Journal articles on the topic 'Working fluid temperature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Working fluid temperature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhu, Qidi, Zhiqiang Sun, and Jiemin Zhou. "Performance analysis of organic Rankine cycles using different working fluids." Thermal Science 19, no. 1 (2015): 179–91. http://dx.doi.org/10.2298/tsci120318014z.
Full textLiu, Guanglin, Qingyang Wang, Jinliang Xu, and Zheng Miao. "Exergy Analysis of Two-Stage Organic Rankine Cycle Power Generation System." Entropy 23, no. 1 (December 30, 2020): 43. http://dx.doi.org/10.3390/e23010043.
Full textImre, Attila R., Réka Kustán, and Axel Groniewsky. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles." Energies 12, no. 10 (May 27, 2019): 2028. http://dx.doi.org/10.3390/en12102028.
Full textShuja, Shahzada Zaman, Bekir Sami Yilbas, and Hussain Al-Qahtani. "Thermal Assessment of Selective Solar Troughs." Energies 12, no. 16 (August 15, 2019): 3130. http://dx.doi.org/10.3390/en12163130.
Full textKolasiński, Piotr. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders." Energies 13, no. 3 (January 24, 2020): 573. http://dx.doi.org/10.3390/en13030573.
Full textVijayaraghavan, Sanjay, and D. Y. Goswami. "Organic Working Fluids for a Combined Power and Cooling Cycle." Journal of Energy Resources Technology 127, no. 2 (February 6, 2005): 125–30. http://dx.doi.org/10.1115/1.1885039.
Full textZhang, Bing, Shuang Yang, Jin Liang Xu, and Guang Lin Liu. "Working Fluid Selection for Organic Rankine Cycles from a Molecular Structural Point of View." Advanced Materials Research 805-806 (September 2013): 649–53. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.649.
Full textMikielewicz, Dariusz, and Jarosław Mikielewicz. "Criteria for selection of working fluid in low-temperature ORC." Chemical and Process Engineering 37, no. 3 (September 1, 2016): 429–40. http://dx.doi.org/10.1515/cpe-2016-0035.
Full textLi, Jinwang, Ningxiang Lu, and Tianshu Cong. "Experimental study on evaporation-capillary pumping flow in capillary wick and working fluid system." Thermal Science, no. 00 (2019): 413. http://dx.doi.org/10.2298/tsci180918413l.
Full textMustapic, Nenad, Vladislav Brkic, and Matija Kerin. "Subcritical organic ranking cycle based geothermal power plant thermodynamic and economic analysis." Thermal Science 22, no. 5 (2018): 2137–50. http://dx.doi.org/10.2298/tsci180104275m.
Full textWang, Zhijian, Hua Tian, Lingfeng Shi, Gequn Shu, Xianghua Kong, and Ligeng Li. "Fluid Selection of Transcritical Rankine Cycle for Engine Waste Heat Recovery Based on Temperature Match Method." Energies 13, no. 7 (April 10, 2020): 1830. http://dx.doi.org/10.3390/en13071830.
Full textYang, Shuang, Bing Zhang, Jin Liang Xu, Wei Zhang, and Chao Xian Wang. "Working Fluid Selection for an Organic Rankine Cycle for Waste Heat Recovery under Different Heat Source Temperatures." Advanced Materials Research 732-733 (August 2013): 213–17. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.213.
Full textMikielewicz, Dariusz, and Jarosław Mikielewicz. "Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC." Archives of Thermodynamics 32, no. 3 (December 1, 2011): 57–70. http://dx.doi.org/10.2478/v10173-011-0013-5.
Full textZhao, Guo Chang, Li Ping Song, Xiao Chen Hou, and Yong Wang. "Thermodynamic Optimization of the Organic Rankine Cycle in a Concentrating Photovoltaic/Thermal Power Generation System." Applied Mechanics and Materials 448-453 (October 2013): 1514–18. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1514.
Full textRuonan, Wang, Liu Bin, and Liu Haodong. "Experimental results and analysis of throttling refrigeration with ternary mixed refrigerant." E3S Web of Conferences 236 (2021): 01008. http://dx.doi.org/10.1051/e3sconf/202123601008.
Full textDutkowski, Krzysztof, Marcin Kruzel, and Tadeusz Bohdal. "Experimental Studies of the Influence of Microencapsulated Phase Change Material on Thermal Parameters of a Flat Liquid Solar Collector." Energies 14, no. 16 (August 19, 2021): 5135. http://dx.doi.org/10.3390/en14165135.
Full textRadermacher, R., and L. A. Howe. "Temperature Transformation for High-Temperature Heat Pumps." Journal of Engineering for Gas Turbines and Power 110, no. 4 (October 1, 1988): 652–57. http://dx.doi.org/10.1115/1.3240186.
Full textSucahyo, Lilis. "PERFORMANCE ANALYSIS OF WORKING FLUIDS ON ORGANIC RANKIE CYCLE (ORC) MODEL WITH BIOMASS ENERGY AS A HEAT SOURCES." Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) 8, no. 3 (September 30, 2019): 175. http://dx.doi.org/10.23960/jtep-l.v8i3.175-186.
Full textHan, Zhong He, and Yi Da Yu. "Selection of Working Fluids for Low-Temperature Power Generation Organic Rankine Cycles System." Advanced Materials Research 557-559 (July 2012): 1509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.1509.
Full textMatuszewska, Dominika, Marta Kuta, and Jan Górski. "A thermodynamic assessment of working fluids in ORC systems." EPJ Web of Conferences 213 (2019): 02057. http://dx.doi.org/10.1051/epjconf/201921302057.
Full textOko, C. O. C., and S. N. Nnamchi. "Heat transfer in a low latitude flat-plate solar collector." Thermal Science 16, no. 2 (2012): 583–91. http://dx.doi.org/10.2298/tsci100419075o.
Full textGeng, Changyou, Xinli Lu, Hao Yu, Wei Zhang, Jiaqi Zhang, and Jiansheng Wang. "Theoretical Study of a Novel Power Cycle for Enhanced Geothermal Systems." Processes 10, no. 3 (March 4, 2022): 516. http://dx.doi.org/10.3390/pr10030516.
Full textOvsyannik, A. V., and V. P. Kliuchinski. "Thermodynamic Analysis and Optimization of Secondary Overheating Parameters in Turbo-Expander Plants on Low Boiling Working Fluids." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 64, no. 2 (April 9, 2021): 164–77. http://dx.doi.org/10.21122/1029-7448-2021-64-2-164-177.
Full textWei, Danchen, Cheng Liu, and Zhongfeng Geng. "Conversion of Low-Grade Heat from Multiple Streams in Methanol to Olefin (MTO) Process Based on Organic Rankine Cycle (ORC)." Applied Sciences 10, no. 10 (May 23, 2020): 3617. http://dx.doi.org/10.3390/app10103617.
Full textRoupec, Jakub, Filip Jeniš, Zbyněk Strecker, Michal Kubík, and Ondřej Macháček. "Stribeck Curve of Magnetorheological Fluid within Pin-on-Disc Configuration: An Experimental Investigation." Materials 13, no. 20 (October 20, 2020): 4670. http://dx.doi.org/10.3390/ma13204670.
Full textGakal, P., D. Mishkinis, A. Leilands, I. Usakovs, R. Orlov, and Y. Rogoviy. "Analysis of working fluids applicable for high-temperature loop heat pipe applications." IOP Conference Series: Materials Science and Engineering 1226, no. 1 (February 1, 2022): 012036. http://dx.doi.org/10.1088/1757-899x/1226/1/012036.
Full textKhatoon, Saboora, Nasser Mohammed A. Almefreji, and Man-Hoe Kim. "Thermodynamic Study of a Combined Power and Refrigeration System for Low-Grade Heat Energy Source." Energies 14, no. 2 (January 13, 2021): 410. http://dx.doi.org/10.3390/en14020410.
Full textLebedev, A. V., and S. N. Lysenko. "Extension of the Working Temperature Range of Magnetic Fluid Susceptibility Measurements." Solid State Phenomena 190 (June 2012): 649–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.649.
Full textNowak, Władysław, Aleksandra Borsukiewicz-Gozdur, and Sławomir Wiśniewski. "Influence of working fluid evaporation temperature in the near-critical point region on the effectiveness of ORC power plant operation." Archives of Thermodynamics 33, no. 3 (September 1, 2012): 73–83. http://dx.doi.org/10.2478/v10173-012-0019-7.
Full textLim, Elaine, and Yew Mun Hung. "Suppression of Thermocapillary Effect in Evaporating Thin Film of Micro Heat Pipes." Advanced Materials Research 1101 (April 2015): 467–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1101.467.
Full textImre, Attila, Réka Kustán, and Axel Groniewsky. "Mapping of the Temperature–Entropy Diagrams of van der Waals Fluids." Energies 13, no. 6 (March 23, 2020): 1519. http://dx.doi.org/10.3390/en13061519.
Full textYu, Lei, and Wei Qiang Liu. "Analysis of the Evaporating Characteristics of the Grooved Micro Heat Pipe with Alkali Metals as Working Fluid." Advanced Materials Research 516-517 (May 2012): 84–87. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.84.
Full textLei, Huan, Jin Fu Yang, and Dong Jiang Han. "The Performance of a Novel Solar Cooling and Power System with Different Working Fluids." Applied Mechanics and Materials 672-674 (October 2014): 86–93. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.86.
Full textNemec, Patrik, Zuzana Kolková, and Milan Malcho. "Operating Activity Visualization and Thermal Performance Measurement of Pulsating Heat Pipe." Defect and Diffusion Forum 369 (July 2016): 42–47. http://dx.doi.org/10.4028/www.scientific.net/ddf.369.42.
Full textNegovora, A. V., R. G. Magafurov, and A. I. Nizamutdinov. "SUBSTATIATION OF THE WORKING FLUID TEMPERATURE WHEN TESTING DIESEL INJECTORS." VESTNIK OF THE BASHKIR STATE AGRARIAN UNIVERSITY 51, no. 3 (September 20, 2019): 99–106. http://dx.doi.org/10.31563/1684-7628-2019-51-3-99-106.
Full textChernysheva, M. A., S. V. Vershinin, and Yu F. Maydanik. "Operating temperature and distribution of a working fluid in LHP." International Journal of Heat and Mass Transfer 50, no. 13-14 (July 2007): 2704–13. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.020.
Full textYe, Shuang, Yan Xu, Yu Chen, and Wei Huang. "Analysis of heat transfer and irreversibility of organic rankine cycle evaporator for selecting working fluid and operating conditions." Thermal Science 24, no. 3 Part B (2020): 2013–22. http://dx.doi.org/10.2298/tsci180716305y.
Full textRusso, G. M., L. Krambeck, F. B. Nishida, P. H. D. Santos, and T. Antonini Alves. "THERMAL PERFORMANCE OF THERMOSYPHON FOR DIFFERENT WORKING FLUIDS." Revista de Engenharia Térmica 15, no. 1 (June 30, 2016): 03. http://dx.doi.org/10.5380/reterm.v15i1.62150.
Full textWang, Ruijie, Jingquan Zhao, Lei Zhu, and Guohua Kuang. "Multi-Objective Optimization of Organic Rankine Cycle for Low-Grade Waste Heat Recovery." E3S Web of Conferences 118 (2019): 03053. http://dx.doi.org/10.1051/e3sconf/201911803053.
Full textPimonov, Igor, Igor Pohorilyi, and Maksim Fedyuchkov. "Establishment of rational parameters of temperature of working liquid in the hydraulic drive of the excavator of the fourth dimensional group at different equipment." Bulletin of Kharkov National Automobile and Highway University, no. 95 (December 16, 2021): 98. http://dx.doi.org/10.30977/bul.2219-5548.2021.95.0.98.
Full textKareem, Aya H. A. Kareem, and Ali A. F. Al-Hamadan. "Experimental study of Organic Rankine cycle system by using R141b as working fluid." Wasit Journal of Engineering Sciences 8, no. 1 (July 5, 2020): 21–30. http://dx.doi.org/10.31185/ejuow.vol8.iss1.152.
Full textWang, Shuang, Wei Zhang, Yong-Qiang Feng, Xin Wang, Qian Wang, Yu-Zhuang Liu, Yu Wang, and Lin Yao. "Entropy, Entransy and Exergy Analysis of a Dual-Loop Organic Rankine Cycle (DORC) Using Mixture Working Fluids for Engine Waste Heat Recovery." Energies 13, no. 6 (March 11, 2020): 1301. http://dx.doi.org/10.3390/en13061301.
Full textGe, Zhong, Jian Li, Yuanyuan Duan, Zhen Yang, and Zhiyong Xie. "Thermodynamic Performance Analyses and Optimization of Dual-Loop Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery." Applied Sciences 9, no. 4 (February 16, 2019): 680. http://dx.doi.org/10.3390/app9040680.
Full textLi, Peng, Zhonghe Han, Xiaoqiang Jia, Zhongkai Mei, and Xu Han. "Analysis of the Effects of Blade Installation Angle and Blade Number on Radial-Inflow Turbine Stator Flow Performance." Energies 11, no. 9 (August 28, 2018): 2258. http://dx.doi.org/10.3390/en11092258.
Full textBellos, Evangelos, and Christos Tzivanidis. "Parametric Analysis of a Polygeneration System with CO2 Working Fluid." Applied Sciences 11, no. 7 (April 3, 2021): 3215. http://dx.doi.org/10.3390/app11073215.
Full textCihan, Ertugrul, and Barıs Kavasogullari. "Energy and exergy analysis of a combined refrigeration and waste heat driven organic Rankine cycle system." Thermal Science 21, no. 6 Part A (2017): 2621–31. http://dx.doi.org/10.2298/tsci150324002c.
Full textLiu, Shi Jie, Wen Sheng Yu, and Wu Chen. "Development and Experimental Study of New Working Fluids for Moderate-High-Temperature Heat Pumps." Advanced Materials Research 468-471 (February 2012): 1313–21. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.1313.
Full textStefanovic, Velimir, Sasa Pavlovic, Marko Ilic, Nenad Apostolovic, and Dragan Kustrimovic. "Numerical simulation of concentrating solar collector P2CC with a small concentrating ratio." Thermal Science 16, suppl. 2 (2012): 471–82. http://dx.doi.org/10.2298/tsci120430184s.
Full textKhan, Muhammad Sajid, Muhammad Abid, Khuram Pervez Amber, Hafiz Muhammad Ali, Mi Yan, and Samina Javed. "Numerical Performance Investigation of Parabolic Dish Solar-Assisted Cogeneration Plant Using Different Heat Transfer Fluids." International Journal of Photoenergy 2021 (April 28, 2021): 1–15. http://dx.doi.org/10.1155/2021/5512679.
Full textLiang, Feng, Ghaithan Al-Muntasheri, Hooisweng Ow, and Jason Cox. "Reduced-Polymer-Loading, High-Temperature Fracturing Fluids by Use of Nanocrosslinkers." SPE Journal 22, no. 02 (October 5, 2016): 622–31. http://dx.doi.org/10.2118/177469-pa.
Full text