Academic literature on the topic 'Wonga Park (Vic )'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wonga Park (Vic ).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wonga Park (Vic )"

1

Norman, Armando Henrique, and Charles Dalcanale Tesser. "Prevenção quaternária na atenção primária à saúde: uma necessidade do Sistema Único de Saúde." Cadernos de Saúde Pública 25, no. 9 (September 2009): 2012–20. http://dx.doi.org/10.1590/s0102-311x2009000900015.

Full text
Abstract:
Em 2003, a Organização Mundial de Colégios Nacionais, Academias e Associações Acadêmicas de Médicos gerais/Médicos de Família (WONCA) propôs um conceito relativamente pouco discutido que visa proteger os pacientes da intervenção médica desnecessária e prevenir iatrogenias: a prevenção quaternária. Tal conceito tem evidente relevância para a saúde pública e para o Sistema Único de Saúde (SUS), em tempos de intensa medicalização social e expansão da atenção à saúde via Estratégia Saúde da Família. Neste artigo, o conceito de prevenção quaternária é apresentado e contextualizado, e sua relevância é discutida, ressaltando três situações comuns do cuidado médico geradoras de grande iatrogenia: excesso de rastreamento, de solicitação de exames complementares e de medicalização de fatores de risco. Defende-se a necessidade da adoção e discussão deste conceito no SUS e especialmente na atenção primária à saúde.
APA, Harvard, Vancouver, ISO, and other styles
2

Ko, Hyun Min, Wona Jee, Do-il Park, Somi Park, Ye-Rin Park, Hyeung-Jin Jang, and Ji Hoon Jung. "Abstract 864: Ophiopogonin D increase apoptosis by activating p53 via ribosomal protein L5 and L11 and inhibiting the expression of c-Myc via CNOT2." Cancer Research 82, no. 12_Supplement (June 15, 2022): 864. http://dx.doi.org/10.1158/1538-7445.am2022-864.

Full text
Abstract:
Abstract Extracted from the root tuber of Ophiopogon japonicas, ophiopogon is well known to have an anti-cancer effect. However, the underlying mechanisms are still largely unknown. Here, we report that Ophiopogon D (OP-D) can inhibit colon cancer cell proliferation and induce apoptosis by inhibiting c-Myc expression through activation of p53 and CNOT2 regulation. Our results showed that OP-D induced p53 expression via ribosomal protein L5 or L11 and inhibited c-Myc expression through CNOT2 in a dose-dependent manner. Additionally, OP-D regulated cyclin D1 and CDK4 which are well known as cell cycle regulatory proteins. Consistently, OP-D inhibited the phosphorylation of AKT expression in a dose-dependent manner. Furthermore, OP-D shortened c-Myc’s half-life in a time-dependent manner. Furthermore, CNOT2 knockdown enhanced the inhibitory effect of OP-D on c-Myc in colon cancer cells. Interestingly, OP-D has increased the apoptotic effect of colon cancer cells when combined with doxorubicin or 5-FU, a treatment already used clinically. Altogether, our results suggested that OP-D regulates colon cancer cell survival and induces apoptosis by inhibiting c-Myc expression via activation of p53 and CNOT2 regulation. Citation Format: Hyun Min Ko, Wona Jee, Do-il Park, Somi Park, Ye-Rin Park, Hyeung-Jin Jang, Ji Hoon Jung. Ophiopogonin D increase apoptosis by activating p53 via ribosomal protein L5 and L11 and inhibiting the expression of c-Myc via CNOT2 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 864.
APA, Harvard, Vancouver, ISO, and other styles
3

Castro Filho, Eno Dias de, Gustavo Diniz Ferreira Gusso, Marcelo Marcos Piva Demarzo, Airton Stein, João Carlos Schneider, Marcello Dala Bernardina Dalla, Maria Inez Padula Anderson, et al. "A especialização em MFC e o desafio da qualificação médica para a Estratégia Saúde da Família: proposta de especialização, em larga escala, via educação à distância." Revista Brasileira de Medicina de Família e Comunidade 3, no. 9 (November 17, 2007): 199–209. http://dx.doi.org/10.5712/rbmfc3(9)338.

Full text
Abstract:
A necessidade de um processo de especialização em larga escala em Medicina de Família e Comunidade (MFC) para os médicos da Estratégia Saúde da Família no Brasil (ESF) é identificada nesse documento. Os programas de residência médica (PRMs) seguem como padrão-ouro de especialização, mas não são suficientes para atingir o objetivo acima. Estimula-se que o processo seja acreditado pela Sociedade Brasileira de Medicina de Família e Comunidade (SBMFC) e que seus concluintes sejam certificados por meio do concurso de titulação TEMFC. Modalidades à distância com momentos presenciais são as mais adequadas, observando-se propiciar acesso a profissionais já inseridos em serviço, valorizar sua continuidade nos mesmos, orientar o aprendizado para uma integralidade inteligente e coordenar diferentes recursos para viabilizar o ensino-aprendizagem. As competências buscadas são as definidas pela WONCA, adaptadas à realidade nacional. Aprender a aprender como um MFC é o principal objetivo visado. Casos complexos,construídos de acordo com uma matriz de agravos e problemas diversos, atendidas às realidades regionais, são a principal ferramenta do processo. A SBMFC propõe-se a impulsionar tal estratégia
APA, Harvard, Vancouver, ISO, and other styles
4

Palacino, James, Chen Bai, Yong Yi, Anna Skaletskaya, Khuloud Takrouri, Wesley Wong, Min-Soo Kim, et al. "Abstract 3933: ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer." Cancer Research 82, no. 12_Supplement (June 15, 2022): 3933. http://dx.doi.org/10.1158/1538-7445.am2022-3933.

Full text
Abstract:
Abstract Targeted protein degradation (TPD) molecules, including IMiD-based molecular glues and heterobifunctional degraders have expanded the breadth of therapeutic options through both their catalytic mechanism of action and ability to degrade previously “undruggable” target proteins. To increase the efficacy vs. tolerability window of protein degradation and improve drug delivery we combine the catalytic approach of targeted protein degradation with the precision of tumor targeting therapeutic antibodies. Here, we describe the development of ORM-5029, a highly potent and selective GSPT1 degrader targeting HER2-expressing tumor cells. We first screened a panel of cell lines to identify tumors where treatment with a selective, membrane-permeable, molecular glue (SMol007) would exhibit the most potent GSPT1 degradation, integrated stress response, and ultimately apoptosis. HER2+ breast cancer cell lines were more sensitive to GSPT1 degradation than the average IC50 for all cell lines tested. Several of our GSPT1 degrader molecules were tested in HER2-positive tumor models and displayed a consistent pattern of potent cytotoxicity. An unbiased global proteomics evaluation of changes in abundance identified SMol006 as a specific GSPT1 degrader, with no significant depletion of over 6500 other proteins detected. To evaluate whether antibody delivery could provide a potency increase of Smol006 and other GSTP1 degrader payloads, we conjugated these payloads to the HER2-targeting antibodies, trastuzumab and pertuzumab. Given the comparable activity of both antibodies and frequent use of trastuzumab as the antibody domain of several ADCs, we selected pertuzumab as our targeting antibody. Further medicinal chemistry optimization and evaluation of many linker-payloads led to the identification of our first preclinical AnDC candidate ORM-5029, which is composed of SMol006, a highly-potent GSPT1 degrader conjugated to pertuzumab via a clinically-validated Val-Cit PABc linker. ORM-5029 treatment in the HER2-expressing cell lines showed 10-1000 fold superiority in potency compared to SMol006, Kadcyla and/or Enhertu treatment. We evaluated ORM-5029 in several in vivo xenograft models and observed robust efficacy, following a single-dose treatment testing as low as 3 mg/kg. In the BT474 xenograft model, treatment with ORM-5029 demonstrated single-dose activity superior to Kadcyla, and comparable to Enhertu when given at an equivalent dose. In an HCC1569 xenograft model, tumor growth inhibition correlated with the degree and duration of GSPT1 depletion and changes in expression of previously described integrated stress response biomarker genes. ORM-5029 is currently in preclinical development as a potential first-in-class targeted protein degrader therapy with HER2-targeted delivery. Citation Format: James Palacino, Chen Bai, Yong Yi, Anna Skaletskaya, Khuloud Takrouri, Wesley Wong, Min-Soo Kim, Dong-Ki Choi, Da-Young Kim, Yeonhee Yang, Jiae Kook, Pedro Lee, Hangyeol Jeong, Sang-Mi Jee, Jiyun Park, Ki-Hwan Chang, Nathan Fishkin, Peter U. Park. ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3933.
APA, Harvard, Vancouver, ISO, and other styles
5

Banerjee, Rahul, Ann A. Lazar, Chloe Ryan, Jen Knoche, Kelly Jean Brassil, Lindsey Jackson, Dhiren Patel, et al. "Randomized Study of Digital Life Coaching during Autologous Stem Cell Transplantation." Blood 138, Supplement 1 (November 5, 2021): 4023. http://dx.doi.org/10.1182/blood-2021-147125.

Full text
Abstract:
Abstract BACKGROUND: Autologous stem cell transplantation (ASCT) for multiple myeloma (MM) entails sudden life changes including acute symptom burden, changes in physical function, and shifting caregiver dynamics. Several studies have shown that anxiety, insomnia, and distress rise in the initial weeks following ASCT before slowly recovering. Long-term consequences of these acute exacerbations include persistent quality of life (QOL) impairments (El-Jawahri 2016), post-traumatic stress disorder (Griffith 2020), and the usage of potentially inappropriate medications (PIMs) for symptom management (Banerjee 2021). We have recently completed a pilot study of digital life coaching (DLC), whereby life coaches work with patients via phone calls and text messages to provide longitudinal support, education, and accountability to meet wellbeing-related goals. Our pilot study of 15 patients demonstrated the feasibility of DLC during this period, with bidirectional patient-coach engagement occurring every 5-7 days even during index hospitalizations for ASCT (Banerjee 2021). Based on these positive results, we have now launched a randomized Phase 2 study of DLC versus usual care among patients with MM undergoing ASCT. STUDY DESIGN: Our study is registered at clinicaltrials.gov as NCT04589286. We plan to enroll 60 adult patients with MM undergoing first ASCT at our institution. Inclusion criteria include English language proficiency and ownership of a personal cellphone. However, neither smartphones nor specific mobile apps are required for study participation. All patients, including those in the control arm, receive brief wellness-related tips with each request for PRO data as outlined below. As shown in the Figure, patients in the DLC arm are paired with a trained life coach beginning at Day -10 before ASCT. Coaches use structured frameworks to assist patients longitudinally with identifying and accomplishing wellbeing-related goals. Specific coaching topics can vary from week to week and are set by each patient. In addition to weekly coach-led phone calls, patients are encouraged to maintain bidirectional communication via phone/text/email as often as desired. Patients in the control arm do not receive access to DLC. Our primary endpoint is the total usage of sedative-class PIMs - including lorazepam, temazepam, zolpidem, and other similar medications - prescribed for anxiety or insomnia during each of 4 four-week study subperiods identified in the Figure. Secondary endpoints include patient-reported outcome (PRO) assessments of QOL (PROMIS Global Health), distress (NCCN Distress Thermometer), and insomnia (PROMIS Sleep Disturbances 4A). PRO assessments are collected exclusively using automated REDCap emails every 1-2 weeks as shown in the Figure. PROGRESS TO DATE: As of the data cutoff (7/31/21), 19 patients have enrolled onto our study and 5 have completed all follow-up. The median age of enrolled patients is 62 (range: 31-77), with 26% of patients aged 70 or older. As shown in our pilot study (Banerjee 2021), PRO collection via automated REDCap emails is feasible. Specifically, of 93 email-based requests for PRO assessments as of the data cutoff, 92 (99%) have been completed. Analyses of PRO assessment responses and PIM usage will be conducted after study completion. DISCUSSION: Improving patient wellbeing during the acute peri-ASCT period is an unmet need in multiple myeloma. Published supportive strategies during this time include music therapy (Bates 2017), acupuncture (Deng 2018), palliative care (El-Jawahri 2017), and programmed hospital room lighting (Valdimarsdottir 2018). DLC may offer unique advantages given its easy accessibility and unified patient-facing interface across hospital/clinic/home transitions. These strengths may be particularly relevant in light of the COVID-19 pandemic, where home-based follow-up after ASCT has become more common. That being said, broadening the accessibility of DLC to include patients with limited English proficiency or patients without personal cell phones are important priorities for future studies. In summary, our randomized Phase 2 study of DLC versus usual care is ongoing. If shown to reduce PIM prescription rates while improving wellbeing-related PRO trajectories longitudinally, DLC may become a standard of care for patients with hematologic malignancies undergoing ASCT. Figure 1 Figure 1. Disclosures Banerjee: Pack Health: Research Funding; SparkCures: Consultancy; Sanofi: Consultancy. Knoche: Amgen: Honoraria. Brassil: Abbvie: Research Funding; Astellas: Research Funding; BMS: Research Funding; Daiichi Sankyo: Research Funding; Genentech: Research Funding; GSK: Research Funding; Sanofi: Research Funding; Pack Health: Current Employment. Jackson: Pack Health: Current Employment. Patel: Pack Health: Current Employment. Lo: Oncopeptides: Consultancy; EUSA Pharma: Consultancy. Chung: Caelum: Research Funding. Wong: Amgen: Consultancy; Genentech: Research Funding; Fortis: Research Funding; Janssen: Research Funding; GloxoSmithKlein: Research Funding; Dren Biosciences: Consultancy; Caelum: Research Funding; BMS: Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees. Wolf: Adaptive Biotechnologies: Consultancy; Teneobio: Consultancy; Sanofi: Consultancy; Amgen: Consultancy. Martin: Oncopeptides: Consultancy; Sanofi: Research Funding; Amgen: Research Funding; Janssen: Research Funding; GlaxoSmithKline: Consultancy. Shah: Bluebird Bio: Research Funding; GSK: Consultancy; Janssen: Research Funding; Indapta Therapeutics: Consultancy; BMS/Celgene: Research Funding; CareDx: Consultancy; CSL Behring: Consultancy; Kite: Consultancy; Nektar: Research Funding; Karyopharm: Consultancy; Amgen: Consultancy; Oncopeptides: Consultancy; Poseida: Research Funding; Precision Biosciences: Research Funding; Sanofi: Consultancy; Sutro Biopharma: Research Funding; Teneobio: Research Funding.
APA, Harvard, Vancouver, ISO, and other styles
6

Dantas, Fernanda Suely Barros, Letícia Targino Campos, Raissa Lima Toscano, Gabriella de Vasconcelos Neves, Gustavo Gomes Agripino, and Daliana Queiroga de Castro Gomes. "Fotocoagulação a laser de diodo para tratamento de alteração vascular em lábio: relato de caso." ARCHIVES OF HEALTH INVESTIGATION 9, no. 5 (September 23, 2020): 433–38. http://dx.doi.org/10.21270/archi.v9i5.4835.

Full text
Abstract:
Introdução: As alterações vasculares são anomalias de desenvolvimento dos vasos que proporcionam acúmulo de sangue e são de etiologia desconhecida. Fazem parte deste grupo de lesões as malformações arteriovenosas, hemangiomas, linfoangiomas e varicosidades. Embora não raras, as lesões vasculares que ocorrem nos lábios, por vezes, interferem na estética e apresentam dificuldades quanto ao seu diagnóstico e tratamento. Objetivo: Descrever um caso clínico realizado com laser de diodo de alta potência para a fotocoagulação de uma lesão vascular, abordando suas vantagens e limitações em comparação ao tratamento cirúrgico. Material e Método: O procedimento foi realizado em um paciente de 53 anos, sexo feminino, branca, com queixa de aparecimento de uma bolha de sangue no lábio com evolução de aproximadamente oito anos. Ao exame físico intraoral, observou-se nódulo em vermelhão do lábio inferior, do lado direito, próxima à comissura labial, medindo aproximadamente 1,0 cm de diâmetro, de base séssil, superfície lisa, limites bem definidos, coloração violácea, consistência macia e sem sintomatologia dolorosa à palpação. Após a diascopia e diagnóstico clínico de lesão vascular, optou-se pela fotocoalulação com laser de diodo de alta potência. Resultados: Houve regressão total da lesão, após uma única aplicação, sem complicações trans e pós-operatórias, sem sangramento durante a cirurgia, o que proporcionou melhor visão do campo operatório e resultou em um procedimento minimamente invasivo. A paciente encontra-se em proservação, sem recidiva da lesão. Conclusão: A fotocoagulação pode ser considerada como uma alternativa segura e eficiente para o tratamento de lesões vasculares. Descritores: Lesões do Sistema Vascular; Fotocoagulação; Laser; Mucosa Bucal. Referências Nair SC, Spencer NJ, Nayak KP, Balasubramaniam K. Surgical management of vascular lesions of the head and neck: a review of 115 cases. Int J Oral Maxillofac Surg. 2011;40(6):577-83. Dasgupta R, Fishman SJ. ISSVA Classification. Pediatr.Surg. 2014;23(4):158-61. Medeiros R, Silva IH, Carvalho AT, Leão J. C.Nd:YAG laser photocoagulationofbenign oral vascular lesions: a case series. Lasers in Medical Science. 2015;30(8):2215-20. Abdyli RA, Abdyli Y, Perjuci F, Gashi A, Agani Z, Ahmedi J. Slerotherapy of intraoral superficial hemangioma. Case rep dent. 2016;2016:1-5. Choi BE, Kim Y, Leem DH, Baek JA, Ko SO. Utility of sodium tetradecyl sulfate sclerotherapy from benign oral vascular lesion. Maxillofac plast reconstr surg. 2016;38(1):1-4. Angelo AR, Moraes JJC, Da Rosa MRD. Incidência de hemangioma na região de cabeça e pescoço em pacientes com faixa etária entre 0 e 18: estudo de 10 anos. Rev Odontol Univ São Paulo. 2008;20(2):209-14. Palma FR, Garcia JAC, Jung R, Garcia RN, Aranha FCS. Escleroterapia de hemangioma oral. Relato de caso. SALUSVITA. 2016;35(1):85-93. Costa JRS, Torriani MA, Hosni ES, D'Avila OP, Figueiredo PJ. Sclerotherapy for Vascular Malformations in the oral and Maxillofacial Region: Treatment and Follow-Up of 66 Lesions. J Oral Maxillofac Surg. 2011;69(6):88-92. Chang CS, Wong A, Rohde CH, Ascherman JA, Wu JK. Management of lip hemangiomas: Minimizing peri-oral scars. JPRAS. 2012; 65(2):163-68. Ribas MO, Laranjeira J, Sousa MH. Hemangioma bucal: escleroterapia com oleato de etanolamina. revisão da literatura e apresentação de caso. Rev de Clín Pesq Odontol. 2004;1(2):31-6. Silva WB, Ribeiro ALR, De Menezes SAF, Pinheiro JJV, Alves-Junior SM. Oral capillary hemangioma: A clinical protocol of diagnosis and treatment in adults. Oral Maxillofac Surg. 2013;18(4):431-37. Gill JS, Gill S, Bhardwaj A, Grover HA Oral Hemangioma. Case Reports in Medicine. 2012; 2012:1-4. Rezende KMP, Corrêa FNP, Corrêa JPNP, Bönecker M, Corrêa MSNP. Hemangioma: descrição de um caso clínico e sua importância no diagnóstico diferencial. Rev Assoc Paul Cir Dent. 2016;70(1):19-23. Passas MA, Teixeira M. Hemangioma da infância. Nascer e Crescer. 2016;25(2):83-9. Chen W, Zhang B, Li J, Yang Z, Wang Y, Huang Z et al. Liquid nitrogen cryotherapy of lip mucosa hemangiomas under inhalation general anesthesia with sevoflurane in early infancy. Ann Plast Surg. 2009;62(2):154-57. Mandu ALC, Lira CRS, Barbosa LM, Silva VCR, Cardoso AJO. Escleroterapia de Hemangioma: relato de caso. Rev Cir Traumatol Buco-Maxilo-fac. 2013;13(1):71-6. Silva AJDD, Dos Santos RV, Amato SJTA, Amato ACM. Malformação venosa associada à hiperelasticidade cutânea e atrofia do tecido subcutâneo. J Vasc Bras. 2016;15(1):66-9. Gupta A, Verma A, Dhua A, Bhatnagar V. Vascular anomalies: a pediatric surgeon’s perspective. Indian J 2017;84(8):612-17. Kobayashi, K, Nakao K, Kishishita S, Tamaruya N, Monobe H, Saito K, Kihara A. Vascular malformations of the head and neck. Auris Nasus Larynx. 2013;40(1):89-92. Fekrazad R, Am Kalhori K, Chiniforush N. Defocused irradiation mode of diode laser for conservative treatment of oral hemangioma. J Lasers Med Sci. 2013;4(3):147-50. Tonioli IB, Tomo S, Boer NB, Simonato LE, De Lucia MBI. OR 12. Tratamento de hemangioma em lábio superior com agente esclerosante. Arch Health Invest. 2016;5(Spec Iss 3):77. Tachmatzidis T, Dabarakis N. Technology of lasers and their applications in oral surgery: Literature review. Balk J Dent Med. 2016;20(3):131-37. Corrêa PH, Nunes LC, Johann AC, Aguiar MC, Gomez RS, Mesquita RA. Prevalence of oral hemangioma, vascular malformation and varix in a Brazilian population. Braz Oral Res. 2007; 21(1):40-5. Fonseca Junior LA, Cha SB, Cartumm J, Rehder JRCL. Eficácia terapêutica do interferon alfa em criança com hemangioma gigante craniofacial: relato de caso. Arq Bras Oftalmol. 2008; 71(3):423-26. Bharti V, Singh J. Capillary hemangioma of palatal mucosa. J Indian Soc Periodontol. 2012; 16(3):475-78. Saawarn N, Saawarn S, Ragavendra R, Kasetty S, Ekka RK, Singh V. Oral hemangioma management in children: a concise review. Inter Ped Dent Open Acc J. 2018;1(3):49-50. Pereira ERD, Silva GLS, Sahium GMB, Pereira JPS, De Faria MM, Faria RBCC. Laser de Nd YAG1064 ncm no tratamento de hemangioma: relato de caso. Rev Educ Saúde. 2017;5(2):130-35. Newadkar UR. Oral hemangioma or vascular malformation: different entities. J Indian Acad Oral Med Radiol 2015;27:497-99. Biddappa L, Kanwar S, Lingaraju N, Kumaran S. A rare case of intraoral acquired hemangioma. Int J Health Sci Res. 2015;5(8):610-13. Rao G, Tripthi PS, Srinivasan K. Haemostatic effect of CO2 laser over excision of an intraoral hemangioma. Int J Laser Dent. 2012;2(3):74-7. Monteiro LS, Azevedo A, Cadilhe S, Sousa D, Faria C, Martins M. Laser treatment of vascular anomalies of oral cavity. Rev Port Stomatol Med Dent Maxillofac Surg. 2013;54(3):171- Pedron IG, Ramalho KM, Moreira LA, Freitas PM. Association of two lasers in the treatment of traumatic fibroma: excision with Nd: YAP laser and photobiomodulation using InGaAIP: a case report. J Oral Laser Appl. 2009;9(1):49-53. Jasper J, Camilotti RS, Pagnoncelli RM, Poli VD, da Silveira Gerzson A, Gavin Zakszeski AM. Treatment of lip hemangioma using forced dehydration with induced photocoagulation via diode laser: report of three cases. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(3):e89-94. Ortega-Concepción D, Cano-Durán JA, Peña-Cardelles J, Paredes-Rodríguez V, González-Serrano J, López-Quiles J. The application of diode laser in the treatment of oral soft tissues lesions. a literature review. J Clin Exp Dent. 2017;9(7):925-28. Frigerio A, Tan OT. Laser applications for benign oral lesions. Lasers Surg Med. 2015;47(8):643-50. Angiero F, Benedicenti S, Benedicenti A, Arcieri K, Bernè E. Head and neck hemangiomas in pediatric patients treated with endolesional 980-nm diode laser. Photomed Laser Surg. 2009;27(4):553-59. Asnaashari M, Zadsirjan S. Application of laser in oral surgery. J Lasers Med Sci. 2014;5(3):97-107. Silva TWS, Do Nascimento ACC, Ferreira Filho, JL. Diagnóstico e tratamento de hemangioma cavernoso intraoral – relato de caso. JOAC. 2018;4(1):1-6.
APA, Harvard, Vancouver, ISO, and other styles
7

Banerjee, Rahul, Bella Sykes, Nina Shah, Charalambos Andreadis, Peter H. Sayre, Thomas Martin, Jason Shore, Adam Sodowick, and Sandy W. Wong. "Feasibility of a Supportive Mobile Health App for Chimeric Antigen Receptor T-Cell Therapy." Blood 138, Supplement 1 (November 5, 2021): 3009. http://dx.doi.org/10.1182/blood-2021-147131.

Full text
Abstract:
Abstract BACKGROUND: The operationalization of chimeric antigen receptor (CAR-T) therapy for hematologic malignancies can be complex for patients and their caregivers. In the weeks before CAR-T therapy, patients must process large amounts of information and coordinate logistics involving caregivers, lodging, and transportation. Immediately following CAR-T therapy, patients must be monitored closely for toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). In the months following CAR-T therapy, patients may be referred back to local oncologists without a clear plan for managing potential late effects such as hypogammaglobulinemia or neuropsychiatric complications (Chakraborty 2021). Mobile health (mHealth) apps may be able to improve the patient experience during CAR-T therapy by facilitating care coordination, home-based toxicity monitoring, and patient education (Banerjee 2021). By empowering patients and caregivers to better understand CAR-T therapy and actively participate in their care, mHealth tools may ultimately augment workflows for CAR-T clinics as well. However, the feasibility and acceptability of such supportive mHealth apps during CAR-T therapy have not been established. STUDY DESIGN: We have designed a "Companion for CAR-T" mHealth app to assist with care coordination, toxicity monitoring, and patient education during CAR-T therapy. Key components of the app are summarized in the Figure. In brief, pre-CAR-T components include educational videos and dynamic calendars to assist patients with coordinating logistics. Post-CAR-T components include app-based prompts to input body temperature daily, an electronic Immune Effector Cell-Associated Encephalopathy (eICE) screening tool for ICANS that can be administered by caregivers, and a patient-specific long-term survivorship care plan. Global app components include an 'Appointment Companion' to facilitate patient-provider discussions during appointments as well as a digital CAR-T wallet card to convey key health-related information to other healthcare providers. We plan to investigate the "Companion for CAR-T" app through a pilot study of 20 patients receiving commercially available CAR-T therapies for any hematologic malignancy at our institution. Co-primary endpoints include (1) app feasibility, defined as the percentage of patients who access all 5 core modules shown in the Figure at least once; and (2) app acceptability, defined as the percentage of patients who agree that the app was helpful during their experience with CAR-T therapy. Secondary endpoints include the incidence of fevers or eICE deficits recorded via the app. Exploratory endpoints include longitudinal trends in patient-reported outcomes such as emotional distress at each clinic visit. DISCUSSION: If feasibility and acceptability of the "Companion for CAR-T" app are demonstrated through this pilot study, we plan to launch a multicenter randomized Phase 2 study of this mHealth tool versus usual care to assess its effect on perceived stress and decisional conflict. Other important steps for our group include the translation of app content into different languages and the provision of tablet computing devices for patients who do not own smartphones. Once validated and expanded in these aforementioned ways, potential strengths of the "Companion for CAR-T" app include its ability to be personalized easily with information specific to individual CAR-T therapies, malignancies, and centers. Figure 1 Figure 1. Disclosures Banerjee: Sanofi: Consultancy; SparkCures: Consultancy; Pack Health: Research Funding. Sykes: Patient Discovery Solutions, Inc.: Current Employment. Shah: Amgen: Consultancy; Indapta Therapeutics: Consultancy; Sutro Biopharma: Research Funding; Sanofi: Consultancy; Teneobio: Research Funding; Precision Biosciences: Research Funding; Poseida: Research Funding; Karyopharm: Consultancy; Janssen: Research Funding; GSK: Consultancy; Kite: Consultancy; Nektar: Research Funding; Oncopeptides: Consultancy; CSL Behring: Consultancy; Bluebird Bio: Research Funding; BMS/Celgene: Research Funding; CareDx: Consultancy. Andreadis: Incyte: Honoraria; Roche: Current equity holder in publicly-traded company, Ended employment in the past 24 months; GenMAB: Research Funding; Merck: Research Funding; Novartis: Research Funding; Epizyme: Honoraria; Crispr Therapeutics: Research Funding; Atara: Consultancy, Honoraria; Karyopharm: Honoraria; TG Therapeutics: Honoraria; Kite: Honoraria; BMS/Celgene: Research Funding. Martin: Amgen: Research Funding; GlaxoSmithKline: Consultancy; Oncopeptides: Consultancy; Janssen: Research Funding; Sanofi: Research Funding. Shore: Patient Discovery Solutions, Inc.: Current Employment. Sodowick: Patient Discovery Solutions, Inc.: Current Employment. Wong: Amgen: Consultancy; Genentech: Research Funding; Fortis: Research Funding; Janssen: Research Funding; GloxoSmithKlein: Research Funding; Dren Biosciences: Consultancy; Caelum: Research Funding; BMS: Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees.
APA, Harvard, Vancouver, ISO, and other styles
8

Thi Thu Hoai, Nguyen, Nguyen Thuy Duong, Bui Thanh Tung, Dao Thi Vui, and Dang Kim Thu. "Comparing Acetylcholinesterase and Butyrylcholinesterase Inhibition Effect of Total Extract and Fractions with Alcaloid-Rich Extract of Huperzia Serrata (Thunb.) Trevis." VNU Journal of Science: Medical and Pharmaceutical Sciences 36, no. 1 (March 24, 2020). http://dx.doi.org/10.25073/2588-1132/vnumps.4214.

Full text
Abstract:
Herbal extract, rich with natural compounds, has been used for medicinal purpose such as treating neurological disorders such as cognitive defection for a long period of time, often without significant adverse effects. We compared AChE and BuChE – inhibition effect of total extracts and fractions of Huperzia serrata (Thunb.) Trevis. with alcaloid-rich extract. Our samples were subjected under supersonic extraction with ethanol 50o as solvent and fractionally extracted with n-hexane, EtOAc and n-butanol, respectively; alcaloid-rich extract was collected simutaneously. Ellman’s method was used to assay AChE and BuChE inhibition activity. Results: Alcaloid-rich extraction proved to be the superior AChE inhibiting agent, its activity nearly 6 fold of the most active Huperzia serrata extraction with IC50 value of 7.93 (5.43-10.98) µg/ml. While the fractions as well as the total extract did not provide any BuChE inhibition activity, alcaloid-rich extract showed weak ability (IC50 at 76.67 (64.78 – 91.84) µg/ml). Overall, the superior enzyme inhibition effect of alcaloid-rich extract might open a new approach in preventing and treating neurological disorders such as alzheimer’s. Keywords Huperzia serrata (Thunb.) Trevis, alcaloid, Acetylcholinesrerase inhibitors (AChE); butyrylcholinesterase (BuChE), Alzheimer. References [1] Dos Santos Picanco, Leide C et al., Alzheimer's disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment, Current medicinal chemistry 25(26) (2018) 3141 - 3159. https://doi.org/10.2174/0929867323666161213101126.[2] B.M. McGleenon, K.B. Dynan, A.P. Passmore, Acetylcholinesterase inhibitors in Alzheimer's disease, British journal of clinical pharmacology 48(4) (1999) 471-480. https://10.1046/j.1365-2125.1999.00026.x.[3] Agneta Nordberg, Clive Ballard, Roger Bullock, Taher Darreh-Shori, Monique Somogyi, A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease, The primary care companion for CNS disorders 15(2) (2013). https://10.4088/PCC.12r01412.[4] N.M. Ha, V.V. Dung et al., Report on the review of Vietnam’s wildlife trade policy, 2007.[5] D.H. Bich, et al., Medicinal plants and medicinal animals in Viet Nam. Science and Technics Publishing House 1 (2011) 896-897 (in Vietnamese).[6] Jia-Sen Liu, Yuan-Long Zhu, Chao-Mei Yu, You-Zuo Zhou, Yan-Yi Han, Feng-Wu Wu, Bao-Feng Qi, The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Canadian Journal of Chemistry 64(4) (1986) 837-839. https://doi.org/10.1139/v86-137.[7] Takuya Ohba, Yuta Yoshino et al., Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice, Bioscience biotechnology and biochemistry 79(11) (2015) 1838-1844. https://doi.org/10.1080/09168451.2015.1052773.[8] Ju-Yeon Park, Hyuck Kim et al., Ethanol Extract of Lycopodium serratum Thunb. Attenuates Lipopolysaccharide-Induced C6 Glioma Cells Migration via Matrix Metalloproteinase-9 Expression, Chinese Journal of Integrative Medicine 24(11) (2018) 860-866. https://doi.org/10.1007/s11655-017-2923-9.[9] M. Maridass, G. Raju, Investigation of phytochemical and antimicrobial activity of Huperzia species, Pharmacologyonline 3 (2009) 688-692.[10] George.L.Ellman, K.Diane Courtney, et al., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology 7(2) (1961) 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.[11] Paul T Francis, et al., The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, 66(2) (1999) 137-147. http://dx.doi.org/10.1136/jnnp.66.2.137.[12] Prerna Upadhyaya, Vikas Seth, Mushtaq Ahmad, Therapy of Alzheimer’s disease: An update, African Journal of Pharmacy and Pharmacology 4(6) (2010) 408-421.[13] Hachiro Sugimoto, Hiroo Ogura, et al., Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor, The Japanese journal of pharmacology 89(1) (2002) 7-20.[14] N.T.K. Thu, et al., Acetylcholinesterase and butyrylcholinesterase inhibition effect of fractions extract of Huperzia serrata (Thunb.) Trevis. The journal of Pharmeceutical 56(11) 49-53 (in Vietnamese).[15] Xiaoqiang Ma, Changheng Tan, et al, Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem, 53(5) (2005)1393-8. https://doi.org/10.1021/jf048193n.[16] Ya-Bing Yang, Xue-Qiong Yang, et al., A New Flavone Glycoside from Huperzia serrata. Chinese Journal of Natural Medicines 6(6) (2008) 408-410.[17] G.T. Ha, R.K. Wong, Y. Zhang, Huperzine a as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies, Chemistry & biodiversity 8(7) (2011) 1189-1204. https://doi.org/10.1002/cbdv.201000269.[18] H.Y. Zhang, X.C. Tang, Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease, Trends in pharmacological sciences 27(12) (2006) 619-625. https://doi.org/10.1016/j.tips.2006.10.004.[19] Y. Wang, X.C. Tang, H.Y. Zhang, Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice, Journal of neuroscience research 90(2) (2012) 508-517. https://doi.org/10.1002/jnr.22775.[20] C.Y. Wang, et al., Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model, Neuropsychopharmacology 36(5) (2011) 1073-1089. https://doi.org/10.1038/npp.2010.245.[21] R.K. Gordon, et al., The NMDA receptor ion channel: a site for binding of Huperzine A, Journal of applied toxicology 21(S1) (2001) S47-S51. https://doi.org/10.1002/jat.805.[22] M. Rafii, et al., A phase II trial of huperzine A in mild to moderate Alzheimer disease, Neurology 76(16) (2011) 1389-1394. https://doi.org/10.1212/WNL.0b013e318216eb7b.[23] N.H. Greig, et al., A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase, Current medical research and opinion 17(3) (2001)1 59-165.[24] A. Ferreira, et al., Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology, Phytochemistry reviews 15(1) (2016) 51-85. https://doi.org/10.1007/s11101-014-9384-y.
APA, Harvard, Vancouver, ISO, and other styles
9

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai, and Bui Thanh Tung. "The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 3 (September 14, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Full text
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
APA, Harvard, Vancouver, ISO, and other styles
10

Van Khanh, Nguyen, Vu Van Thuong, Nguyen Thanh Hai, and Hoang Anh Tuan. "Preparation of Aspirin Nanosuspension by Antisolvent Precipitation Method." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 3 (September 14, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4294.

Full text
Abstract:
This study aims to enhance the dissolution rate of a poorly-soluble drug, aspirin, by fabricating aspirin nanosuspensions using the anti-solvent precipitation. The study investigates the effect of the type of solvents, solvent to anti-solvent ratio, drug concentration, machines, stirring speed, ultrasonication technique and the temperature of solvent on the particle size and polydispersity index. The characterization of the original aspirin powder and nanoparticles was evaluated by differential scanning calorimetry and in vitro dissolution test. The results indicate that the selected formulation showed the smallest mean size of 228.2 ± 24.6 nm and a zeta potential of - 40.3 ± 2.5 mV. The differential scanning calorimetry analysis demonstrates that aspirin nanoparticles possessed lower crystallinity than the raw aspirin powder. The dissolution of nanoparticle was significantly higher compared with the original drug in the in vitro dissolution test. Keywords: Aspirin, nanosuspension, anti-solvent precipitation, differential scanning calorimetry, dissolution. References [1] G. C. Curhan, A. J. Bullock, S. E. Hankinson, W. C. Willett, F. E. Speizer, M. J. Stampfer, Frequency of Use of Acetaminophen, Nonsteroidal Anti-Inflammatory Drugs, and Aspirin in US Women, Pharmacoepidemiol Drug Saf, Vol. 11, No. 8, 2002, pp. 687-693, https://doi.org/10.1002/pds.732.[2] Antithrombotic Trialists (ATT) Collaboration, Aspirin in the Primary and Secondary Prevention of Vascular Disease: Collaborative Meta-analysis of Individual Participant Data from Randomised Trials, The Lancet, Vol. 373, 2009, pp. 1849-1860, https://doi.org/10.1016/S0140-6736(09)60503-1.[3] Y. Golfar, A. Shayanfar, Prediction of Biopharmaceutical Drug Disposition Classification System (BDDCS) by Structural Parameters, J Pharm Pharm Sci, Vol. 22, No. 1, 2019, pp. 247-269, https://doi.org/10.18433/jpps30271.[4] S. Luo, H. Man, X. Jia, Y. Li, A. Pan, X. Zhang, Y. Songa, Preparation and Characterization of Acetylsalicylic Acid/chitosan Nanoparticles and its Antithrombotic Effects, Des Monomers Polym, Vol. 21, No. 1, 2018, pp. 172-181, https://doi.org/10.1080/15685551.2018.1534317.[5] S. Ahmad, H. Rashid, Q. Jalil, S. Munir, B. Barkatullah, S. Khan, R. Ullah, A. Shahat, H. M. Mahmood, A. A. N. A. A. Mishari, A. B. Bari, Polymers Encapsulated Aspirin Loaded Silver Oxide Nanoparticles: Synthesis, Characterization and its Bio-Applications, Sains Malaysiana, Vol. 48, No. 9, 2019, pp. 1887-1897, http://dx.doi.org/10.17576/jsm-2019-4809-09.[6] T. H. Gugu, S. A. Chime, A. A. Attama, Solid Lipid Microparticles: An Approach for Improving Oral Bioavailability of Aspirin, Asian Journal of Pharmaceutical Sciences, Vol. 10, No. 5, 2015, pp. 425-432, https://doi.org/10.1016/j.ajps.2015.06.004.[7] O. Dandah, M. Najafzadeh, M. Isreb, R. Linforth, C. Tait, A. Baumgartner, D. Anderson, Aspirin and Ibuprofen, in Bulk and Nanoforms: Effects on DNA Damage in Peripheral Lymphocytes from Breast Cancer Patients and Healthy Individuals, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 826, 2018, pp. 41-46, https://doi.org/10.1016/j.mrgentox.2017.12.001.[8] C. Keck, R. Muller, Drug Nanocrystals of Poorly Soluble Drugs Produced by High Pressure Homogenisation, Eur J Pharm Biopharm, Vol. 62, No. 1, 2006, pp. 3-16, https://doi.org/10.1016/j.ejpb.2005.05.009.[9] B. Vaneerdenbrugh, G. Vandenmooter, P. Augustijns, Top-down Production of Drug Nanocrystals: Nanosuspension Stabilization, Miniaturization and Transformation into Solid Products, Int J Pharm, Vol. 364, No. 1, 2008, pp. 64-75, https://doi.org/10.1016/j.ijpharm.2008.07.023.[10] H. Dewaard, W. Hinrichs, H. Frijlink, A Novel Bottom–up Process to Produce Drug Nanocrystals: Controlled Crystallization During Freeze-drying, J Control Release, Vol. 128, No. 2, 2008, pp. 179-183, https://doi.org/10.1016/j.jconrel.2008.03.002.[11] E. M. Michal, A. H. Margaret, P. J. Keith, O. W. I. Robert, Drug Nanoparticles by Antisolvent Precipitation: Mixing Energy versus Surfactant Stabilization, Langmuir, Vol. 22, No. 21, 2006, pp. 8951-8959, https://doi.org/10.1021/la061122t.[12] S. Sana, K. Boodhoo, V. Zivkovic, Production of Starch Nanoparticles through Solvent-antisolvent Precipitation in a Spinning Disc Reactor, Green Processing and Synthesis, Vol. 8, No. 1, pp. 507-515, https://doi.org/10.1515/gps-2019-0019.[13] X. Zhang, H. Chen, F. Qian, Y. Cheng, Preparation of Itraconazole Nanoparticles by Anti-solvent Precipitation Method Using a Cascaded Microfluidic Device and an Ultrasonic Spray Drier, Chemical Engineering Journal, Vol. 334, 2018, pp. 2264-2272, https://doi.org/10.1016/j.cej.2017.12.002.[14] Y. Dong, W. K. Ng, S. Shen, S. Kim, R. B. H. Tan, Preparation and Characterization of Spironolactone Nanoparticles by Antisolvent Precipitation, Int J Pharm, Vol. 375, No. 1-2, 2009, pp. 84-88, https://doi.org/10.1016/j.ijpharm.2009.03.013.[15] D. H. Kuk, E. S. Ha, D. H. Ha, W. Y. Sim, S. K. Lee, J. S. Jeong, J. S. Kim, I. Baek, H. Park, D. H. Choi, J. W. Yoo, S. H. Jeong, S. J. Hwang, M. S. Kim, Development of a Resveratrol Nanosuspension Using the Antisolvent Precipitation Method without Solvent Removal, Based on a Quality by Design (QbD) Approach, Pharmaceutics, Vol. 11, No. 12, 2019, pp. 1-22, https://doi.org/10.3390/pharmaceutics11120688.[16] D. Liu, H. Xu, B. Tian, K. Yuan, H. Pan, S. Ma, X. Yang, W. Pan, Fabrication of Carvedilol Nanosuspensions Through the Anti-Solvent Precipitation–Ultrasonication Method for the Improvement of Dissolution Rate and Oral Bioavailability, AAPS Pharm Sci Tech, Vol. 13, No. 1, 2012, pp. 295-304, https://doi.org/10.1208/s12249-011-9750-7.[17] H. Kathpalia, S. Juvekar, S. Shidhaye, Design and In Vitro Evaluation of Atovaquone Nanosuspension Prepared by pH Based and Anti-solvent Based Precipitation Method, Colloid and Interface Science Communications, Vol. 29, 2019, pp. 26-32, https://doi.org/10.1016/j.colcom.2019.01.002.[18] D. B. Shelar, S. K. Pawar, P. R. Vavia, Fabrication of Isradipine Nanosuspension by Anti-solvent Microprecipitation-high-pressure Homogenization Method for Enhancing Dissolution Rate and Oral Bioavailability, Drug Deliv Transl Res, Vol. 3, No. 5, 2013, pp. 384-391, https://doi.org/10.1007/s13346-012-0081-3.[19] M. Kakran, N. G. Sahoo, L. Li, Z. Judeh, Fabrication of Quercetin Nanoparticles by Anti-solvent Precipitation Method for Enhanced Dissolution, Powder Technology, Vol. 223, 2012, pp. 59-64, https://doi.org/10.1016/j.powtec.2011.08.021.[20] A. Affonso, V. R. Naik, Microcrystallization Methods for Aspirin, Mebutamate, and Quinine Sulfate, Journal of Pharmaceutical Sciences, Vol. 60, No. 10, 1971, pp. 1572-1574, https://doi.org/10.1002/jps.2600601032.[21] M. Kakran, N. G. Sahoo, I. L. Tan, L. Li, Preparation of Nanoparticles of Poorly Water Soluble Antioxidant Curcumin by Antisolvent Precipitation Methods, J Nanopart Res, Vol. 14, No. 3, 2012, pp. 3-11, https://doi.org/10.1007/s11051-012-0757-0.[22] C. Li, C. Li, Y. Le, J. F. Chen, Formation of Bicalutamide Nanodispersion for Dissolution Rate Enhancement, International Journal of Pharmaceutics, Vol. 404, No. 1-2, 2011, pp. 257-263, https://doi.org/10.1016/j.ijpharm.2010.11.015.[23] A. S. Paulino, G. Rauber, C. E. M. Campos, M. H. P. Maurício, R. R. de Avillez, G. Capobianco, S. G. Cardoso, S. L. Cuffini, Dissolution Enhancement of Deflazacort Using Hollow Crystals Prepared by Antisolvent Crystallization Process, European Journal of Pharmaceutical Sciences, Vol. 49, No. 2, 2013, pp. 294-301, http://dx.doi.org/10.1016/j.ejps.2013.03.014.[24] S. Yee. Wong, Y. Cui, A. S. Myerson, Contact Secondary Nucleation as a Means of Creating Seeds for Continuous Tubular Crystallizers, Crystal Growth & Design, Vol. 13, No. 6, 2013, pp. 2514-2521, https://doi.org/10.1021/cg4002303.[25] Y. Cui, A. S. Myerson, Experimental Evaluation of Contact Secondary Nucleation Mechanisms, Crystal Growth & Design, Vol. 14, No. 10, 2014, pp. 5152-5157, https://doi.org/10.1021/cg500861f.[26] J. Tao, S. F. Chow, Y. Zheng, Application of Flash Nanoprecipitation to Fabricate Poorly Water-Soluble Drug Nanoparticles, Acta Pharmaceutica Sinica B, Vol. 9, No. 1, 2019, pp. 4-18, https://doi.org/10.1016/j.apsb.2018.11.001.[27] B. Sinha, R. H. Müller, J. P. Möschwitzer, Bottom-up Approaches for Preparing Drug Nanocrystals: Formulations and Factors Affecting Particle Size, Int J Pharm, Vol. 453, No. 1, 2013, pp. 126-141, https://doi.org/10.1016/j.ijpharm.2013.01.019.[28] H. X. Zhang, J. X. Wang, Z. B. Zhang, Y. Le, Z. G. Shen, J. F. Chen, Micronization of Atorvastatin Calcium by Antisolvent Precipitation Process, Int J Pharm, Vol. 374, No. 1-2, 2009, pp. 106-113, https://doi.org/10.1016/j.ijpharm.2009.02.015.[29] A. L. Abhijit, R. P. Sanjaykumar, Antisolvent Crystallization of Poorly Water Soluble Drugs, International Journal of Chemical Engineering and Applications, Vol. 4, No. 5, 2013, pp. 337-341, https://doi.org/10.7763/IJCEA.2013.V4.321.[30] Z. Zhang, Z. Shen, J. Wang, H. Zhao, J. Chen, J. Yun, Nanonization of Megestrol Acetate by Liquid Precipitation, Industrial and Engineering Chemistry Research, Vol. 48, No. 18, 2009, pp. 8493-8499, https://doi.org/10.1021/ie900944y.[31] M. Kakran, N. G. Sahoo, L. Li, Z. Judeh, Particle Size Reduction of Poorly Water Soluble Artemisinin via Antisolvent Precipitation with a Syringe Pump, Powder Technology, Vol. 237, 2013, pp. 468-476, https://doi.org/10.1016/j.powtec.2012.12.029.[32] A. F. Kardos, J. Toth, J. Gyenis, Preparation of Protein Loaded Chitosan Microparticles by Combined Precipitation and Spherical Agglomeration, Powder Technology, Vol. 244, 2013, pp. 16-25, https://doi.org/10.1016/j.powtec.2013.03.052.[33] Z. Wang, J. Chen, Y. Le, Z. Shen, Preparation of Ultrafine Beclomethasone Dipropionate Drug Powder by Antisolvent Precipitation, Industrial and Engineering Chemistry Research, Vol. 46, No. 14, 2007, pp. 4839-4845, https://doi.org/10.1021/ie0615537.[34] I. Aghrbi, V. Fülop, G. Jakab, N. K. Szab, E. Balogh, I. Antal, Nanosuspension with Improved Saturated Solubility and Dissolution Rate of Cilostazol and Effect of Solidification on Stability, Journal of Drug Delivery Science and Technology, Vol. 61, 2020, pp. 1-10, https://doi.org/10.1016/j.jddst.2020.102165.[35] P. Costa, J. M .S. Lobo, Modeling and Comparison of Dissolution Profiles, European Journal of Pharmaceutical Sciences, Vol. 13, No. 2, 2001, pp. 123-133, https://doi.org/10.1016/S0928-0987(01)00095-1.[36] A. Viçosa, J. Letourneau, F. Espitalier, M. Ré, An Innovative Antisolvent Precipitation Process as a Promising Technique to Prepare Ultrafine Rifampicin Particles, Journal of Crystal Growth, Vol. 342, No. 1, 2012, pp. 80-87, https://doi.org/10.1016/j.jcrysgro.2011.09.012.[37] The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, Validation of Analytical Procedures: Text and Methodology Q2(R1), 2005, pp. 6-13.[38] J. B. Dressman, A. Nair, B. Abrahamsson, D. M. Barends, D. W. Groot, S. Kopp, P. Langguth, J. E. Polli, V. P. Shah, M. Zimmer, Biowaiver Monograph for Immediate-release Solid Oral Dosage Forms: Acetylsalicylic Acid, Journal of Pharmaceutical Sciences, Vol. 101, No. 8, 2012, pp. 2653-2667, https://doi.org/10.1002/jps.23212.[39] T. Yuka, M. Mihoko, Y. Hiroshi Y, O. Shino, A. Hiroaki, T. Kazufumi, T. Katsuo, I. Masayuki, Y. Masashi, M. Yusuke, Intergrowth of Two Aspirin Polymorphism Observed with Raman Spectroscopy, Journal of Crystal Growth, Vol. 532, 2020, pp. 1-28, https://doi.org/10.1016/j.jcrysgro.2019.125430.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography