechowski, Kamil, Marek Wojciech Sierakowski, Marzena Sala-Tefelska, Tomasz Ryszard Woliński, Olga Strzeżysz, and Przemysław Kula. "Investigation of Kerr effect in a blue phase liquid crystal using wedge-cell technique." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 54. http://dx.doi.org/10.4302/plp.v9i2.738.

Full text
Abstract:
In this work an alternative method for refractive index measurement of blue phase liquid crystal in the Kerr effect has been described. The proposed wedge method uses simple goniometric setup, allowing for direct index measurements for any wavelengths and index values. This is significant advantage comparing to other methods, usually having limitations of the measurement range as well as necessity complicated calculation to obtain refractive indices values. The results are reliable and agree well with the subject literature. Full Text: PDF ReferencesW. Cao et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mater. 1, 111-113 (2002). CrossRef S. Meiboom, M. Sammon, W.F. Brinkman, "Lattice of disclinations: The structure of the blue phases of cholesteric liquid crystals", Phys. Rev. A. 27, 438 (1983). CrossRef S. Tanaka et al., "Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy", Sci. Rep. 5, 16180 (2015). CrossRef Y. Li and S.-T. Wu, "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19(9), 8045-8050 (2011). CrossRef N. Rong et al., "Polymer-Stabilized Blue-Phase Liquid Crystal Fresnel Lens Cured With Patterned Light Using a Spatial Light Modulator", J. of Disp. Technol. 12(10), 1008-1012 (2016). CrossRef J.-D. Lin et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Opt. Express 22(24), 29479-29492 (2014). CrossRef P. Joshi et al., "Tunable light beam steering device using polymer stabilized blue phase liquid crystals", Photon. Lett. Poland 9(1), 11-13 (2017). CrossRef Ch.-W. Chen et al., "Temperature dependence of refractive index in blue phase liquid crystals", Opt. Mater. Express 3(5), 527-532 (2013). CrossRef Y.-H. Lin et al., "Measuring electric-field-induced birefringence in polymer stabilized blue-phase liquid crystals based on phase shift measurements", J. Appl. Phys. 109, 104503 (2011). CrossRef J. Yan et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18(11), 11450-11455 (2010). CrossRef K.A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Photon. Lett. Poland 8(2), 51-53 (2016). CrossRef O. Chojnowska et al., "Electro-optical properties of photochemically stable polymer-stabilized blue-phase material", J. Appl. Phys. 116, 213505 (2014). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef M. Chen et al., "Electrically assisting crystal growth of blue phase liquid crystals", Opt. Mater. Express 4(5), 953-959 (2014). CrossRef J. Kerr, Philos. Mag. 50, 337 (1875).
APA, Harvard, Vancouver, ISO, and other styles
4

Ghaur, Adjmal, Christopher Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du, Laurin Profanter, Tobias Placke, and Martin Winter. "Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 430. http://dx.doi.org/10.1149/ma2022-012430mtgabs.

Full text
Abstract:
In recent years, lithium-ion batteries (LIBs) are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various silicon active materials as alternative negative electrodes to replace graphite (372 mAh g-1) due to their high theoretical gravimetric capacity (4200 mA h g-1).[1,2] However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has a poor electronic conductivity which negatively impacts the long-term performance and prevents high silicon contents from practical application.[3] Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process.[4] To compensate the volume changes, alleviate pulverization and maintain high electronic conductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail electrochemical performance measurements in pouch full-cells (NCM523||SiOx/C), supressing gas formation properties and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance. Reference: [1]Zuo X, Zhu J, Muller‐Buschbaum P, Cheng Y, Silicon based lithium‐ion battery anodes: a chronicle perspective review, Nano Energy, 2017, 31, 113‐143. [2]Jimenez A. R., Klöpsch R., Wagner R., Rodehorst U. C., Kolek M., Nölle R., Winter M., Placke T., A step toward high-energy silicon-based thin film lithium ion batteries, ACS Nano, 2017, 11, 5, 4731-4744. [3] Berla A. L., Lee S. W., Ryu I., Cui Y., Nix W. D., Robustness of amorphous silicon during the initial lithiation/delithiation cycle, Journal of power sources, 2014, 258, 253-259. [4] Casimir A., Zhang H., Ogoke O., Amine J. C., Lu J., Wu G., Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy, 2016, 27, 359-376.
APA, Harvard, Vancouver, ISO, and other styles
5

AYANKOSO, Micheal Taiwo, Damilola Miracle OLUWAGBAMILA, and Olugbenga Samson ABE. "EFFECTS OF ACTIVATED CHARCOAL ON LIVESTOCK PRODUCTION: A REVIEW." Slovak Journal of Animal Science 56, no. 01 (March 31, 2023): 46–60. http://dx.doi.org/10.36547/sjas.791.

Full text
Abstract:
Aerts, R. (1997). Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposability? Oikos, 80(3), 603−406. Ahmedna, M., Marshall, W. E. & Rao, R. O. (2000). Granular Activated Carbons from Agricultural By-Products: Preparation, Properties, and Application in Cane Sugar Refining. LSU AgCenter: Bulletin Number 869. Albiker, D. & Zweifel, R. (2019). Pflanzenkohle im Futter oder in der Einstreu und ihre Wirkung auf die Stickstoffretention und Leistung von Broilern. Wissenschaftstagung Ökologischer Landbau. Kassel: Stiftung Ökologie and Landbau, (15),276−283. Al-Kindi, A., Schiborra, A., Buerkert, A. & Schlecht, E. (2017). Effects of quebracho tannin extract and activated charcoal on nutrient digestibility, digesta passage and faeces composition in goats. Journal of Animal Physiology and Animal Nutrition, 101(3), 576−588. Alshannaq, A. & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. Australian Veterinary Journal, 68(4), 146−148. Anukul, N. Vangnai, K. & Mahakarnchandkul, W. (2013) Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis, 21(3), 227−241. Bakr, B. E. A. (2008). The effect of using citrus wood charcoal in broiler rations on the performance of broilers. An-Najah University Journal for Research − Natural Sciences, 22, 17−24. Beguin, F. & Frackowiak, E. (Eds.). (2009). Carbons for Electrochemical Energy Storage and Conversion Systems, (1st ed.). CRC Press. https://doi.org/10.1201/9781420055405 Benabdeljelil, K. & Ayachi, A. (1996). Evaluation of Alternative Litter Materials for Poultry. Journal of Applied Poultry Research, 5, 203−209. Berk, J. (2009). Einfluss der Einstreuart auf Prävalenz und Schweregrad von Pododermatitis beimännlichen Broilern. (Effect of litter type on prevalence and severity of pododermatitis in male broilers). Berliner und Münchener tierärztliche Wochenschrift, 7, 257−263. Bisson, M. G., Scott, C. B. & Taylor, C. A. (2001). Activated charcoal and experience affect intake of juniper by goats. Journal of Range Management, 54, 274−278. Bolan, N. S., Szogi, A. A., Chuasavathi, T., Seshadri, B., Rothrock, M. J. & Panneerselvam, P. (2010). Uses and management of poultry litter. World's Poultry Science Journal, 66(4), 673−698. Burdock, G. A. (1997). Encyclopedia of Food and Color Additives. Boca Raton: CRC. Cheng, C. H. & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021−1027. Choi, J. S., Jung, D. S., Lee, J. H., Choi, Y. I. & Lee, J. J. (2012). Growth performance, immune response and carcass characteristics of finishing pigs by feeding stevia and charcoal. Korean Journal for Food Science of Animal Resources, 32(2), 228−233. Christophersen, A. B., Levin, D., Hoegberg, L. C., Angelo, H. R. & Kampmann, J. P. (2002). Activated charcoal alone or after gastric lavage: a simulated large paracetamol intoxication. British Journal of Clinical Pharamacology, 53, 312−317. Chu, G. M., Jung, C. K., Kim, H. Y., Ha, J. H., Kim, J. H., Jung, M. S., Lee, S. J., Song, Y., Ibrahim, R. I. H., Cho, J. H., Lee, S. S. & Song, Y. M. (2013a). Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal Science Journal, 84, 113−120. Chu, G. M., Kim, J. H., Kang, S. N. & Song, Y. M. (2013b). Effects of dietary bamboo charcoal on the carcass characteristics and meat quality of fattening pigs. Korean Journal for Food Science of Animal Resources, 33(3), 348−355. Daković, A., Tomašević-Čanović, M., Dondur, V., Rottinghaus, G. E., Medaković, V. & Zarić, S. (2005). Adsorption of mycotoxins by organozeolites. Colloids and Surfaces B: Biointerfaces, 46(1), 20−25. Darren, J. M., Beth, B. & Juan, J. V. (2020). Use of biochar by sheep: Impacts on diet selection, digestibility, and performance. Journal of Animal Science, 98(12), 1−9. Davidson, E. A., Chorover, J. & Dail, D. B. (2003). A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 9(2), 228−236. Di Natale, F., Gallo, M. & Nigro, R. (2009). Adsorbents selection for aflatoxins removal in bovine milks. Journal of Food Engineering, 95(1), 186−191. Diaz, S. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295−304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x Erickson, P. S., Whitehouse, N. L. & Dunn, M. L. (2011). Activated carbon supplementation of dairy cow diets: Effects on apparent total tract nutrient digestibility and taste preference. American Registry of Professional Animal Scientists, 27, 428−434. European Biochar Foundation (EBC). (2012). European biochar certificate − guidelines for a sustainable production of biochar. Version 8.2 of 19th April 2019: Accessed: 30th September, 2021. European Biochar Foundation (EBC). (2018). Guidelines for EBC-feed certification. http://www.european-biochar.org/biochar/media/doc/ebc-feed.pdf: Accessed: 30th September, 2021. Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, Ch. & Zhou, J. M. (2012). A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature, 485(7396), 114−118. Galvano, F., Pietri, A., Fallico, B., Bertuzzi, T., Scirè, S., Galvano, M. & Maggiore, R. (1996). Activated carbons: in vitro affinity for aflatoxin B1 and relation of adsorption ability to physicochemical parameters. Journal of Food Protection, 59(5), 545−550. Galvano, F., Piva, A., Ritiene, A. & Galvano, G. (2001): Dietary strategies to counteract the effects of mycotoxins: A review. Journal of Food Protection, 64, 120−131. Gerlach, A. & Schmidt, H. P. (2012). Pflanzenkohle in der Rinderhaltung. Ithaka Journal, 1, 80−84. Guo, J. & Lua, A. C. (2003). Textual and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Materials Chemistry and Physics, 80, 114−119. Hagemann, N., Joseph, S., Schmidt, H., Kammann, C. I., Harter, J., Borch, T., Young, R. B., Varga, K., Taherymoosavi, S., Elliott, K. W., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S. & Kappler, A. (2018). Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 163. Hansen, J., Sato, M. & Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences, 109(37), E2415−E2423. Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. (1982). Adenine nucleotide and lysine transport in Chlamydia psittaci. Journal of Bacteriology, 150(2), 662−670. Hinz, K. S. J., Schättler, J. K., Spindler, B. & Kemper, N. (2019). Foot pad health and growth performance in broiler chickens as affected by supplemental charcoal and fermented herb extract (FKE): An on-farm study. European Poultry Science, 83, 13. https://doi.org/10.2136/sssaspecpub63.2014.0043.5 Hinz, K., Stracke, J., Schättler, J. K., Kemper, N. & Spindler, B. (2019). Effects of Enriched Charcoal as Permanent 0.2 % Feed-Additive in Standard and Low-Protein Diets of Male Fattening Turkeys: An On-Farm Study. Animals, 9(8), 1−15. Huwig, A., Freimund, S., Käppeli, O. & Dutler. H. (2001). Mycotoxin detoxification of animal feed by different adsorbents. Toxicology Letters, 122, 179−188. International Biochar Initiative (IBI). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. International Journal of Environmental Research and Public Health, 14(6), 632. Islam, M. M., Ahmed, S. T., Kim, Y. J., Mun, H. S., Kim, Y. J. & Yang, C. J. (2014). Effect of sea tangle (Laminaria japonica) and charcoal supplementation as alternatives to antibiotics on growth performance and meat quality of ducks. Asian-Australasian Journal of Animal Sciences, 27(2), 217–224. Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483−2492. Joseph, S., Pow, D., Dawson, K., Mitchell, D., Rawal, A., Hook, J., Taherymoosavi, S., Zwieten, L., Rust, J., Donne, S., Munroe, P., Pace,B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., Pan, G., Li, L. & Solaiman, Z. (2015). Feeding biochar to cows: an innovative solution for improving soil fertility and farm productivity. Pedosphere, 25(5), 666−679. Kana, J. R., Teguia, A., Mungfu, B. M. & Tchoumboue, J. (2011). Growth performance and carcass characteristics of broiler chickens fed diets supplemented with graded levels of charcoal from maize cob or seed of Canarium schweinfurthii Engl. Tropical Animal Health Production, 43, 51−56. Keller, A., Litzelman, K., Wisk, L. E., Maddox, T., Cheng, E. R., Creswell, P. D. & Witt, W. P. (2012). Does the perception that stress affects health matter? The association with health and mortality. Health Psychology, 31(5), 677−684. DOI: 10.1037/a0026743 Kracke, F., Vassilev, I. & Krömer, J. O. (2015). Microbial electron transport and energy conservation − the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575. Kutlu, H. R., Ünsal, I. & Görgülü, M. (2001). Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Animal Feed Science Technology, 90(3), 213−226. Lavrentyev, A., Sherne, V., Semenov, V., Zhestyanova, L. & Mikhaylova, L. (2021). Use of activated charcoal feed supplement in diets of pigs. Earth and Environmental Science, 935. Lee, J. J., Park, S. H, Jung, D. S., Choi, Y. I. & Choi, J. S. (2011). Meat quality and storage characteristics of finishing pigs by feeding stevia and charcoal. Korean Journal for Food Science of Animal Resources, 31(2), 296−303. Leng, R. A. (2013). Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Perspectives on Animal Biosciences. Animal Production Science, 54(5), 519−543. https://doi.org/10.1071/AN13381 Leng, R. A., Inthapanya, S. & Preston, T. R. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24, 11. Li, Y., Yu, S., Strong, J. & Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the "FeIII-FeII redox wheel" in dynamic redox environments? Journal of Soils and Sediments, 12(5), 683−693. Louis, A., Mohammed, A., Andreas, B. & Regina, R. (2018). Influence of dietary wood charcoal on growth performance, nutrient efficiency and excreta quality of male broiler chickens. International Journal of Livestock Production, 9(10), 286−292. Mabe, L. T., Su, S., Tang, D., Zhu, W., Wang, S. & Dong, Z. (2018). The effect of dietary bamboo charcoal supplementation on growth and serum biochemical parameters of juvenile common carp (Cyprinus carpio L.). Aquaculture Research, 49(3), 1142−1152. Maenz, D. D. & Classen, H. L. (1998). Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science, 77, 557−563. Majewska, T., Mikulski, D. & Siwik, T. (2009). Silica grit, charcoal and hardwood ash in turkey nutrition. Journal of Elements, 14, 489−500. Majewska, T., Pyrek, D. & Faruga, A. (2011). A note on the effect of charcoal supplementation on the performance of Big 6 heavy torn turkeys. Journal of Animal Feed Science, 11, 135−141. McFarlane, Z. D., Myer, P. R., Cope, E. R., Evans, N. D., Bone, T. C., Bliss, B. E. & Mulliniks, J. T. (2017). Effect of biochar type and size on in vitro rumen fermentation of orchard grass hay. West Central Research and Extension Center, North Platte. 110 McHenry, J. M. (2010). There is no trade-off between speed and force in a lever system. Biology Letters, 7(6), 878−879. McKenzie, R. A. (1991). Bentonite as therapy for Lantana camara poisoning of cattle. Medical Toxicology and Adverse Drug Experience, 3(1), 33−58. McLennan, M. W. & Amos, M. L. (1989). Treatment of lantana poisoning in cattle [Lantana camara; activated charcoal]. Australia Veterinarian Journal, 4(3), 45. Mekbungwan, A., Yamauchi, K. & Sakaida, T. (2004b). Intestinal villus histological alterations in piglets fed dietary charcoal powder including wood vinegar compound liquid. Anatomia, Histologia, Embryologia, 33(1), 11−16. Mekbungwan, A. Thongwittaya, N. & Yamauchi, K. (2004a). Digestibility of soyabean and pigeon pea seed meals and morphological intestinal alterations in pigs. Journal of Veterinary and Medical Sciences, 66(6), 627−633. Mézes, M., Balogh, K. & Tóth, K. (2010). Preventive and therapeutic methods against the toxic effects of mycotoxins − a review. Acta Veterinaria Hungarica, 58(1), 1−17. Misihairabgwi, J. M., Ezekiel, C. N., Sulyok, M., Shephard, G. S. & Krska, R. (2017) Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007 – 2016). Critical Reviews in Food Science and Nutrition, 59(1), 43−58. DOI: 10.1080/10408398.2017.1357003 Naumann, H. D., Muir, J. P., Lambert, B. D., Tedeschi, L. O. & Kothmann, M. M. (2013). Condensed tannins in the ruminant environment: a perspective on biological activity. Journal of Agricultural Sciences, 1, 8−20. Neuvonen, P. J. & Olkkola, K. T. (1988). Oral activated charcoal in the treatment of intoxications. Journal of Animal Science, 83(8), 1939−1947. O'Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C. I., Kern, J., Kuoppamäki, K., Piva, A., Casadei, G., Pagliuca, G., Cabassi, E., Galvano, F., Solfrizzo, M., Riley, R. T. & Diaz, D. E. (2005). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869−882. Odunsi, A. A., Oladele, T. O., Olaiya, A. O. & Onifade, O. S. (2007). Response of broiler chickens to wood charcoal and vegetable oil based diets. World Journal of Agricultural Sciences, 3(5), 572−575. Oso, A. O., Akapo, O., Sanwo, K. A. & Bamgbose, A. M. (2014). Utilization of unpeeled cassava (Manihot esculenta Crantz) root meal supplemented with or without charcoal by broiler chickens. Journal of Animal Physiology and Animal Nutrition, 98, 431−438. Phongphanith, S. & Preston, T. R. (2018). Effect of rice-wine distillers' byproduct and biochar on growth performance and methane emissions in local "Yellow" cattle fed ensiled cassava root, urea, cassava foliage and rice straw. Livestock Research for Rural Development, 28, 178. Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N. & Maita, M. (2011). Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in Veterinary Science, 91, 92−97. Piva, A., Casadei, G., Pagliuca, G., Cabassi, E., Galvano, F., Solfrizzo, M., Riley, R. T. & Diaz, D. E. (2005). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869−882. Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T. H., Moore, R. J. & Stanley, D. (2016b). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces campylobacter load. PLOS ONE, 11(4), 406. Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T., Moore, R. J. & Stanley, D., (2016a). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces Campylobacter Load, PLOS ONE, 11(4), 0154061. Quaiyum, M., Jahan, R., Jahan, N., Akhter, T. & Islam, M. S. (2014). Effects of bamboo charcoal added feed on reduction of ammonia and growth of Pangasius hypophthalmus. Journal of Aquaculture Research and Development, 5, 69−76. Radostits, O. M., Gay, C. C., Blood, D. C. & Hinchcliff, K. W. (2000). Veterinary Medicine: A textbook of cattle, sheep, pigs, goats and horses, nona edizione. Saunders, London, UK. Rafiu, T. A., Babatunde, G. M., Akinwumi, A. O., Akinboro, A., Adegoke, Z. A. & Oyelola, O. B. (2014). Assessment of activated charcoal vs synthetic toxin-binder on performance, nutrient utilization and meat-quality utilization of broilers fed infected diets. International Journal of Agriculture and Biosciences, 3(5), 219−224. Rao, S. V. R., Raju, M. V. L. N., Reddy, M. R. & Panda, A. K. 2004. Replacement of yellow maize with pearl millet (Pennisetum typhoides), foxtail millet (Setaria italica) or finger millet (Eleusine coracana) in broiler chicken diets containing supplemental enzymes. Asian-Australian Journal Animimal Sciences, 17(6), 836−842. Rao, S. B. N. & Chopra, R. C. (2001). Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats. Small Ruminant Research, 41(3), 203−213. Totusek, R. & W. M. Beeson, W. M. (1953). The Nutritive Value of Wood Charcoal for Pigs. Journal of Animal Science, 12(2), 271−281. https://doi.org/10.2527/jas1953.122271x Ruttanavut, J., Yamauchi, K., Goto, H. & Erikawa, T. (2009). Effects of dietary bamboo charcoal powder including vinegar liquid on growth performance and histological intestinal change in Aigamo ducks. International Journal of Poultry Science, 8(3), 229−236. Saleem, M., Law, A. D., Sahib, M. R., Pervaiz, Z. H. & Zhang, Q. (2018). Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 6, 47−51. Scharman, E. J., Cloonan, H. A. & Durback-Morris, L. F. (2001). Home administration of charcoal: can mothers administer a therapeutic dose? The Journal of Emergency Medicine, 21(4), 357−361. Schirrmann, U. (1984). Aktivkohle und ihre Wirkung auf Bakterien und deren Toxine im Gastrointestinaltrakt. Silivong, P. & Preston, T. R. (2016). Supplements of water spinach (Ipomoea aquatica) and biochar improved feed intake, digestibility, N retention and growth performance of goats fed foliage of Bauhinia acuminata as the basal diet. Livestock Research for Rural Development, 28, 113. Sivilai, B., Preston, T. R., Leng, R. A., Hang, D. T. & Linh, N. Q. (2018). Rice distillers' byproduct and biochar as additives to a forage-based diet for growing Moo Lath pigs; effects on growth and feed conversion. Livestock Research for Rural Development, 30, 113. Soo, J., Malik, B. A., Turner, J. M., Persad, R., Wine, E., Siminoski, K. & Huynh, H. Q. (2013). Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn's disease. Digestive Diseases and Sciences, 58(12), 3584−3591. DOI: 10.1007/s10620-013-2855-y. Epub 2013 Sep 12. PMID: 24026403. Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G. & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85, 869−882. Steiner, C., Das, K. C., Melear, N. & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environment Quality, 39(4), 1236. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E. & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1), 275−290. Struhsaker, T. T., Cooney, D. O. & Siex, K. S. (1997). Charcoal consumption by Zanzibar red colobus monkeys: its function and its ecological and demographic consequences. International Journal of Primatology, 18(1), 61–72. Sun, J., Hippo, E. J., Marsh, H., O'Brien, W. S. & Crelling, J. C. (1997). Activated carbon produced from an Illinois Basin 1080 Coal. Carbon, 35, 341−352. Moe, T. Shunsuke, K., Manabu, I. & Yokoyama Saichiro, Y. (2010). Effects of Supplementation of Dietary Bamboo Charcoal on Growth Performance and Body Composition of Juvenile Japanese Flounder, Paralichthys olivaceus. Journal of the World Aquaculture Society, 255−262. Toth, J. D. & Dou, Z. (2016). Use and Impact of Biochar and Charcoal in Animal Production Systems. In Guo, M., He, Z. and Uchimiya, M., Eds., Agricultural and Environmental Applications of Biochar: Advances and Barriers, Soil Science Society of America, Inc., Madison, 199−224. Van Der Zee, F. P. & Cervantes, F. J. (2009). Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnology Advances, 27(3), 256−277. Van Der Zee, F. P., Bisschops, I. A. E., Lettinga, G. & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science and Technology, 37(2), 402−408. Van, D. T. T., Mui, N. T. & Ledin, I. (2006). Effect of method of processing foliage of Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing goats. Animal Feed Science and Technology, 30(3−4), 242−256. Weber, K. & Quicker, P. G. (2018). Properties of biochar. Fuel, 217, 240−261. Wild, M., Folini, D., Hakuba, M. Z., Schar, C., Seneviratne, S. I., Kato, S. Rutan, D., Ammann, C., Wood, E. F. & Kong-Langlo, G. (2015). The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics, 44, 3393−3429. https://doi.org/10.1007/s00382-014-2430-z Wittstock, U. & Gershenzon, J. (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 5(4), 300−307. DOI: 10.1016/s1369-5266(02)00264-9. PMID: 12179963. Youssef, M. A., El-Khodery, S. A., El-deeb, W. M. & El-Amaiem, W. E. A. (2010). Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level. Tropical Animal Health and Production, 42, 1771−1777. Yu, L., Yuan, Y., Tang, J., Wang, Y. & Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5(1), 1−10.
APA, Harvard, Vancouver, ISO, and other styles
6

Zumayyah M, Anbar, Yuli Kurniawati Sugiyo Pranoto, and Siti Nuzulia. "Early Childhood Teacher Job Satisfaction in Terms of Technostress and Work-Family Conflict in Indonesia." JPUD - Jurnal Pendidikan Usia Dini 17, no. 1 (April 30, 2023): 120–33. http://dx.doi.org/10.21009/jpud.171.09.

Full text
Abstract:
Teachers have an important and primary role in the education system. The achievement of the teacher's role in education will have an impact on job satisfaction. This study aims to analyze the job satisfaction of Early Childhood Education teachers in terms of variables of technostress and work-family conflicts among teachers who are married. This study was designed with a correlational quantitative design. Data collection is done online with the assistance of Google forms-distributed throughout Indonesia. One hundred and fifty-seven teacher respondents who fit the criteria became the research sample. The data analysis technique uses hierarchical regression. The results of the analysis stated that there was a relationship between technostress and job satisfaction. The findings show that two of the five aspects of technostress that techno-overload and techno-insecurity have a negative correlation with job satisfaction, while techno-uncertainty has a positive correlation. In addition, two aspects of technostress namely techno-invasion and techno-complexity do not correlate with job satisfaction. next to the relationship between work-family conflict with job satisfaction. The findings show that one of the two aspects of work-family conflict is strain negatively correlated with job satisfaction while time and behavior do not correlate with job satisfaction. Based on the results of this study it can be concluded that early childhood teachers are more affected by their job satisfaction technostress/techno-overload compared to work-family conflict. Keywords: early childhood teacher, job satisfaction, technostress, work-family conflict References: A Suh, JL (2017). Understanding teleworkers' technostress and its influence on job satisfaction. Internet Research, 27(1), 140–159. https://doi.org/10.1108/IntR-06-2015-0181 1. Dwi Putranti, A., & Achmad Kurniady, D. (2013). The Contribution of Kindergarten Principals' Transformational Leadership and Teacher Job Satisfaction to Organizational Citizenship Behavior (Ocb) of Kindergarten Teachers throughout Kudus Regency. Journal of Education Administration, 1, 1–11. Effiyanti, T., & Sagala, GH (2016). Technostress in Teachers: Confirmation of the Stressor and Its Antecedents. XIX National Symposium on Accounting, 1–18. Ernst Kossek, E., & Ozeki, C. (1998). Work–family conflict, policies, and the job–life satisfaction relationship: A review and directions for organizational behavior–human resources research. Journal of Applied Psychology, 2(83), 139–149. https://doi.org/https://doi.org/10.1037/0021-9010.83.2.139 Frone, M., Russell, M., & Cooper, C. (1992). Prevalence of work-family conflict: Are work and family boundaries asymmetrically permeable? Journal of Organizational Behavior, 13(7), 723-729. Ghufron, MN (2016). Early Childhood Teacher Job Satisfaction in Terms of Class Climate and Teaching Efficacy. Ghufron. NM,. 2016, 4(2), 254–270. Greenhaus, JH, & Beutell, NJ (1985). Sources of Conflict between Work and Family Roles. The Academy of Management Review, 10(1), 76. https://doi.org/https://doi.org/10.2307/258214 Gregson, T. (1987). Factor Analysis of a Multiple-choice Format For Job Satisfaction. Sage Journals, 61(3), 747–750. https://doi.org/https://doi.org/10.2466/pr0.1987.61.3.747 Hardiyanti, WE, & Alwi, NM (2022). Analysis of the Digital Literacy Capabilities of ECE Teachers during the COVID-19 Pandemic. Journal of Obsession : Journal of Early Childhood Education, 6(4), 3759–3770. https://doi.org/10.31004/obsession.v6i4.1657 Herzberg, F. (1965). Job attitudes in the Soviet Union. Personnel Psychology. Hong, X., Liu, Q., & Zhang, M. (2021). Dual Stressors and Female Pre-school Teachers' Job Satisfaction During the COVID-19: The Mediation of Work-Family Conflict. Frontiers in Psychology, 12(June). https://doi.org/10.3389/fpsyg.2021.691498 Jena, R. (2015). Technostress in ICT enabled collaborative learning environment: An empirical study among Indian academicians. Computers in Human Behavior, 51. Jena, RK (2015). Impact of Technostress on Job Satisfaction: An Empirical Study among Indian Academicians. The International Technology Management Review, 5(3), 117. https://doi.org/10.2991/itmr.2015.5.3.1 Jiang, Y., Li, P., Wang, J., & Li, H. (2019). Relationships Between Kindergarten Teachers' Empowerment, Job Satisfaction, and Organizational Climate: A Chinese Model. Journal of Research in Childhood Education, 33(2), 257–270. https://doi.org/10.1080/02568543.2019.1577773 Kahn, RL, Wolfe, DM, Quinn, R., Snoek, JD, & R., & A, R. (1964). Organizational stress. New York: Wiley. Kim, S., & Lee, J. (2021). The mediating effects of ego resilience on the relationship between professionalism perception and technostress of early childhood teachers. International Journal of Learning, Teaching and Educational Research, 20(4), 245–264. https://doi.org/10.26803/IJLTER.20.4.13 Kreitner, R. and AK (200 CE). Organizational behavior. Jakarta: Salemba Empat. Kumar, K & Bhatia, L. (2011). Teachers and their Attitude Towards Teaching. Asia Pacific Journal of Research in Business Management, 2(9). Laksmi, NAP, & Hadi, C. (2012). The relationship between Dual Role Conflict (Work Family Conflict) and Job Satisfaction in Production Employees at PT.X. Journal of Industrial and Organizational Psychology, 1(02), 66–72. Lazarus, RS & Folkman, S. (1984). Stress, appraisal, and coping. New York : McGraw-Hill, Inc. Liu, XS, & Ramsey, J. (2008). Teachers' job satisfaction: Analyzes of the Teacher Follow-up Survey in the United States for 2000–2001. Teaching and Teacher Education, 24(5), 1173–1184. https://doi.org/10.1016/J.TATE.2006.11.010 Mukhlishon, G. (2016). The relationship between Technostress and Job Satisfaction and Organizational Commitment to Mojokerto Hospital Employees. Thesis, University of Surabaya. Netemeyer, RG, Boles, JS, McMurrian, R. (1996). Development and validation of work-family conflict and family-work conflict scales. Journal of Applied Psychology, 81, 400–410. https://doi.org/doi:10.1037/0021-9010.81.4.400 Nisak, IA (2020). The effect of technostress on job satisfaction with work-family conflict and work-family conflict as intervening variables in PDAM Kota…. http://etheses.uin-malang.ac.id/19081/ Noor, NM, & Zainuddin, M. (2011). Emotional labor and burnout among female teachers: Work-family conflict as mediator. Asian Journal of Social Psychology, 14(4), 283–293. https://doi.org/10.1111/j.1467-839X.2011.01349.x PC Smith, LM Kendall, and CLH (1969). The measurement of satisfaction in work and retirement. Rand McNally. Chicago. Park, HJ, & Cho, JS (2016). The influence of information security technostress on the job satisfaction of employees. Journal of Business and Retail Management Research, 11(1), 66–75. Pusdatin Kemendikbud Indonesia. (2021). Early Childhood Education Statistics (ECE) 2020/2021. Ministry of Education and Culture, 1. Raharjo, NP, & Winarko, B. (2021). Analysis of the Digital Literacy Level of the City of Surabaya's Millennial Generation in Overcoming the Spread of Hoaxes. Komunika Journal: Journal of Communication, Media and Informatics, 10(1), 33. https://doi.org/10.31504/komunika.v10i1.3795 Ramakrishna Ayyagari, VG and RP (2011). Technostress: Technological Antecedents and Implicat. Management Information Systems Research Center, University of Minnesota Stable, 35(4), 831–858. https://www.jstor.org/stable/41409963 Roesadi, NFA (2022). The Impact of Technostress on Job Satisfaction During the Covid-19 Pandemic (Study of Educators in Gunungkidul Regency) [Yogyakarta College of Economics]. http://repository.stieykpn.ac.id/id/eprint/2015 Setyawati, R., Ekadewi, D., & Hapsari, MI (2021). The Role of Digital Literacy for Early Childhood Education Teachers to Implement Online Learning Activities During the Covid 19 Pandemic the Role of Digital Literacy for Early Childhood Education Teachers to Implement Online Learning Activities During the Covid. 360–365. Sewell, G and Taskin, L. (2015). Out of sight, out of mind in a new world of work? Autonomy, control, and spatiotemporal scaling in telework,. Organization Studies, 36(11), 1507-1529. Shabir U, M. (2015). Teacher's Position as Educator. Auladun, 2(2), 221–232. Sunata, AAKSAIM (2014). (Study at Triatma Jaya Tourism Vocational School Badung, Tabanan and Buleleng). Journal of Management & Accounting STIE Triatma Mulya (, 20(2), 160–177. Susanto, R. (2020). The Contribution of the Fundamental Factors of Job Satisfaction: The Foundation for the Professional Development of Educators. Scientific Journal of Education and Learning, 4(1), 2. https://ejournal.undiksha.ac.id/index.php/JIPP/article/view/25665/15441 Tarafdar, M., Tu, Q., Ragu-Nathan, BS, & Ragu-Nathan, TS (2007). The Impact of Technostress on Role Stress and Productivity. Journal of Management Information Systems, 24(1), 301–328. https://doi.org/10.2753/MIS0742-1222240109 Tarafdar, M., Tu, Q., Ragu-Nathan, TS, & Ragu-Nathan, BS (2011). Crossing to the dark side: Examining creators, outcomes, and inhibitors of technostress. Communications of the ACM, 54(9), 113–120. https://doi.org/10.1145/1995376.1995403 Widati, MA (2016). Effect of Multiple Role Conflict and Job Stress on Job Satisfaction (Study on Female Teachers at SLB Sri Mujinab Pekanbaru). Thesis, Yogyakarta Muhammadiyah University. Worchek, S., & Shebilske, W. (1989). Psychology: Principles and Applications. New Jersey: Prentice Hall. Yin, P., Ou, CXJ, Davison, RM, & Wu, J. (2018). Coping with mobile technology overload in the workplace. Internet Research, 28(5), 1189–1212. https://doi.org/10.1108/IntR-01-2017-0016
APA, Harvard, Vancouver, ISO, and other styles
7

Bhandari, Sudhir, Ajit Singh Shaktawat, Bhoopendra Patel, Amitabh Dube, Shivankan Kakkar, Amit Tak, Jitendra Gupta, and Govind Rankawat. "The sequel to COVID-19: the antithesis to life." Journal of Ideas in Health 3, Special1 (October 1, 2020): 205–12. http://dx.doi.org/10.47108/jidhealth.vol3.issspecial1.69.

Full text
Abstract:
The pandemic of COVID-19 has afflicted every individual and has initiated a cascade of directly or indirectly involved events in precipitating mental health issues. The human species is a wanderer and hunter-gatherer by nature, and physical social distancing and nationwide lockdown have confined an individual to physical isolation. The present review article was conceived to address psychosocial and other issues and their aetiology related to the current pandemic of COVID-19. The elderly age group has most suffered the wrath of SARS-CoV-2, and social isolation as a preventive measure may further induce mental health issues. Animal model studies have demonstrated an inappropriate interacting endogenous neurotransmitter milieu of dopamine, serotonin, glutamate, and opioids, induced by social isolation that could probably lead to observable phenomena of deviant psychosocial behavior. Conflicting and manipulated information related to COVID-19 on social media has also been recognized as a global threat. Psychological stress during the current pandemic in frontline health care workers, migrant workers, children, and adolescents is also a serious concern. Mental health issues in the current situation could also be induced by being quarantined, uncertainty in business, jobs, economy, hampered academic activities, increased screen time on social media, and domestic violence incidences. The gravity of mental health issues associated with the pandemic of COVID-19 should be identified at the earliest. Mental health organization dedicated to current and future pandemics should be established along with Government policies addressing psychological issues to prevent and treat mental health issues need to be developed. References World Health Organization (WHO) Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ [Accessed on 23 August 2020] Sim K, Chua HC. The psychological impact of SARS: a matter of heart and mind. CMAJ. 2004; 170:811e2. https://doi.org/10.1503/cmaj.1032003. Wu P, Fang Y, Guan Z, Fan B, Kong J, Yao Z, et al. The psychological impact of the SARS epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk. Can J Psychiatr. 2009; 54:302e11. https://doi.org/10.1177/070674370905400504. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020; 395:912e20. https://doi.org/10.1016/S0140-6736(20)30460-8. Robertson E, Hershenfield K, Grace SL, Stewart DE. The psychosocial effects of being quarantined following exposure to SARS: a qualitative study of Toronto health care workers. Can J Psychiatr. 2004; 49:403e7. https://doi.org/10.1177/070674370404900612. Barbisch D, Koenig KL, Shih FY. Is there a case for quarantine? Perspectives from SARS to Ebola. Disaster Med Public Health Prep. 2015; 9:547e53. https://doi.org/10.1017/dmp.2015.38. Jeong H, Yim HW, Song YJ, Ki M, Min JA, Cho J, et al. Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiol Health. 2016;38: e2016048. https://doi.org/10.4178/epih.e2016048. Liu X, Kakade M, Fuller CJ, Fan B, Fang Y, Kong J, et al. Depression after exposure to stressful events: lessons learned from the severe acute respiratory syndrome epidemic. Compr Psychiatr. 2012; 53:15e23. https://doi.org/10.1016/j.comppsych.2011.02.003 Chadda RK, Deb KS. Indian family systems, collectivistic society and psychotherapy. Indian J Psychiatry. 2013;55: S299‑ https://dx.doi.org/10.4103%2F0019-5545.105555. Grover S, Sahoo S, Mehra A, Avasthi A, Tripathi A, Subramanyan A, et al. Psychological impact of COVID‑19 lockdown: An online survey from India. Indian J Psychiatry. 2020; 62:354-62. https://doi.org/ 10.4103/psychiatry.IndianJPsychiatry _427_20. Hawkley LC, Cacioppo JT. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann Behav Med. 2010; 40: 218–27. https://dx.doi.org/10.1007%2Fs12160-010-9210-8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7. Bhandari S, Sharma R, Singh Shaktawat A, Banerjee S, Patel B, Tak A, et al. COVID-19 related mortality profile at a tertiary care centre: a descriptive study. Scr Med. 2020;51(2):69-73. https://doi.org/10.5937/scriptamed51-27126. Baumeister RF, Leary MR. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol Bull. 1995; 117: 497–529. https://doi.org/10.1037/0033-2909.117.3.497. Caspi A, Harrington H, Moffitt TE, Milne BJ, Poulton R. Socially isolated children 20 years later: risk of cardiovascular disease. Arch Pediatr Adolesc Med. 2006; 160(8):805-11. https://doi.org/10.1001/archpedi.160.8.805. Eaker ED, Pinsky J, Castelli WP. Myocardial infarction and coronary death among women: psychosocial predictors from a 20-year follow-up of women in the Framingham Study. Am J Epidemiol. 1992; 135(8):854-64. https://doi.org/10.1093/oxfordjournals.aje.a116381. Luo Y, Hawkley LC, Waite LJ, Cacioppo JT. Loneliness, health, and mortality in old age: a national longitudinal study. Soc Sci Med. 2012 Mar; 74(6):907-14. https://dx.doi.org/10.1016%2Fj.socscimed.2011.11.028. Olsen RB, Olsen J, Gunner-Svensson F, Waldstrøm B. Social networks and longevity. A 14-year follow-up study among elderly in Denmark. Soc Sci Med. 1991; 33(10):1189-95. https://doi.org/10.1016/0277-9536(91)90235-5. Patterson AC, Veenstra G. Loneliness and risk of mortality: a longitudinal investigation in Alameda County, California. Soc Sci Med. 2010; 71(1):181-6. https://doi.org/10.1016/j.socscimed.2010.03.024. Savikko N, Routassalo P, Tilvis RS, Strandberg TE, Pitkalla KH. Predictors and subjective causes of loneliness in an aged population. Arch Gerontol Geriatrics. 2005; 41:3;223-33. https://doi.org/10.1016/j.archger.2005.03.002. Health Advisory for Elderly Population of India during COVID19. Available at: https://www.mohfw.gov.in/pdf/AdvisoryforElderlyPopulation.pdf [Accessed on 13 August 2020]. Dicks D, Myers R, Kling A. Uncus and amygdala lesions: effects on social behavior in the free-ranging rhesus monkey. Science. 1969; 165:69–71. https://doi.org/10.1126/science.165.3888.69. Kanai R, Bahrami B, Duchaine B, Janik A, Banissy MJ, Rees G. Brain structure links loneliness to social perception. Curr Biol. 2012; 22(20):1975-9. https://dx.doi.org/10.1016%2Fj.cub.2012.08.045. Bender AR, Daugherty A, Raz N. Vascular risk moderates associations between hippocampal subfield volumes and memory. J Cogn Neurosci. 2013; 25:1851–62. https://doi.org/10.1162/jocn_a_00435. Raz N. Diabetes: brain, mind, insulin–what is normal and do we need to know? Nat Rev Endocrinol. 2011; 7:636–7. https://doi.org/10.1038/nrendo.2011.149. Colcombe SJ, Erickson KI, Naftali R, Andrew GW, Cohen NJ, McAuley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003; 58:176–80. https://doi.org/10.1093/gerona/58.2.m176. Maass A, Düzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015; 20, 585–93. https://doi.org/10.1038/mp.2014.114. Wilson RS, Krueger KR, Arnold SE, Schneider JA, Kelly JF, Barnes LL, et al. Loneliness and Risk of Alzheimer Disease. Arch Gen Psychiatry. 2007;64(2):234–240. https://doi.org/10.1001/archpsyc.64.2.234. Kogan JH, Frankland PW, Silva AJ. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus. 2000;10(1):47-56. https://doi.org/10.1002/(sici)1098-1063(2000)10:1%3C47::aid-hipo5%3E3.0.co;2-6. Yorgason JT, España RA, Konstantopoulos JK, Weiner JL, Jones SR. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci. 2013;37(6):1022-31. https://doi.org/10.1111/ejn.12113. Bledsoe AC, Oliver KM, Scholl JL, Forster GL. Anxiety states induced by post-weaning social isolation are mediated by CRF receptors in the dorsal raphe nucleus. Brain Res Bull. 2011;85(3-4):117-22. https://dx.doi.org/10.1016%2Fj.brainresbull.2011.03.003. Lukkes JL, Engelman GH, Zelin NS, Hale MW, Lowry CA. Post-weaning social isolation of female rats, anxiety-related behavior, and serotonergic systems. Brain Res. 2012; 1443:1-17. https://dx.doi.org/10.1016%2Fj.brainres.2012.01.005. Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, et al. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology. 2013; 38(8):1535-47. https://doi.org/10.1038/npp.2013.52. Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol. 2009;30(4):497-518. https://doi.org/10.1016/j.yfrne.2009.03.003. Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, et al. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(7):1173-1177. https://doi.org/10.1016/j.pnpbp.2009.06.016. Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience. 2010;168(2):371-86. https://dx.doi.org/10.1016%2Fj.neuroscience.2010.04.007. Ghasemi M, Phillips C, Trillo L, De Miguel Z, Das D, Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev. 2014; 47:336-358. https://doi.org/10.1016/j.neubiorev.2014.08.017. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem. 2000;74(2):785-791. https://doi.org/10.1046/j.1471-4159.2000.740785.x. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349-352. https://doi.org/10.1016/j.biopsych.2007.05.028. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7(8):742-755. https://dx.doi.org/10.1016%2FS1474-4422(08)70165-0. Waxman EA, Lynch DR. N-methyl-D-aspartate Receptor Subtypes: Multiple Roles in Excitotoxicity and Neurological Disease. The Neuroscientist. 2005; 11(1), 37–49. https://doi.org/10.1177/1073858404269012. Hermes G, Li N, Duman C, Duman R. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol Behav. 2011;104(2):354-9. https://dx.doi.org/10.1016%2Fj.physbeh.2010.12.019. Sestito RS, Trindade LB, de Souza RG, Kerbauy LN, Iyomasa MM, Rosa ML. Effect of isolation rearing on the expression of AMPA glutamate receptors in the hippocampal formation. J Psychopharmacol. 2011;25(12):1720-1729. https://doi.org/10.1177/0269881110385595. Toua C, Brand L, Möller M, Emsley RA, Harvey BH. The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats. Neuroscience. 2010;165(2):492-499. https://doi.org/10.1016/j.neuroscience.2009.10.039. Alò R, Avolio E, Mele M, Storino F, Canonaco A, Carelli A et al. Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharmacol Biochem Behav. 2014; 118:79-86. https://doi.org/10.1016/j.pbb.2014.01.007. St JP, Petkov VV. Changes in 5-HT1 receptors in different brain structures of rats with isolation syndrome. General pharmacology. 1990;21(2):223-5. https://doi.org/10.1016/0306-3623(90)90905-2. Miachon S, Rochet T, Mathian B, Barbagli B, Claustrat B. Long-term isolation of Wistar rats alters brain monoamine turnover, blood corticosterone, and ACTH. Brain Res Bull. 1993;32(6):611-614. https://doi.org/10.1016/0361-9230(93)90162-5. Van den Berg CL, Van Ree JM, Spruijt BM, Kitchen I. Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: behavioural and autoradiographic studies. Eur J Neurosci. 1999;11(9):3023-3032. https://doi.org/10.1046/j.1460-9568.1999.00717.x. Vanderschuren LJ, Stein EA, Wiegant VM, Van Ree JM. Social play alters regional brain opioid receptor binding in juvenile rats. Brain Res. 1995;680(1-2):148-156. https://doi.org/10.1016/0006-8993(95)00256-p. Moles A, Kieffer BL, D'Amato FR. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science. 2004;304(5679):1983-1986. https://doi.org/10.1126/science.1095943. Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG. Endogenous opioids and social behavior. Neurosci Biobehav Rev. 1980;4(4):473-487. https://doi.org/10.1016/0149-7634(80)90036-6. Gong JP, Onaivi ES, Ishiguro H, Liu Q, Tagliaferro PA, Brusco A, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071(1):10-23. https://doi.org/10.1016/j.brainres.2005.11.035. Breivogel CS, Sim-Selley LJ. Basic neuroanatomy and neuropharmacology of cannabinoids. Int Rev Psychiatry 2009; 21:2:113-121. https://doi.org/10.1080/09540260902782760. Haj-Mirzaian A, Amini-Khoei H, Haj-Mirzaian A, Amiri S, Ghesmati M, Zahir M, et al. Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress. Brain Res Bull. 2017; 130:200-210. https://doi.org/10.1016/j.brainresbull.2017.01.018. Banach M, Piskorska B, Czuczwar SJ, Borowicz KK. Nitric Oxide, Epileptic Seizures, and Action of Antiepileptic Drugs. CNS & Neurological Disorders - Drug Targets 2011;10: 808. https://doi.org/10.2174/187152711798072347. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. https://dx.doi.org/10.1093%2Feurheartj%2Fehr304. Hu Y, Wu D, Luo C, Zhu L, Zhang J, Wu H, et al. Hippocampal nitric oxide contributes to sex difference in affective behaviors. PNAS. 2012, 109 (35) 14224-14229. https://doi.org/10.1073/pnas.1207461109. Khan MI, Ostadhadi S, Zolfaghari S, Mehr SE, Hassanzadeh G, Dehpour, A et al. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen in mouse force swimming test. Neuroscience Letters. 2016; 612:52-61. https://doi.org/10.1016/j.neulet.2015.12.006. Matsumoto K, Puia G, Dong E, Pinna G. GABAA receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: Possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress. 2007; 10:1:3-12. https://doi.org/10.1080/10253890701200997. Zlatković J, Filipović D. Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochem Int. 2013;63(3):172-179. https://doi.org/10.1016/j.neuint.2013.06.002. Haj-Mirzaian A, Amiri S, Kordjazy N, Momeny M, Razmi A, Balaei MR, et al. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitary-adrenal axis function. Neuroscience. 2016; 315:271-285. https://doi.org/10.1016/j.neuroscience.2015.12.024. Larson HJ. The biggest pandemic risk? Viral misinformation. Nature 2018; 562:309. https://doi.org/10.1038/d41586-018-07034-4. Zarocostas J. How to fight an infodemic. Lancet 2020; 395:676. https://doi.org/10.1016/S0140-6736(20)30461-X. World Health Organization, 2019. Ebola Virus Disease – Democratic Republic of the Congo. Geneva, Switzerland: WHO. Available at: https://www.who.int/csr/don/28-november-2019-ebola-drc/en/ [Accessed on August 8, 2020] Times of India. Covid-19: doctors gone to collect samples attacked in Indore. Available at: https://timesofindia.indiatimes.com/videos/news/covid-19-doctors-goneto- collect-samples-attacked-in-indore/videoshow/74942153.cms; 2020 [Accessed on August 8, 2020]. Withnall A. Coronavirus: why India has had to pass new law against attacks on healthcare workers. The Independent. April 23, 2020. Semple K. “Afraid to be a nurse”: health workers under attack. The New York Times. 2020 Apr 27. The Economist. Health workers become unexpected targets during COVID-19. The Economist. May 11, 2020. Turan B, Budhwani H, Fazeli PL, Browning WR, Raper JL, Mugavero MJ, et al. How does stigma affect people living with HIV? The mediating roles of internalized and anticipated HIV stigma in the effects of perceived community stigma on health and psychosocial outcomes. AIDS Behav. 2017; 21: 283–291. https://doi.org/10.1007/s10461-016-1451-5. James PB, Wardle J, Steel A, Adams J. An assessment of Ebola-related stigma and its association with informal healthcare utilisation among Ebola survivors in Sierra Leone: a cross sectional study. BMC Public Health. 2020; 20: 182. https://doi.org/10.1186/s12889-020-8279-7. Aljazeera, 2020. Iran: Over 700 Dead after Drinking Alcohol to Cure Coronavirus. Aljazeera. Available at: https://www.aljazeera.com/ news/2020/04/iran-700-dead-drinking-alcohol-cure-coronavirus200427163529629.html. (Accessed June 4, 2020) Delirrad M, Mohammadi AB, 2020. New methanol poisoning outbreaks in Iran following COVID-19 pandemic. Alcohol Alcohol. 55: 347–348. https://doi.org/10.1093/alcalc/agaa036. Hassanian-Moghaddam H, Zamani N, Kolahi A-A, McDonald R, Hovda KE. Double trouble: methanol outbreak in the wake of the COVID-19 pandemic in Iran-a cross-sectional assessment. Crit Care. 2020; 24: 402. https://doi.org/10.1186/s13054-020-03140-w. Soltaninejad K. Methanol Mass Poisoning Outbreak: A Consequence of COVID-19 Pandemic and Misleading Messages on Social Media. Int J Occup Environ Med. 2020;11(3):148-150. https://dx.doi.org/10.34172%2Fijoem.2020.1983. Islam MS, Sarkar T, Khan SH, Kamal AM, Hasan SMM, Kabir A, et al. COVID-19–Related Infodemic and Its Impact on Public Health: A Global Social Media Analysis. Am J Trop Med Hyg. 2020; 00(0):1–9. https://doi.org/10.4269/ajtmh.20-0812. Hawryluck L, Gold W, Robinson S, Pogorski S, Galea S, Styra R. SARS control and psychological effects of quarantine, Toronto, Canada. Emerg Infect Dis. 2004;10(7):1206–1212. https://dx.doi.org/10.3201%2Feid1007.030703. Lee S, Chan LYY, Chau AAM, Kwok KPS, Kleinman A. The experience of SARS-related stigma at Amoy Gardens. Soc Sci Med. 2005; 61(9): 2038-2046. https://doi.org/10.1016/j.socscimed.2005.04.010. Yoon MK Kim SY Ko HS Lee MS. System effectiveness of detection, brief intervention and refer to treatment for the people with post-traumatic emotional distress by MERS: a case report of community-based proactive intervention in South Korea. Int J Ment Health Syst. 2016; 10: 51. https://doi.org/10.1186/s13033-016-0083-5. Reynolds DL, Garay JR, Deamond SL, Moran MK, Gold W, Styra R. Understanding, compliance and psychological impact of the SARS quarantine experience. Epidemiol Infect. 2008; 136: 997-1007. https://dx.doi.org/10.1017%2FS0950268807009156. Marjanovic Z, Greenglass ER, Coffey S. The relevance of psychosocial variables and working conditions in predicting nurses' coping strategies during the SARS crisis: an online questionnaire survey. Int J Nurs Stud. 2007; 44(6): 991-998. https://doi.org/10.1016/j.ijnurstu.2006.02.012. Bai Y, Lin C-C, Lin C-Y, Chen J-Y, Chue C-M, Chou P. Survey of stress reactions among health care workers involved with the SARS outbreak. Psychiatr Serv. 2004; 55: 1055-1057. https://doi.org/10.1176/appi.ps.55.9.1055. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/Guidelinesforhomequarantine.pdf [Accessed on 25 August 2020]. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/RevisedguidelinesforHomeIsolationofverymildpresymptomaticCOVID19cases10May2020.pdf [Accessed on 25 August 2020]. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/AdvisoryformanagingHealthcareworkersworkinginCOVIDandNonCOVIDareasofthehospital.pdf (Accessed on 25 August 2020). Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/RevisedguidelinesforInternationalArrivals02082020.pdf [Accessed on 25 August 2020]. Cost of the lockdown? Over 10% of GDP loss for 18 states. Available at: https://timesofindia.indiatimes.com/india/cost-of-the-lockdown-over-10-of-gdp-loss-for-18-states/articleshow/76028826.cms [Accessed on 21 August 2020]. Jorda O, Singh SR, Taylor AM. Longer-Run Economic Consequences of Pandemics. Federal Reserve Bank of San Francisco Working Paper. 2020-09. https://doi.org/10.24148/wp2020-09. Firdaus G. Mental well‑being of migrants in urban center of India: Analyzing the role of social environment. Indian J Psychiatry. 2017; 59:164‑ https://doi.org/10.4103/psychiatry.indianjpsychiatry_272_15. National Crime Record Bureau. Annual Crime in India Report. New Delhi, India: Ministry of Home Affairs; 2018. 198 migrant workers killed in road accidents during lockdown: Report. Available at: https://www.hindustantimes.com/india-news/198-migrant-workers-killed-in-road-accidents-during-lockdown-report/story-hTWzAWMYn0kyycKw1dyKqL.html [Accessed on 25 August 2020]. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020; 20:689-96. https://doi.org/10.1016/S1473-3099(20)30198-5. Dalton L, Rapa E, Stein A. Protecting the psychological health of through effective communication about COVID-19. Lancet Child Adolesc Health. 2020;4(5):346-347. https://doi.org/10.1016/S2352-4642(20)30097-3. Centre for Disease Control. Helping Children Cope with Emergencies. Available at: https://www.cdc.gov/childrenindisasters/helping-children-cope.html [Accessed on 25 August 2020]. Liu JJ, Bao Y, Huang X, Shi J, Lu L. Mental health considerations for children quarantined because of COVID-19. Lancet Child & Adolesc Health. 2020; 4(5):347-349. https://doi.org/10.1016/S2352-4642(20)30096-1. Sprang G, Silman M. Posttraumatic Stress Disorder in Parents and Youth After Health-Related Disasters. Disaster Med Public Health Prep. 2013;7(1):105-110. https://doi.org/10.1017/dmp.2013.22. Rehman U, Shahnawaz MG, Khan NH, Kharshiing KD, Khursheed M, Gupta K, et al. Depression, Anxiety and Stress Among Indians in Times of Covid-19 Lockdown. Community Ment Health J. 2020:1-7. https://doi.org/10.1007/s10597-020-00664-x. Cao W, Fang Z, Hou, Han M, Xu X, Dong J, et al. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research. 2020; 287:112934. https://doi.org/10.1016/j.psychres.2020.112934. Wang C, Zhao H. The Impact of COVID-19 on Anxiety in Chinese University Students. Front Psychol. 2020; 11:1168. https://dx.doi.org/10.3389%2Ffpsyg.2020.01168. Kang L, Li Y, Hu S, Chen M, Yang C, Yang BX, et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. Lancet Psychiatry 2020;7(3): e14. https://doi.org/10.1016/s2215-0366(20)30047-x. Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open 2020;3(3): e203976. https://doi.org/10.1001/jamanetworkopen.2020.3976. Lancee WJ, Maunder RG, Goldbloom DS, Coauthors for the Impact of SARS Study. Prevalence of psychiatric disorders among Toronto hospital workers one to two years after the SARS outbreak. Psychiatr Serv. 2008;59(1):91-95. https://dx.doi.org/10.1176%2Fps.2008.59.1.91. Tam CWC, Pang EPF, Lam LCW, Chiu HFK. Severe acute respiratory syndrome (SARS) in Hongkong in 2003: Stress and psychological impact among frontline healthcare workers. Psychol Med. 2004;34 (7):1197-1204. https://doi.org/10.1017/s0033291704002247. Lee SM, Kang WS, Cho A-R, Kim T, Park JK. Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compr Psychiatry. 2018; 87:123-127. https://dx.doi.org/10.1016%2Fj.comppsych.2018.10.003. Koh D, Meng KL, Chia SE, Ko SM, Qian F, Ng V, et al. Risk perception and impact of severe acute respiratory syndrome (SARS) on work and personal lives of healthcare workers in Singapore: What can we learn? Med Care. 2005;43(7):676-682. https://doi.org/10.1097/01.mlr.0000167181.36730.cc. Verma S, Mythily S, Chan YH, Deslypere JP, Teo EK, Chong SA. Post-SARS psychological morbidity and stigma among general practitioners and traditional Chinese medicine practitioners in Singapore. Ann Acad Med Singap. 2004; 33(6):743e8. Yeung J, Gupta S. Doctors evicted from their homes in India as fear spreads amid coronavirus lockdown. CNN World. 2020. Available at: https://edition.cnn.com/2020/03/25/asia/india-coronavirus-doctors-discrimination-intl-hnk/index.html. [Accessed on 24 August 2020] Violence Against Women and Girls: the Shadow Pandemic. UN Women. 2020. May 3, 2020. Available at: https://www.unwomen.org/en/news/stories/2020/4/statement-ed-phumzile-violence-against-women-during-pandemic. [Accessed on 24 August 2020]. Gearhart S, Patron MP, Hammond TA, Goldberg DW, Klein A, Horney JA. The impact of natural disasters on domestic violence: an analysis of reports of simple assault in Florida (1999–2007). Violence Gend. 2018;5(2):87–92. https://doi.org/10.1089/vio.2017.0077. Sahoo S, Rani S, Parveen S, Pal Singh A, Mehra A, Chakrabarti S, et al. Self-harm and COVID-19 pandemic: An emerging concern – A report of 2 cases from India. Asian J Psychiatr 2020; 51:102104. https://dx.doi.org/10.1016%2Fj.ajp.2020.102104. Ghosh A, Khitiz MT, Pandiyan S, Roub F, Grover S. Multiple suicide attempts in an individual with opioid dependence: Unintended harm of lockdown during the COVID-19 outbreak? Indian J Psychiatry 2020; [In Press]. The Economic Times. 11 Coronavirus suspects flee from a hospital in Maharashtra. March 16 2020. Available at: https://economictimes.indiatimes.com/news/politics-and-nation/11-coronavirus-suspects-flee-from-a-hospital-in-maharashtra/videoshow/74644936.cms?from=mdr. [Accessed on 23 August 2020]. Xiang Y, Yang Y, Li W, Zhang L, Zhang Q, Cheung T, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry 2020;(3):228–229. https://doi.org/10.1016/S2215-0366(20)30046-8. Van Bortel T, Basnayake A, Wurie F, Jambai M, Koroma A, Muana A, et al. Psychosocial effects of an Ebola outbreak at individual, community and international levels. Bull World Health Organ. 2016;94(3):210–214. https://dx.doi.org/10.2471%2FBLT.15.158543. Kumar A, Nayar KR. COVID 19 and its mental health consequences. Journal of Mental Health. 2020; ahead of print:1-2. https://doi.org/10.1080/09638237.2020.1757052. Gupta R, Grover S, Basu A, Krishnan V, Tripathi A, Subramanyam A, et al. Changes in sleep pattern and sleep quality during COVID-19 lockdown. Indian J Psychiatry. 2020; 62(4):370-8. https://doi.org/10.4103/psychiatry.indianjpsychiatry_523_20. Duan L, Zhu G. Psychological interventions for people affected by the COVID-19 epidemic. Lancet Psychiatry. 2020;7(4): P300-302. https://doi.org/10.1016/S2215-0366(20)30073-0. Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020; 14(5): 779–788. https://dx.doi.org/10.1016%2Fj.dsx.2020.05.035. Wright R. The world's largest coronavirus lockdown is having a dramatic impact on pollution in India. CNN World; 2020. Available at: https://edition.cnn.com/2020/03/31/asia/coronavirus-lockdown-impact-pollution-india-intl-hnk/index.html. [Accessed on 23 August 2020] Foster O. ‘Lockdown made me Realise What’s Important’: Meet the Families Reconnecting Remotely. The Guardian; 2020. Available at: https://www.theguardian.com/keep-connected/2020/apr/23/lockdown-made-me-realise-whats-important-meet-the-families-reconnecting-remotely. (Accessed on 23 August 2020) Bilefsky D, Yeginsu C. Of ‘Covidivorces’ and ‘Coronababies’: Life During a Lockdown. N. Y. Times; 2020. Available at: https://www.nytimes.com/2020/03/27/world/coronavirus-lockdown-relationships.html [Accessed on 23 August 2020]
APA, Harvard, Vancouver, ISO, and other styles
8

Hayat, Anees, Asia Riaz, and Nazia Suleman. "Effect of gamma irradiation and subsequent cold storage on the development and predatory potential of seven spotted ladybird beetle Coccinella septempunctata Linnaeus (Coleoptera; Coccinellidae) larvae." World Journal of Biology and Biotechnology 5, no. 2 (August 15, 2020): 37. http://dx.doi.org/10.33865/wjb.005.02.0297.

Full text
Abstract:
Seven spot ladybird beetle, (Coccinella septempunctata) is a widely distributed natural enemy of soft-bodied insect pests especially aphids worldwide. Both the adult and larvae of this coccinellid beetle are voracious feeders and serve as a commercially available biological control agent around the globe. Different techniques are adopted to enhance the mass rearing and storage of this natural enemy by taking advantage of its natural ability to withstand under extremely low temperatures and entering diapause under unfavorable low temperature conditions. The key objective of this study was to develop a cost effective technique for enhancing the storage life and predatory potential of the larvae of C. septempunctata through cold storage in conjunction with the use of nuclear techniques, gamma radiations. Results showed that the host eating potential of larvae was enhanced as the cold storage duration was increased. Gamma irradiation further enhanced the feeding potential of larvae that were kept under cold storage. Different irradiation doses also affected the development time of C. septempuntata larvae significantly. Without cold storage, the lower radiation doses (10 and 25 GY) prolonged the developmental time as compared to un-irradiated larvae. Furthermore, the higher dose of radiation (50GY) increased the developmental time after removal from cold storage. This study first time paves the way to use radiation in conjunction with cold storage as an effective technique in implementation of different biological control approaches as a part of any IPM programs.Key wordGamma irradiations; cold storage, Coccinella septempunctata larvae; predatory potential; integrated pest management programme.INTRODUCTIONNuclear techniques such as gamma radiations have a vast application in different programmes of biological control including continuous supply of sterilized host and improved rearing techniques (Greany and Carpenter, 2000; Cai et al., 2017). Similarly irradiation can be used for sentinel-host eggs and larvae for monitoring survival and distribution of parasitoids (Jordão-paranhos et al., 2003; Hendrichs et al., 2009; Tunçbilek et al., 2009; Zapater et al., 2009; Van Lenteren, 2012). Also, at the production level, such technique may facilitate the management of host rearing, improve quality and expedite transport of product (Fatima et al., 2009; Hamed et al., 2009; Wang et al., 2009). Gamma irradiations can also be used to stop insect’s development to enhance host suitability for their use in different mass rearing programs (Celmer-Warda, 2004; Hendrichs et al., 2009; Seth et al., 2009). Development and survival of all insects have a direct connection with temperatures which in turn affect the physical, functional and behavioral adaptations (Ramløy, 2000). Many insects living in moderate regions can survive at low temperature by process of diapause. A temperature between 0 to 10oC may cause some insects to become sluggish and they only become active when the temperature is suitable. Such insects show greater adaptations to flexible temperature regimes for better survival. Many studies have reported this concept of cold-hardiness in insects in general (Bale, 2002; Danks, 2006) and specifically in coccinellid beetles over past years (Watanabe, 2002; Koch et al., 2004; Pervez and Omkar, 2006; Labrie et al., 2008; Berkvens et al., 2010). Using this cold hardiness phenomenon, many coccinellids have been studied for the effect of cold storage such as Coccinella undecimpunctata (Abdel‐Salam and Abdel‐Baky, 2000), Coleomegilla maculata (Gagné and Coderre, 2001) and Harmonia axyridis (Watanabe, 2002). This natural phenomenon, therefore, can be a helpful tool in developing low temperature stockpiling for improving mass-rearing procedures (Mousapour et al., 2014). It may provide a significant output in terms of providing natural enemies as and when required during pest infestation peaks (Venkatesan et al., 2000). Use of irradiation in conjunction with cold storage proves to be an effective technique in implementation of different biological control approaches as a part of any IPM programme. A study reported that the pupate of house fly, Musca domestica irradiated at dose of 500 Gy and can stored up to 2 months at 6°C for future use for a parasitoid wasp Spalangia endius rearing (Zapater et al., 2009). Similarly, when irradiated at 20 GY, parasitic wasps Cotesia flavipes were stored safely up to two months without deterioration of their parasitic potential (Fatima et al., 2009). Similarly, bio-control program of sugarcane shoot borer Chilo infescatellus proved successful through the use of irradiation combined with cold storage of its egg and larval parasitoids Trichogramma chilonis and C. flavipes (Fatima et al., 2009). Less mobile life stages such as larvae are of significance in any IPM strategy because they remain on target site for more time period as compared to adults. Therefore, use of predatory larvae is very promising in different biological control approaches because of their immediate attack on pests and more resistance to unfavorable environmental conditions than delicate egg stage. In addition, with their augmentation into fields, larval stage shows their presence for longer time than adult stage and their feeding potential is also satisfactory as that of adults. For the best utilization of these predators in the field and maximum impact of 3rd and 4th larval instars on prey, we should encourage late 2nd second instar larvae of predatory beetles in the fields as these instars have more feeding capacity due to increased size and ability to handle larger preys.In spite of higher significance, there is little information available about the effect of cold storage on the survival of larval instars of different ladybird beetles and its effect on their predatory potential. Very few studies report the use of cold storage for non-diapausing larval stage like for Semiadalia undecimnotata and only one study reported the short-term storage (up to two weeks) of 2nd and 3rd instar coccinellid, C. maculate, without any loss in feeding voracity of larvae after storage (Gagné and Coderre, 2001). The survival of 3rd and 4th larval instars of C. undecimpunctata for 7 days after storage at 5oC was reported in a study but the survival rate declined after 15-60 days of storage (Abdel‐Salam and Abdel‐Baky, 2000). As C. septempunctata is considered one of the voracious predators (Afroz, 2001; Jandial and Malik, 2006; Bilashini and Singh, 2009; Xia et al., 2018) and diapause is a prominent feature of this beetle and it may undergo facultative diapause under suitable laboratory conditions (Suleman, 2015). No information is available to date about the combined effect of cold storage and irradiation on the larval instars of this species.OBJECTIVES The objective of this study was to devise a cost effective technique for the cold storage and its effect on the subsequent predatory potential of the seven spotted ladybird beetle larvae in conjunction with the use of gamma radiations. Hypothesis of the study was that an optimum length of low temperature treatment for storage purpose would not affect the predation capacity of C. septempunctata larvae and their developmental parameters including survival and pupation will remain unaffected. Furthermore, use of gamma irradiation will have some additional effects on survival and feeding capacity of irradiated C. septempunctata larvae. Such techniques can be utilized in different biocontrol programs where short term storage is required. So these larvae can be successfully imparted in different IPM programs against sucking complex of insect pests as a component of biological control strategyMATERIALS AND METHODSPlant materials: Collection and rearing of C. septempunctata: Adult C. septempunctata were collected from the wheat crop (in NIAB vicinity and farm area) in the month of March during late winter and early in spring season 2016-2017. They were kept in plastic jars and were fed with brassica aphids. Under controlled laboratory conditions (25+2oC, 16h: 8h L:D and 65+5% R.H.), eggs of C. septempuctata were obtained and after hatching, larvae were also given brassica aphids as dietary source. Larvae of second instar were selected for this experiment (as the first instar is generally very weak and vulnerable to mortality under low temperatures). As the larvae approached second instar, they were separated for the experimentation. Irradiation of larvae at different doses: Irradiation of larvae was carried out by the irradiation source 137CS at Radiation laboratory, and the larvae were then brought back to the IPM laboratory, Plant Protection Division, Nuclear Institute for Agriculture and Biology (NIAB) Faisalabad. Radiation doses of 10 GY (Grey), 25 GY and 50 GY were used to treat the second instar larvae. There were three replicates for each treatment and five larvae per replicate were used. Control treatment was left un-irradiated.Cold storage of irradiated larvae: In present work, second instar C. septempunctata larvae were studied for storage at low temperature of 8oC. The larvae were kept at 8oC for 0, I and II weeks where week 0 depicts no cold treatment and this set of larvae was left under laboratory conditions for feeding and to complete their development. For larvae that were kept under cold storage for one week at 8°C, the term week I was devised. Similarly, week II denotes the larvae that remained under cold conditions (8°C) for two continuous weeks. Larvae were removed from cold storage in their respective week i.e., after week I and week II and were left under laboratory conditions to complete their development by feeding on aphids. Data collection: For recording the predatory potential of C. septempunctata larvae, 100 aphids were provided per larva per replicate on a daily basis until pupation as this number was more than their feeding capacity to make sure that they were not starved (personal observation). Observations were recorded for survival rate, developmental time and feeding potential. Data analysis: Data were statistically analysed by Statistical Software SPSS (Version 16.0). The data were subjected to normality check through the One-sample Kolmogorov-Smirnov test. Non normal data were transformed to normal data which were then used for all parametric variance tests. One-way and two-way analyses of variance were used. For comparison between variables, LSD test at α 0.05 was applied.RESULTSFeeding potential of irradiated larvae after removal from cold storage: Results showed an increase in the feeding potential of C. septempunctata larvae with increased cold storage duration. The feeding potential was significantly higher for the larvae that spent maximum length of time (week II) under cold storage conditions followed by week I and week 0. Gamma irradiations further enhanced the feeding potential of larvae that were kept under cold storage. When larvae were irradiated at 10 GY, the eating capacity of larvae increased significantly with the duration of cold storage. Similarly, larvae that were irradiated at 25 GY, showed increase in feeding potential on aphids as the time period of cold storage increased. The feeding potential of larvae that were irradiated at 50 GY, was again significantly increased with increase of cold storage duration. When different radiation doses were compared to week 0 of storage, there was a significant difference in feeding potential and larvae irradiated at 50 GY consumed the maximum numbers of aphids when no cold storage was done followed by larvae irradiated at 10 and 25 GY. With the other treatment, where larvae were kept under cold storage for one week (week I) the larvae irradiated at 50GY again showed the highest feeding potential. The feeding potential of irradiated larvae was again significantly higher than the un-irradiated larvae that were kept for two weeks (week II) under cold storage (table 1).Two-way ANOVA was performed to check the interaction between the different radiation doses and different lengths of storage durations for feeding potential of C. septempunctata larvae on aphids. The feeding potential of larvae irradiated at different doses and subjected to variable durations of cold storage were significantly different for both the radiation doses and cold storage intervals. Furthermore, the interaction between the radiation doses and storage duration was also significant meaning that the larvae irradiated at different doses with different length of cold storage were having significant variations in feeding levels (table 2).Developmental time of irradiated larvae after removal from cold storage: Significant difference was found in the development time of the larvae of C. septempunctata when irradiated at different doses at week 0 (without cold storage). The larvae irradiated at 10 GY took the maximum time for development and with the increase in irradiation dosage, from 25 to 50 GY, the time of development was shortened. The larvae irradiated at 50 GY had the same development time as the un-irradiated ones. When, the irradiated larvae were subjected to cold storage of one week duration (week I), their development time after removal from storage condition varied significantly. The larvae irradiated at 25 GY took the maximum time for development followed by larvae irradiated at 50 GY and 10 GY. There was an indication that the development time was extended for irradiated larvae as compared to un-irradiated larvae.Results also depicted a significant difference in the time taken by irradiated larvae to complete their development after taken out from cold storage of two weeks duration (week II). As the storage time of irradiated larvae increased, the development time was prolonged. Results showed that the larvae that were irradiated at 25 and 50 GY, took the maximum time to complete their development. With the prolonged duration of cold storage up to two weeks (week II), this difference of development time was less evident at lower doses (10 GY). The larvae irradiated at 10 GY showed a significant difference in their developmental duration after being taken out of cold storage conditions of the week 0, I and II. There was no difference in the developmental duration of larvae that were un-irradiated and subjected to different regimes of storage. Un-irradiated larvae were least affected by the duration of storage. With the increase in the storage time, a decrease in the developmental time was recorded. Larvae that were irradiated at 10 GY, took the maximum period to complete their development when no cold storage was done (week 0) followed by week I and II of cold storage. When the larvae irradiated at 25 GY were compared for their development time, there was again significant difference for week 0, I and II of storage duration. Maximum time was taken by the larvae for their complete development when removed from cold storage after one week (week I). With the increase in storage duration the time taken by larvae to complete their development after removal from cold storage reduced.When the larvae were removed after different lengths of cold storage duration i.e., week 0, week I and week II, there was a significant difference in the developmental time afterwards. Results have shown that the higher dose of radiation, increased the developmental time after removal from cold storage. The larvae irradiated at 50 GY took the longest time to complete their development after removal from cold storage (week I and week II) as compared the larvae that were not kept under cold storage conditions (week 0) (table 3).Interaction between the different radiation doses and different lengths of storage durations for development time of larvae were checked by two-way ANOVA. The development time of larvae irradiated at different doses and subjected to variable durations of cold storage were significantly different for both the doses and cold storage intervals. Furthermore, the interaction between the radiation doses and storage duration was also significant meaning that the larvae irradiated at different doses with different length of cold storage were having significant variations in development times (table 4). DISCUSSIONThe present research work indicates the possibility of keeping the larval instars of C. septempunctata under cold storage conditions of 8oC for a short duration of around 14 days without affecting its further development and feeding potential. Furthermore, irradiation can enhance the feeding potential and increase the development time of larval instars. This in turn could be a useful technique in mass rearing and field release programmes for biological control through larval instars. Usually temperature range of 8-10oC is an optimal selection of low temperature for storage as reported earlier for eggs two spotted ladybird beetle, Adalia bipunctata and the eggs of C. septempunctata (Hamalainen and Markkula, 1977), Trichogramma species (Jalali and Singh, 1992) and fairyfly, Gonatocerus ashmeadi (Hymenoptra; Mymaridae) (Leopold and Chen, 2007). However, a study reported more than 80% survival rate for the coccinellid beetle, Harmonia axyridis for up to 150 days at moderately low temperature of 3-6oC (Ruan et al., 2012). So there is great flexibility in coccinellid adults and larvae for tolerating low temperature conditions. After removal from cold storage, larvae showed better feeding potential with consumption of more aphids when compared to normal larvae that were not placed under low temperature conditions. This indicates that when the adult or immature insect stages are subjected to low temperature environment, they tend to reduce their metabolic activity for keeping them alive on the reserves of their body fats and sustain themselves for a substantial length of time under such cold environment. Hereafter, the larval instars that were in cold storage were behaving as if starved for a certain length of time and showed more hunger. This behavior of improved or higher feeding potential of stored larvae has been reported previously (Chapman, 1998). Hence, the feeding potential of C. septempunctata larvae significantly increased after cold storage. Gagné and Coderre (2001) reported higher predatory efficacy in larvae of C. maculata when stored at the same temperature as in the present study i.e., 8oC. Similarly, Ruan et al. (2012) showed that the multicolored Asian ladybug, H. axyridis, when stored under cold conditions, had more eating capacity towards aphids Aphis craccivora Koch than the individuals that were not stored. Such studies indicate that the higher feeding potential in insects after being subjected to low temperature environmental conditions could be due to the maintenance of their metabolism rate to a certain level while utilizing their energy reserves to the maximum extent (Watanabe, 2002).The individuals coming out from cold storage are therefore capable of consuming more pray as they were in a condition of starvation and they have to regain their energy loss through enhanced consumption. Furthermore, the starvation in C. septempunctata has previously been reported to affect their feeding potential (Suleman et al., 2017). In the present study, the larval development was delayed after returning to normal laboratory conditions. Cold storage affects the life cycle of many insects other than coccinellids. The cold storage of green bug aphid parasitoid, Lysiphlebus testaceipes Cresson (Hymenoptra; Braconidae) mummies increased the life cycle 3-4 times. Nevertheless, in current study the development process of stored larvae resumed quickly after taking them out and larvae completed their development up to adult stage. Similar kinds of results were reported for resumption of larval development after removal from cold storage conditions. Such studies only report satisfactory survival rates and development for a short duration of cold storage but as the length of storage is increased, it could become harmful to certain insects. Gagné and Coderre (2001) reported that cold storage for longer period (three weeks) proved fatal for almost 40% of larvae of C. maculata. Furthermore, in the same study, the feeding potential of C. maculata larvae was also affected beyond two weeks of cold storage due to the loss of mobility after a long storage period. Many studies have reported that longer durations of low temperature conditions can either damage the metabolic pathways of body cells or may increase the levels of toxins within the bodies of insects. Also, low temperature exposure for longer duration may cause specific interruptions in the insect body especially neuro-hormones responsible for insect development, which could be dangerous or even life threatening.Chen et al. (2004) also reported that the biological qualities of parasitized Bemisia tabaci pupae on population quality of Encarsia formosa were affected negatively with increase in cold storage duration. Similarly, the egg hatchability of green lacewing Chrysoperla carnea Stephen was lost completely beyond 18 days of cold storage (Sohail et al., 2019). However, in the present study the cold storage was done for maximum two weeks and it is to be regarded as a short term storage hence the survival rate was satisfactory. Longer periods of cold storage for larvae are not considered safe due to their vulnerable state as compared to adults which are hardier. Also 2nd instar larvae used in the present study for cold storage for being bigger in size and physical stronger than 1st instar. Abdel‐Salam and Abdel‐Baky (2000) reported that in C. undecimpunctata the cold storage of 3rd and 4th larval instars was higher and considered safer than early larval instars. The same study showed sharp decline in survival rate after two weeks and there was no survival beyond 30-60 days of cold storage. The present study showed that short term storage of the larvae of C. septempunctata could be done without any loss of their feeding potential or development so the quality of predator remained unaffected. Similar kind of work for many other insects had been reported previously where cold storage technique proved useful without deteriorating the fitness of stored insects. For example, the flight ability of reared codling moth Cydia pomonella Linnaeus remained unaffected after removal from cold storage (Matveev et al., 2017). Moreover, a sturdy reported that pupae of a parasitoid wasp Trichogramma nerudai (Hymenoptera; Trichogrammatidae) could be safely put in cold storage for above than 50 days (Tezze and Botto, 2004). Similarly, a technique of cold storage of non-diapausing eggs of black fly Simulium ornaturm Meigen was developed at 1oC. Another study reported safe storage of a predatory bug insidious flower bug Orius insidiosus for more than 10 days at 8°C (Bueno et al., 2014).In present study without cold storage, the lower doses of 10 and 25 GY prolonged the developmental time as compared to un-irradiated larvae and higher doses of irradiations in conjunction with cold storage again significantly prolonged the developmental time of larvae when returned to the laboratory conditions. Salem et al. (2014) also reported that Gamma irradiations significantly increased the duration of developmental stages (larvae and pupae) in cutworm, Agrotis ipsilon (Hufnagel). In another study, where endoparasitic wasps Glyptapanteles liparidis were evaluated with irradiated and non-irradiated gypsy moth Lymantria dispar larvae for oviposition, it was found that non-irradiated larvae had a shorter time to reach the adult stage as compared to irradiated larvae (Novotny et al., 2003). Both for higher doses with cold storage and lower doses without cold storage extended the larval duration of C. septempunctata. In another study when the parasitoid wasp Habrobracon hebetor was irradiated at the dose of 10 GY, it resulted in prolonged longevity (Genchev et al., 2008). In the same study, when another parasitoid Ventruria canescens was irradiated at lower doses of 4GY and 3 GY, it resulted in increased emergence from the host larvae, while gamma irradiations at the dose of 1 GY and 2 GY significantly stimulated the rate of parasitism (Genchev et al., 2008). The current study also indicated higher rates of predation in the form of increased feeding potential of larvae as a result of irradiations at lower doses.CONCLUSIONThe outcome of the current study shows that storage of 2nd instar C. septempunctata at low temperature of 8oC for a short duration of about 14 days is completely safe and could have broader application in different biocontrol programs. Such flexibility in storage duration can also assist in different mass rearing techniques and commercial uses. The combination of gamma radiation with low temperature cold storage could be a useful tool in developing different biological pest management programs against sucking insect pests. Incidence of periodic occurrence of both the target insect pests with their predatory ladybird beetles in synchrony is an important aspect that could be further strengthened by cold storage techniques. Therefore, short or long term bulk cold storage of useful commercial biocontrol agents and then reactivating them at appropriate time of pest infestation is a simple but an advantageous method in mass rearing programs. Increased feeding capacity of stored larvae is another edge and hence such larvae may prove more beneficial as compared to unstored larvae. Both cold storage and improved feeding of the C. septempuctata larvae can be utilized for implementation of IPM for many sucking insect pests of various crops, fruits and vegetables. Due to some constraints this study could not be continued beyond two weeks but for future directions, higher doses and longer duration periods could further elaborate the understanding and better application of such useful techniques in future IPM programmes on a wider scale. Also, some other predatory coccinellid beetle species can be tested with similar doses and cold storage treatments to see how effective this technique is on other species as well.ACKNOWLEDGMENTS We acknowledge the Sugarcane Research and Development Board for providing a research grant (No. SRDB/P/4/16) to carry out this research work. This paper is a part of research thesis entitled “Effect of gamma irradiation on storage and predatory potential of seven spotted lady bird beetle larvae” submitted to Higher Education Commission, Pakistan for the degree of M.Phil. Biological Sciences.CONFLICT OF INTERESTAuthors have no conflict of interest.REFERENCESAbdel‐Salam, A. and N. J. J. o. A. E. Abdel‐Baky, 2000. Possible storage of Coccinella undecimpunctata (Col., coccinellidae) under low temperature and its effect on some biological characteristics. 124(3‐4): 169-176.Afroz, S., 2001. Relative abundance of aphids and their coccinellid predators. Journal of aphidology, 15: 113-118.Bale, J., 2002. Insects and low temperatures: From molecular biology to distributions and abundance. Biological sciences, 357(1423): 849-862.Berkvens, N., J. S. Bale, D. Berkvens, L. Tirry and P. De Clercq, 2010. Cold tolerance of the harlequin ladybird Harmonia axyridis in europe. Journal of insect physiology, 56(4): 438-444.Bilashini, Y. and T. J. I. J. A. E. Singh, 2009. Studies on population dynamics and feeding potential of Coccinella septempunctata linnaeus in relation to Lipaphis erysimi (kaltenbach) on cabbage. Indian journal of applied entomology, 23: 99-103.Bueno, V. H. P., L. M. Carvalho and J. Van Lenteren, 2014. Performance of Orius insidiosus after storage, exposure to dispersal material, handling and shipment processes. Bulletin of insectology, 67(2): 175-183.Cai, P., X. Gu, M. Yao, H. Zhang, J. Huang, A. Idress, Q. Ji, J. Chen and J. Yang, 2017. The optimal age and radiation dose for Bactrocera dorsalis (Hendel)(Diptera: Tephritidae) eggs as hosts for mass-reared Fopius arisanus (Sonan)(Hymenoptera: Braconidae). Biological control, 108: 89-97.Celmer-Warda, K., 2004. Preliminary studies suitability and acceptability of irradiated host larvae Plodia interpunctella (Hubner) on larval parasitoids Venturia canescens (gravenhorst). Annals of warsaw agricultural university, horticulture (Landscape Architecture), 25: 67-73.Chapman, R. F., 1998. The insects: Structure and function. Cambridge university press.Chen, Q., L.-f. Xiao, G.-r. Zhu, Y.-s. LIU, Y.-j. ZHANG, Q.-j. WU and B.-y. XU, 2004. Effect of cold storage on the quality of Encarsia formosa Gahan. Chinese journal of biological control, 20(2): 107-109.Danks, H., 2006. Insect adaptations to cold and changing environments. The Canadian entomologist, 138(1): 1-23.Fatima, B., N. Ahmad, R. M. Memon, M. Bux and Q. Ahmad, 2009. Enhancing biological control of sugarcane shoot borer, Chilo infuscatellus (Lepidoptera: Pyralidae), through use of radiation to improve laboratory rearing and field augmentation of egg and larval parasitoids. Biocontrol science technology, 19(sup1): 277-290.Gagné, I. and D. Coderre, 2001. Cold storage of Coleomegilla maculata larvae. Biocontrol science technology, 11(3): 361-369.Genchev, N., N. Balevski, D. Obretenchev and A. Obretencheva, 2008. Stimulation effects of low gamma radiation doses on perasitoids Habrobracon hebetor and Ventruria canescens. Journal of Balkan ecology, 11: 99-102.Greany, P. D. and J. E. Carpenter, 2000. Årea-ide control of fruit flies and other insect pests: Importance. Joint proceedings of the International Conference on Årea-Wide Control of insect pests, May 28–June 2, 1998 and the Fifth International symposium on fruit flies of economi, June 1-5.Hamalainen, M. and M. Markkula, 1977. Cool storage of Coccinella septempunctata and Adalia bipunctata (Col., coccinellidae) eggs for use in the biological control in greenhouses. Annales agricultural fennicae, 16: 132-136.Hamed, M., S. Nadeem and A. Riaz, 2009. Use of gamma radiation for improving the mass production of Trichogramma chilonis and Chrysoperla carnea. Biocontrol science technology, 19(sup1): 43-48.Hendrichs, J., K. Bloem, G. Hoch, J. E. Carpenter, P. Greany and A. S. Robinson, 2009. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques. Biocontrol science technology, 19(sup1): 3-22.Jalali, S. and S. Singh, 1992. Differential response of four Trichogramma species to low temperatures for short term storage. Entomophaga, 37(1): 159-165.Jandial, V. K. and K. Malik, 2006. Feeding potential of Coccinella septempunctata Linn. (Coccinellidae: Coleoptera) on mustard aphid, lipaphis erysimi kalt. And potato peach aphid, Myzus persicae sulzer. Journal of entomological research, 30(4): 291-293.Jordão-paranhos, B. A., J. M. Walder and N. T. Papadopoulos, 2003. A simple method to study parasitism and field biology of the parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) on Ceratitis capitata (Diptera: Tephritidae). Biocontrol science technology, 13(6): 631-639.Koch, R. L., M. Carrillo, R. Venette, C. Cannon and W. D. Hutchison, 2004. Cold hardiness of the multicolored asian lady beetle (Coleoptera: Coccinellidae). Environmental entomology, 33(4): 815-822.Labrie, G., D. Coderre and E. Lucas, 2008. Overwintering strategy of multicolored asian lady beetle (Coleoptera: Coccinellidae): Cold-free space as a factor of invasive success. Annals of the entomological society of America, 101(5): 860-866.Leopold, R. and W.-l. Chen, 2007. Cold storage of the adult stage of Gonatocerus ashmeadi girault: The impact on maternal and progeny quality. In: Proceedings of the 2007 pierce’s disease research symposium, San Diego, CA. pp: 42-46.Matveev, E., J. Kwon, G. Judd and M. J. T. C. E. Evenden, 2017. The effect of cold storage of mass-reared codling moths (Lepidoptera: Tortricidae) on subsequent flight capacity. The Canadian entomologist, 149(3): 391-398.Mousapour, Z., A. Askarianzadeh and H. Abbasipour, 2014. Effect of cold storage of pupae parasitoid wasp, Habrobracon hebetor (say)(Hymenoptera: Braconidae), on its efficiency. Archives of phytopathology plant protection, 47(8): 966-972.Novotny, J., M. Zúbrik, M. L. McManus and A. M. Liebhold, 2003. Sterile insect technique as a tool for increasing the efficacy of gypsy moth biocontrol. Proceedings: Ecology, survey and management of forest insects GTR-NE-311, 311.Pervez, A. and Omkar, 2006. Ecology and biological control application of multicoloured asian ladybird, Harmonia axyridis: A review. Biocontrol science technology, 16(2): 111-128.Ramløy, U.-B., 2000. Aspects of natural cold tolerance in ectothermic animals. Human reproduction, 15(suppl_5): 26-46.Ruan, C.-C., W.-M. Du, X.-M. Wang, J.-J. Zhang and L.-S. Zang, 2012. Effect of long-term cold storage on the fitness of pre-wintering Harmonia axyridis (pallas). BioControl, 57(1): 95-102.Salem, H., M. Fouda, A. Abas, W. Ali and A. Gabarty, 2014. Effects of gamma irradiation on the development and reproduction of the greasy cutworm, Agrotis ipsilon (Hufn.). Journal of radiation research applied sciences, 7(1): 110-115.Seth, R. K., T. K. Barik and S. Chauhan, 2009. Interaction of entomopathogenic nematodes, Steinernema glaseri (Rhabditida: Steinernematidae), cultured in irradiated hosts, with ‘f1 sterility’: Towards management of a tropical pest, Spodoptera litura (fabr.)(Lepidoptera: Noctuidae). Biocontrol science technology, 19(sup1): 139-155.Sohail, M., S. S. Khan, R. Muhammad, Q. A. Soomro, M. U. Asif and B. K. Solangi, 2019. Impact of insect growth regulators on biology and behavior of Chrysoperla carnea (stephens)(Neuroptera: Chrysopidae). Ecotoxicology, 28(9): 1115-1125.Suleman, N., 2015. Heterodynamic processes in Coccinella septempunctata L. (Coccinellidae: Coleoptera): A mini review. Entomological science, 18(2): 141-146.Suleman, N., M. Hamed and A. Riaz, 2017. Feeding potential of the predatory ladybird beetle Coccinella septempunctata (Coleoptera; Coccinellidae) as affected by the hunger levels on natural host species. Journal of phytopathology pest management, 4: 38-47.Tezze, A. A. and E. N. Botto, 2004. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae). Biological control, 30(1): 11-16.Tunçbilek, A. S., U. Canpolat and F. Sumer, 2009. Suitability of irradiated and cold-stored eggs of Ephestia kuehniella (Pyralidae: Lepidoptera) and Sitotroga cerealella (Gelechidae: Lepidoptera) for stockpiling the egg-parasitoid Trichogramma evanescens (Trichogrammatidae: Hymenoptera) in diapause. Biocontrol science technology, 19(sup1): 127-138.Van Lenteren, J. C., 2012. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57(1): 1-20.Venkatesan, T., S. Singh and S. Jalali, 2000. Effect of cold storage on cocoons of Goniozus nephantidis muesebeck (Hymenoptera: Bethylidae) stored for varying periods at different temperature regimes. Journal of entomological research, 24(1): 43-47.Wang, E., D. Lu, X. Liu and Y. Li, 2009. Evaluating the use of nuclear techniques for colonization and production of Trichogramma chilonis in combination with releasing irradiated moths for control of cotton bollworm, Helicoverpa armigera. Biocontrol science technology, 19(sup1): 235-242.Watanabe, M., 2002. Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). European journal of entomology, 99(1): 5-10.Xia, J., J. Wang, J. Cui, P. Leffelaar, R. Rabbinge and W. Van Der Werf, 2018. Development of a stage-structured process-based predator–prey model to analyse biological control of cotton aphid, Aphis gossypii, by the sevenspot ladybeetle, Coccinella septempunctata, in cotton. Ecological complexity, 33: 11-30.Zapater, M. C., C. E. Andiarena, G. P. Camargo and N. Bartoloni, 2009. Use of irradiated musca domestica pupae to optimize mass rearing and commercial shipment of the parasitoid spalangia endius (Hymenoptera: Pteromalidae). Biocontrol science technology, 19(sup1): 261-270.
APA, Harvard, Vancouver, ISO, and other styles
9

Thi Van Anh, Nguyen, Nguyen Thi Minh Hang, Le Hong Luyen, and Vu Thi Thom. "Chemical Compositions of the n-hexane Fraction of Canna edulis Ker Gawl Rhizomes." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 4 (December 5, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4325.

Full text
Abstract:
In this study, six compounds isolated from the n-hexane fraction of Canna edulis Ker Gawl rhizomes for the first time include 24-methylenecycloartane-3β-ol, sitoindoside I, citrulloside, 16β-hydro-19-al-ent-kauran-17-oic acid, daucosterol, and β-sitosterol. Spectroscopic methods as MS and NMR were used to elucidate their structures. Keywords: Canna edulis Ker Gawl, β-sitosterol, daucosterol, sitoindoside I, citrulloside, 24-methylenecycloartane-3β-ol, 16β-hydro-19-al-ent-kauran-17-oic acid. References [1] T. H. Vu, Q. U. Le, Edible Canna (Canna edulis Ker), a Potential Crop for Vietnam Food Industry, Int. J. Bot, Vol. 4, No. 4, 2019, pp. 58-59.[2] A. S. A. Snafi, Bioactive Components and Pharmacological Effects of Canna indica - an Overview, Int. J. Pharmacol. Toxicol., Vol. 5, No. 2, 2015, pp. 71-75.[3] N. Tanakar, The Utilization of Edible Canna Plants in Southeastern Asia and Southern China, Econ. Bot, Vol. 58, No. 1, 2004, pp. 112-114.[4] J. Zhang, W. Z. Wu, Q. Mi, Q, Phenolic Compounds from Canna edulis Ker Residue and Their Antioxidant Activity, LWT - Food Sci. Technol., Vol. 44, No. 10, 2011, pp. 2091-2096.[5] J. Zhang, W. Z. Wu, Soluble Dietary Fiber from Canna edulis Ker By-product and Its Physicochemical Properties, Carbohydr. Polym., No. 92, No. 1, 2013, pp. 289-296.[6] F. Xie, S. Gong, W. Zhan, J. Wu, Z. Wang, Potential of Lignin from Canna edulis Ker Residue in the Inhibition of α-d-glucosidase: Kinetics and Interaction Mechanism Merging with Docking Simulation, Int. J. Biol. Macromol., Vol. 95,No. 2017, pp. 592-602.[7] T. M. H. Nguyen, H. L. Le, T. T. Ha, B. H. Bui,N. T. Le, V. H. Nguyen, T. V. A. Nguyen, Inhibitory Effect on Human Platelet Aggregation and Coagulation and Antioxidant Activity of Canna edulis Ker Gawl Rhizhomes and Its Secondary Metabolites, J. Ethnopharmacol., Vol. 263, 2020, pp.113-136.[8] J. D. P. Teresa, J. G. Urones, J. S. Marcos,P. Basabe, M. J. S. Cuarado, R. F. Moro, Triterpenes from Euphorbia broteri, Phytochem, Vol. 26, 1987, pp. 1767-1776. [9] A. T. Nguyen, H. Malonne, P. Duez, R. V. Fastre, M. Vanhaelen, J. Fontaine, Cytotoxic Constituents from Plumbago zeylanica, Fitoterapia, Vol. 75,No. 5, 2004, pp. 500-504.[10] F. J. Momeni, S. F. Kimbu, B. L. Sondengam,M. T. H. Khan, M. I. Choundhary, A. U. Rahman, Potent Inhibitors of Tyrosinase Activity from Citrullus colocynthis Schrad. (Cucurbitaceae), Acta Pharmaceutica Sciencia, Vol, 52, 2010, pp. 328-334.[11] Y. C. Wu, Y. C. Hung, F. R. Chang, M. Cosentino, H. K. Wang, K. H. Lee, Identification of ent-16β,17-dihydroxykauran-19-oic Acid as an Anti-HIV Principle and Isolation of the New Diterpenoids Annosquamosins A and B from Annona squamosa. J. Nat. Prod., Vol. 59, No. 6, 1996, pp. 635-637.[12] F. R. Chang, P. Y. Yang, J. Y. Lin, K. H. Lee,Y. C. Wu, Bioactive Kaurane Diterpenoids from Annona glabra, J Nat Prod, Vol. 61, No. 4, 1998, pp. 437-439.[13] F. M., Moghaddam, M. Farimani, M. Amin, Chemical Constituents of Dichloromethane Extract of Cultivated Satureja khuzistanica. Evid Based Complement Alternat Med., Vol. 4, No. 1, 2007, pp. 95-98.[14] Z. Sheng, Z. Dai, S. Pan, H. Wang, Y. Hu, W. Ma, Isolation and Characterization of an α-glucosidase Inhibitor from Musa spp. (Baxijiao) Flowers, Molecules, Vol. 19, No. 7, 2014, pp. 10563-10573.[15] E. Gupta, β-sitosterol: Predominant Phytosterol of Therapeutic Potential, Innova Food Tech, Vol. 32, 2020, pp. 465-477.[16] J. Zeng, X. Liu, X. Li, Y. Zheng, B. Liu, Y. Xiao, Daucosterol Inhibits the Proliferation, Migration and Invasion of Hepatocellular Carcinoma Cells via Wnt/ β-catenin Signaling,Molecules, Vol. 22, No. 2017, pp. 862.[17] K. H. Kuo, Y. T. Yeh, S. Y. Pan, S. C. Hsieh, Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive (Canarium Album L.) Fruit Extracts. Foods, Vol. 8, No. 10, 2019, pp. 441.
APA, Harvard, Vancouver, ISO, and other styles
10

ROS, Editorial Office. "Redox Signaling in Doxorubicin-Induced Ferroptosis." Reactive Oxygen Species 13 (February 19, 2023). http://dx.doi.org/10.20455/ros.2023.n803.

Full text
Abstract:
Doxorubicin is among the most widely used anticancer drugs; however, its clinical use is associated with cardiomyopathy and heart failure. Studies show ferroptosis as a pivotal form of cell death underlying doxorubicin cardiomyopathy. Recently, multiple redox signaling pathways have been discovered to underly doxorubicin-induced ferroptosis. This Cutting-Edge Research Highlights discusses these latest advances, focusing on pathways involving Nrf2/HO-1, GPx4, and Alas1/heme synthesis. (First online: February 19, 2023) REFERENCES Zhu H, Sarkar S, Scott L, Danelisen I, Trush MA, Jia Z, et al. Doxorubicin Redox biology: redox cycling, topoisomerase inhibition, and oxidative stress. React Oxyg Species (Apex) 2016; 1(3):189–98. doi: https://dx.doi.org/10.20455/ros.2016.835 Higgins AY, O'Halloran TD, Chang JD. Chemotherapy-induced cardiomyopathy. Heart Fail Rev 2015; 20(6):721–30. doi: https://dx.doi.org/10.1007/s10741-015-9502-y Page RL, 2nd, O'Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, et al. Drugs that may cause or exacerbate heart failure: a scientific statement from the American Heart Association. Circulation 2016; 134(6):e32–69. doi: https://dx.doi.org/10.1161/CIR.0000000000000426 Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 2019; 116(7):2672–80. doi: https://dx.doi.org/10.1073/pnas.1821022116 Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5):1060–72. doi: https://dx.doi.org/10.1016/j.cell.2012.03.042 Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 2016; 113(34):E4966–75. doi: https://dx.doi.org/10.1073/pnas.1603244113 Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017; 13(1):81–90. doi: https://dx.doi.org/10.1038/nchembio.2238 Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124(2):617–30. doi: https://dx.doi.org/10.1172/JCI72931 Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020; 5(9). doi: https://dx.doi.org/10.1172/jci.insight.132747 Abe K, Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Furusawa S, et al. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci Signal 2022; 15(758):eabn8017. doi: https://dx.doi.org/10.1126/scisignal.abn8017
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography