Dissertations / Theses on the topic 'Wireless Power Transfer, Electric Vehicle, Power Electronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Wireless Power Transfer, Electric Vehicle, Power Electronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Azad, Ahmed N. "Energy Management of Dynamic Wireless Power Transfer Systems for Electric Vehicle Applications." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7643.
Full textMoghaddami, Masood. "Design Optimization of Inductive Power Transfer Systems for Contactless Electric Vehicle Charging Applications." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3853.
Full textMohamed, Ahmed A. S. Mr. "Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3529.
Full textMude, Kishore Naik. "Wireless power transfer for electric vehicle." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424096.
Full textI sistemi per il trasferimento di potenza wireless (WPT) trasferiscono energia elettrica da una sorgente ad un carico senza alcuna connessione via cavo. I sistemi WPT sono attraenti per molte applicazioni industriali grazie ai loro vantaggi rispetto alla controparte cablata, come l’assenza di conduttori esposti, la facilità di ricarica e la trasmissione senza rischi della potenza in condizioni ambientali avverse. L’adozione di sistemi WPT per la carica delle batterie di bordo di un veicolo elettrico (EV) ha ricevuto l'attenzione di alcune aziende, e sforzi sono stati fatti per lo sviluppo e il miglioramento delle varie topologie ad essi associate. Il WPT è ottenuto tramite l'accoppiamento induttivo tra due bobine, definite bobina trasmittente e bobina ricevente. Nelle applicazioni per la carica delle batterie, le bobine trasmittenti sono installate sotto il manto stradale mentre le bobine riceventi sono poste a bordo del veicolo. Il WPT induttivo di tipo risonante è comunemente utilizzato nelle applicazioni per il trasferimento di potenze medio-alte, come la carica degli EV, perché presenta una maggiore efficienza. Questa tesi tratta un sistema WPT per caricare le batterie di bordo di una city-car elettrica considerato come caso di studio. La city-car elettrica utilizza quattro batterie da 12V, 100A•h VRLA collegate in serie e due motori-ruota montati sull’assale posteriore, ognuno in grado di sviluppare una potenza di picco di 4 kW per la propulsione del veicolo. Il lavoro svolto è stato effettuato principalmente in tre fasi diverse; in un primo momento è stata effettuata una panoramica sui caricabatteria cablati per EV e sulle metodologie di ricarica. Successivamente, sono stati discussi i principi base di diverse tecnologie WPT; è stato definito un insieme di figure di merito (FOM) che sono state utilizzate per caratterizzare il comportamento dei WPT risonanti rispetto alle variazioni di carico resistivo e al coefficiente di accoppiamento. Nella seconda fase, è stato progettato il sistema WPT per il caso di studio. Nella terza fase, è stato sviluppato e sperimentato un prototipo del sistema WPT. La progettazione del sistema WPT è stata iniziata con una valutazione dei parametri delle varie sezioni e stimando l'impatto dei parametri del sistema sulle sue prestazioni. La progettazione della bobina di accoppiamento è stata effettuata dopo l'analisi di avvolgimenti con strutture diverse, ovvero elica e spirale, e con forme differenti del nucleo magnetico; a seguito dei risultati preliminari che hanno mostrato i vantaggi della struttura a spirale, è stata poi eseguita un'analisi più dettagliata su questa struttura. Il progetto della bobina ha compreso la determinazione dei parametri induttivi dell’accoppiamento in funzione della distanza e del disallineamento assiale delle bobine. Sia l'analisi che la progettazione sono state assistite da un approccio FEM basato sul codice COMSOL. La progettazione degli stadi di alimentazione del sistema WPT è consistita nella valutazione dei valori e dei dati di targa di a) i condensatori che rendono risonante l’accoppiamento tra le bobine, b) i dispositivi di potenza del raddrizzatore PFC e dell'inverter ad alta frequenza (HF) che alimenta la bobina di trasmissione, c) i dispositivi di potenza dei convertitori alimentati dalla bobina ricevente, segnatamente il raddrizzatore a diodi e il chopper collegato a valle che carica la batteria in modo controllato. Per i convertitori che operano ad alta frequenza (l’invertitore e il raddrizzatore della sezione ricevente), sono stati utilizzati dispositivi elettronici di potenza di ultima generazione (i cosiddetti dispositivi Wide Band Gap (WBG)) al fine di massimizzare l'efficienza del sistema WPT. E’ stato realizzato un caricabatteria WPT prototipale utilizzando schede elettroniche disponibili in Laboratorio con i circuiti di potenza e di segnale. Le relative attività sperimentali sono state: a) misurazione dei parametri delle bobine, b) assemblaggio a banco del prototipo, e c) esecuzione di prove sperimentali per verificare il corretto funzionamento del prototipo. Il lavoro di tesi comprende anche una breve panoramica su temi emergenti in materia di sistemi WPT come i) IL WPT dinamico, chiamato anche “on-line electric vehicle” (OLEV), ii) la schermatura dei campi magnetici prodotti da un sistema WPT, e iii) la normativa sui sistemi WPT. Questi tre temi svolgono un ruolo significativo nello sviluppo della tecnologia WPT. Il lavoro di tesi è stato effettuato presso il Laboratorio di “Sistemi elettrici per l'automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il Laboratorio fa parte del Dipartimento di Ingegneria Industriale dell'Università degli Studi di Padova, Italia.
Mou, Xiaolin. "Wireless power transfer technology for electric vehicle charging." Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12416/.
Full textJha, Rupesh Kumar. "Power Stages and Control of Wireless Power Transfer Systems (WPTSs)." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424780.
Full textLa ricarica wireless delle batterie a bordo dei veicoli elettrici, ottenuta utilizzando il trasferimento di potenza induttivo, offre vantaggi unici rispetto ai caricabatterie tradizionali. A causa dell'assenza di una connessione galvanica, il processo di ricarica non richiede alcuna interazione dell'utente né alcuna movimentazione di un componente meccanico. Per i sistemi di trasporto pubblico, ad esempio autobus o tram, questo rende possibile la cosiddetta carica di opportunità completamente automatizzata presso i depositi degli autobus, le corsie dei taxi, o ai semafori. I caricabatterie wireless sono costituiti da due stadi: uno stadio trasmittente e uno stadio di ricezione. Entrambi gli stadi includono bobine e condensatori, dimensionati per risuonare alla frequenza di alimentazione, e convertitori statici di potenza. La bobina del trasmettitore è interrata nel manto stradale, mentre la bobina ricevente è situata a bordo del veicolo. Sulla base della connessione dei condensatori risonanti sono possibili quattro topologie circuitali diverse che possono essere raggruppate in due principali: i) un condensatore in serie con la bobina di trasmissione con il condensatore lato ricevitore in serie o in parallelo costituisce le topologie SS e SP, rispettivamente, e ii) un condensatore in parallelo alla bobina di trasmissione con il condensatore della sezione ricevente in serie o in parallelo costituisce le topologie PS e PP, rispettivamente. Nella tesi queste topologie sono state studiate dettagliatamente in termini di efficienza, dimensionamento dell'invertitore di alimentazione e progetto delle bobine risonanti, e di comportamento nelle condizioni estreme di circuito aperto e di cortocircuito del ricevitore. Il circuito di conversione di potenza di un sistema per la ricarica wireless induttiva di un veicolo elettrico include un raddrizzatore a diodi nello stadio di ricezione per ottenere un bus di tensione in continua e utilizza differenti modi per caricare la batteria del veicolo. Le due soluzioni più diffuse eseguono la carica o direttamente attraverso il raddrizzatore a diodi oppure attraverso un chopper collegato in cascata ad esso. Queste due modalità sono state discusse e confrontate in termini di efficienza, di dimensionamento sia dell'invertitore di alimentazione, che delle bobine di trasmissione e ricezione, includendo nell’analisi la scelta della tensione ottima in ingresso al chopper. A causa dell'invecchiamento e dell'effetto termico, i parametri dei componenti reattivi di un circuito di ricarica wireless possono variare e questo fa sì che la frequenza di risonanza e la frequenza di alimentazione non siano perfettamente identiche. In questa tesi è stato studiato l'impatto che tale deviazione ha sull'efficienza e sul dimensionamento dell’invertitore in un sistema di ricarica wireless con topologia SS. Sono state studiate tre tecniche di adattamento della frequenza di alimentazione per mantenere in risonanza o lo stadio trasmittente o quello di ricezione oppure l’impedenza vista dall’alimentazione. La tesi prosegue con lo studio dei sistemi di ricarica wireless per elevate potenze che richiedono una specifica architettura di alimentazione, particolari materiali per la costruzione del nucleo magnetico, oltre ad una peculiare geometria delle bobine. E’ stata presentata una panoramica di diverse architetture di alimentazione come, ad esempio, le topologie monofase a due stadi e in parallelo, inclusi i loro pregi e svantaggi. Sulla base di un’accurata revisione della letteratura della geometria delle bobine, la geometria DD si è rivelata essere la più conveniente per le applicazioni di alta potenza. Utilizzando il codice agli elementi finiti JMAG, è stato simulato il comportamento di un sistema di ricarica wireless costituito da tre bobine di trasmissione e una bobina di ricezione, tutte di tipo DD. Poiché, date le sue caratteristiche, le ferriti non si prestano bene per sistemi ad alta potenza, sono state considerate altre tipologie di materiali magnetici. Sono state analizzate e confrontate diverse leghe amorfe in base all’induzione magnetica di saturazione, alle proprietà magnetiche, come la dipendenza della permeabilità dalla temperatura, dal campo magnetico applicato e dalla frequenza, alle perdite di potenza e al costo. Infine, sono stati considerati due metodi per modellizzare il WPT. I metodi modellizzano il sistema considerando l'inviluppo dei segnali.
Dashora, Hemant Dashora. "Dynamic Wireless Charging of Electric Vehicle." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423232.
Full textLa ricarica della batteria senza fili (dall’inglese Wireless Battery Charging - WBC) è una soluzione attraente per la possibile diffusione dei Veicoli Elettrici (VE) nel mercato. Essa può fornire infrastrutture di ricarica migliori e un’ autonomia del veicolo praticamente illimitata. La tecnica più adatta per attuare il WBC è il trasferimento di potenza induttivo (Inductive Power Transfer - IPT), il quale sfrutta l’accoppiamento magnetico tra due bobine, una posizionata sotto il manto stradale e l’altra installata a bordo di un veicolo elettrico, e la potenza viene trasferita dalla bobina interrata a quella di bordo attraverso un flusso magnetico oscillante alta frequenza. Il WBC può essere effettuato con un VE fermo (parcheggiato) o in movimento sulla strada; le due modalità di WBC sono chiamate ricarica senza fili statica (Static Wireless Charging - SWC) e ricarica senza fili dinamica (Dynamic Wireless Charging - DWC), rispettivamente. Tuttavia, questa tesi si concentra sulla DWC, dove una bobina trasmittente, chiamata track, è interrata sotto la strada, mentre la bobina a bordo del VE, comunemente chiamata pickup, rimane accoppiata con il track per ricevere la potenza mentre il VE è in movimento. La ricarica di un VE in movimento è stata studiata e dimostrata da alcuni istituti di tutto il mondo i quali hanno adottato due differenti strutture di bobina trasmittente: track allungato e track concentrato. La prima struttura è formata da una singola bobina allungata, molto più lunga del pickup, mentre la seconda struttura è una disposizione di più bobine posizionate una dopo l’altra, la cui lunghezza è paragonabile alle dimensioni pickup. La struttura con track concentrato consente l'attivazione/disattivazione della sola bobina interagente con il pickup. Questa capacità è chiamata segmentazione ed è molto importante per DWC perché consente di ridurre le perdite e di evitare l'esposizione delle persone a radiazioni elettromagnetiche; di conseguenza, in questa tesi è stata trattata la soluzione con track concentrato. Il trasferimento della potenza senza fili con un elevato traferro è possibile solo con un’alta frequenza (dell’ordine dei kHz) ed un’alta intensità della corrente di alimentazione delle bobine del track; poiché l'aumento della frequenza di alimentazione migliora l'efficienza di trasferimento della potenza. Oltre alle caratteristiche di alimentazione e le dimensioni delle bobine, le capacità di trasferimento di potenza di un sistema dipendono dalle proprietà di accoppiamento delle bobine stesse, così una coppia di bobine polarizzate (chiamate anche bobine DD) è stata trovata essere la soluzione più adatta per il DWC grazie al suo elevato valore di accoppiamento quando track e pickup sono disallineati. Considerando un track concentrato composto da diverse bobine DD equamente distribuite, sono state analizzate la potenza e l’energia trasferite al VE in movimento. Sulla base di questo, la struttura del track concentrato e la sua procedura di progettazione sono stati discussi in dettaglio per un particolare caso di studio. Come detto precedentemente, la segmentazione del track è una funzione molto importante. Essa può essere ottenuta con vari metodi e uno di questi utilizza l'impedenza riflessa del pickup in una bobina del track. Così, quattro topologie di compensazione del circuito di pickup sono state investigate per studiarne le differenti impedenze riflesse. Riassumendo i risultati e confrontando il loro comportamento, solo due topologie sono state trovate utili per la segmentazione del track. Considerando quest’ultime, ulteriori analisi sono state fatte per ottenere e discutere le loro prestazioni. Questa tesi tratta anche i convertitori di potenza utilizzati sia nel track che nel pickup. I convertitori di potenza del track includono un raddrizzatore, un circuito di correzione del fattore di potenza (PFC) e un inverter, i quali sfruttano l’energia prodotta dalla rete di alimentazione e la convertono nella forma più appropriata per realizzare efficienti WBC. Nella bobina di pickup il circuito di condizionamento è formato dalla cascata di un raddrizzatore e un chopper che permettono di ricaricare la batteria di bordo utilizzando la potenza ricevuta.
Campagna, Nicola. "Wireless Power Transfer for Electric Vehicles: System Design Approach and Energy Storage Characterization." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/582683.
Full textLazaro, Orlando. "CMOS inductively coupled power receiver for wireless microsensors." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51874.
Full textForato, Mattia. "Dynamic Wireless Charging of Electric Vehicles." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3425765.
Full textQuesta tesi si occupa della tecnologia del trasferimento wireless di potenza (dall'inglese Wireless Power Transfer - WPT) per la ricarica dinamica dei Veicoli Elettrici (VE). Il trasferimento dinamico di potenza è una tecnologia innovativa che può accelerare la transizione da una mobilità convenzionale, basata su veicoli azionati da motore a combustione interna, verso una mobilità elettrica incentrata sui VE. I sistemi per il trasferimento wireless dinamico di potenza (dall'inglese Dynamic Wireless Power Transfer systems - DWPT systems) sfruttano il principio dell'induzione elettromagnetica per alimentare i VE mentre sono in movimento, senza la necessità di utilizzare un contatto galvanico tra i veicoli e un sistema di alimentazione stazionario. Poiché parte della potenza richiesta dai VE per la ricarica e per la propulsione è fornita da una rete elettrica esterna, le dimensioni delle batterie a bordo dei veicoli possono essere ridotte con i conseguenti benefici in termini di costo e peso dei VE. Una estesa infrastruttura di sistemi DWPT può contribuire a mantenere le batterie dei VE sempre cariche, consentendogli di avere un'autonomia idealmente illimitata. Dopo una dettagliata introduzione dei principi fondamentali che governano la tecnologia WPT e dopo un'accurata descrizione di un sistema WPT generico, il fulcro della tesi si sposta verso i sistemi DWPT. Le variazioni dei parametri magnetici causate dal movimento dei VE rendono lo studio, il dimensionamento e il controllo dei sistemi DWPT molto impegnativo. In questa tesi, vari sistemi DWPT sono studiati in condizione di regime stazionario. Questa analisi mostra che la compensazione del track fatta con una rete LC è particolarmente adatta per tali sistemi poiché essa conferisce al track la caratteristica di generatore di corrente. Questa proprietà semplifica di molto il controllo e la regolazione della potenza nei sistemi DWPT. L'attenzione di questa tesi è focalizzata principalmente sulla modellizzazione e sul controllo dei sistemi DWPT. Per quanto riguarda la modellizzazione, un nuovo metodo chiamato Modulated Variable Laplace Transform (MVLT) è presentato in questo lavoro. Questo metodo è usato per la modellizzazione dei sistemi, come ad esempio i sistemi DWPT, in cui sono coinvolte grandezze modulate. L'accuratezza del metodo MVLT è verificata attraverso la sua applicazione nello studio della dinamica di diversi circuiti. In particolare, il metodo MVLT è utilizzato per trovare il modello dinamico di un sistema DWPT in cui il track è compensato con una rete LC. Con l'ausilio del modello ottenuto viene progettato il regolatore che controlla la corrente del track del sistema. Le prestazioni di questo regolatore sono testate attraverso delle simulazioni, ottenendo risultati molto prossimi a quelli attesi. Nella tesi è studiato anche il convertitore dc/dc installato a bordo dei VE responsabile del controllo del processo di ricarica. Il funzionamento di questo convertitore è analizzato in modo congiunto con il tipo di compensazione del pickup. Una nuova topologia di circuito per il pickup è proposta assieme ad una nuova strategia di controllo per il convertitore dc/dc. Questa topologia permette una riduzione delle dimensioni del pickup e mostra elevate prestazioni in termini di efficienza.
Tavakoli, Reza. "Design of Road Embedded Dynamic Charging Systems for Electrified Transportation." DigitalCommons@USU, 2020. https://digitalcommons.usu.edu/etd/7715.
Full textMohammad, Mostak. "Optimization of Inductive Wireless Charging Systems for Electric Vehicles: Minimizing Magnetic Losses and Limiting Electromagnetic Field Emissions." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1564756659521461.
Full textKadem, Karim. "Modélisation et optimisation d’un coupleur magnétique pour la recharge par induction dynamique des véhicules électriques." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST032.
Full textThis thesis is carried out in collaboration between the GeePs laboratory and the VEDECOM institute. The cost, volume and weight of electrochemical batteries still represent a major obstacle to the deployment of electric vehicles (EVs). One of the solutions being considered to extend the range of EVs without excessively increasing the capacity of the batteries, is to use contactless electrical energy transfer systems to power them while they are on the move. This thesis focuses on one of these techniques which is the resonant inductive energy transfer. The problems associated with this mode of energy transfer are mainly related to energy efficiency, the size constrained due to the need for integration into the vehicle and the road as well as compliance with electromagnetic emissionstandards. The efficiency is directly linked to the coupling of the two coils (magnetic coupler). A comparison of the coupling coefficients for different coupler geometries and different misalignment configurations is the subject of the first part of this work. In the second part, an approach based on equivalent sources is suggested for the analytical pre-dimensioning of shielding plate intended to limit the magnetic emissions in and outside the vehicle. In the last axis of the thesis, the study is dedicated to techniques for detecting the presence of the vehicle and the sequencing of the different ground coils. A conclusion giving an assessment of the work and perspectives that open up from this work, close this manuscript
Corti, Fabio. "Wireless Charging of Electric Vehicles: Analysis, Design and Experimental Test of a Secondary Side Controlled System." Doctoral thesis, 2019. http://hdl.handle.net/2158/1188792.
Full text(10292552), Omar Nabeel Nezamuddin. "Proposal of wireless charging method and architecture to increase range in electric vehicles." Thesis, 2021.
Find full textMendes, Carlos Miguel Gomes. "Desenvolvimento dos conversores de eletrónica de potência para a interface com a rede elétrica de um sistema de transferência de energia sem fios para mobilidade elétrica." Master's thesis, 2021. http://hdl.handle.net/1822/76872.
Full textA aposta nos veículos elétricos (VEs) tem vindo a aumentar e, como tal, surgem novos desafios a nível da integração da mobilidade elétrica e das redes elétricas. Do ponto de vista da mobilidade elétrica, o tempo de carregamento de um VE e a autonomia continuam a ser os principais inconvenientes associados a estes veículos. Para mitigar estes problemas têm surgido vários sistemas inovadores, nomeadamente: sistemas de carregamento cada vez mais potentes que permitem diminuir o tempo de carregamento; novas tecnologias de sistemas de armazenamento de energia (maioritariamente baterias); e sistemas de gestão das baterias mais avançados e eficientes. Do ponto de vista da rede elétrica, a integração do VE apresenta também um conjunto significativo de vantagens, especialmente, quando os mesmos empregam sistemas de carregamento bidirecionais. Assim, além do modo de operação grid-to-vehicle (G2V), os sistemas bidirecionais permitem também outros modos de operação como o vehicle-to-grid (V2G) e o vehicle-for-grid (V4G). Com o objetivo de simplificar a interface entre o VE e o utilizador, assim como acompanhar as tendências do mercado, surge a necessidade de sistemas de carregamento sem fios. Atualmente, existem diversos sistemas de carregamento sem fios a operar de forma unidirecional com resultados que superaram as expectativas, tanto a nível da potência de carregamento, como de eficiência. Nesta dissertação foi implementado em ambiente de simulação o sistema completo para um carregamento por WPT para mobilidade elétrica. Onde foi validada as topologias dos conversores e os algoritmos de controlo dos mesmo, mais especificamente a interface com a rede elétrica, a transferência de energia bidirecional e o carregamento e descarregamento das baterias. O protótipo desenvolvido na presente dissertação foi dimensionado para uma potência de carregamento de 3,6 kW e realiza a interface entre a rede elétrica e o primário do sistema WPT. O protótipo é composto por uma única Placa de Circuito Impresso (PCB) onde se encontra o conversor CA-CC, o conversor CC-CA de alta frequência, o condicionamento de sinal e o microcontrolador. O sistema desenvolvido permite operar em três modos: G2V, V2G e V4G. Por fim, foram obtidos os resultados experimentais do protótipo que validam os três modos de operação.
The focus on electric vehicles (EVs) has been increasing, and new challenges arise regarding the integration of electric mobility and electric networks. According to electric mobility, an EV and autonomy charging time continues to be the main drawbacks associated with these vehicles. Several innovative systems have emerged to mitigate these problems: increasingly powerful charging systems that reduce charging times; new technologies for energy storage systems (mainly batteries); and more advanced and efficient battery management systems. According to the electricity grid, EV integration also presents a significant set of advantages, especially when using bidirectional charging systems. Thus, in addition to the grid to a vehicle (G2V) operating mode, bidirectional systems also allow for other operating modes such as vehicle to grid (V2G) and vehicle for-grid (V4G). To simplify the interface between the EV and the user and follow market trends, the need for wireless charging systems arises. Currently, wireless charging systems operate unidirectionally with results that surpass expectations, both in charging power and efficiency. In this dissertation, the complete system for a WPT charge for electric mobility was implemented in a simulation environment. Furthermore, the topologies of the converters and their control algorithms were validated, specifically the interface with the electrical network, the bidirectional energy transfer, and the charging and discharging of batteries. The prototype developed was dimensioned for a charging power of 3.6 kW and performed the interface between the electrical network and the primary of the WPT system. The prototype consists of a single Printed Circuit Board (PCB) where the AC-DC converter, the high-frequency DC-AC converter, the signal conditioning, and the microcontroller are located. The developed system allows operating in three modes: G2V, V2G, and V4G. Finally, the experimental results of the prototype that validate the three modes of operation were obtained.
Este trabalho de dissertação está enquadrado no projeto de IC&DT “newERA4GRIDs – New Generation of Unified Power Conditioner with Advanced Control, Integrating Electric Mobility, Renewables, and Active Filtering Capabilities for the Power Grid Improvement”, financiado pela Fundação para a Ciência e Tecnologia, com a referência PTDC/EEIEEE/30283/2017.
Este trabalho de dissertação está enquadrado no projeto de IC&DT “DAIPESEV – Development of Advanced Integrated Power Electronic Systems for Electric Vehicles”, financiado pela Fundação para a Ciência e Tecnologia, com a referência PTDC/EEIEEE/30382/2017.
Silva, Miguel Figueiredo Gonçalves Marcos da. "Design and Implementation of a Wireless Power Transfer System for Underwater Vehicles." Master's thesis, 2019. https://hdl.handle.net/10216/122088.
Full textZih-YiLiu and 劉子溢. "Study of Wideband and High-Efficiency Wireless Power Transfer System for Electric Vehicle." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/77814024861416291316.
Full text國立成功大學
電機工程學系
103
In this thesis, we investigate the efficiency of inductive wireless power transfer (WTP) systems for electric vehicles in terms of frequency response analysis and the design method. Up to present, most relevant WPT studies were about designing system circuit parameters and designing coupled structures of induction coils. Research on the efficiency of the power conversion from compensation topology composed of induction coils and compensational capacitors is lacking. Study on design methods to increase the efficiency within the operational frequency band range is nonexistent. However, through the equivalent circuit model of compensation topology, this study has derived a conversion efficiency formula for a non-resonant point frequency band in a system. With reference to the inductive charging specification and recommendation in SAE standard J2954 in the frequency band range between 81.38 kHz to 90 kHz, a design process for optimal compensation capacitors was proposed for raising system conversion efficiency, increasing actual operable range, and for system safety consideration. To verify the enhanced method for system conversion efficiency proposed in this article, some collocating peripheral circuits and an inductively coupled contactless energy transfer platform with a 20 cm air gap were used. The experimental data showed that when the operating frequency is 86 kHz, input power is 468.98 W, output power is 434.47 W, and the system power transfer efficiency is 92.64 %. When the operating frequency is adjusted to 90 kHz, the system efficiency increased to 93.65 %. When the operating frequency is 81 kHz, the system efficiency is 91.46 %. This new method is both practical and informative.
Che-LunKuo and 郭哲綸. "A Study On The Automatic Coils Alignment of Wireless Power Transfer System for Electric Vehicle." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/zys8c9.
Full text(9739226), Akhil Prasad. "MULTI-OBJECTIVE DESIGN OF DYNAMIC WIRELESS CHARGING SYSTEMS FOR HEAVY – DUTY VEHICLES." Thesis, 2020.
Find full textPresently, internal combustion engines provide power to move the majority of vehicles on the roadway. While battery-powered electric vehicles provide an alternative, their widespread acceptance is hindered by range anxiety and longer charging/refueling times. Dynamic wireless power transfer (DWPT) has been proposed as a means to reduce both range anxiety and charging/refueling times. In DWPT, power is provided to a vehicle in motion using electromagnetic fields transmitted by a transmitter embedded within the roadway to a receiver at the underside of the vehicle. For commercial vehicles, DWPT often requires transferring hundreds of kW through a relatively large airgap (> 20 cm). This requires a high-power DC-AC converter at the transmitting end and a DC-AC converter within the vehicle.
In this research, a focus is on the development of models that can be used to support the design of DWPT systems. These include finite element-based models of the transmitter/receiver that are used to predict power transfer, coil loss, and core loss in DWPT systems. The transmitter/receiver models are coupled to behavioral models of power electronic converters to predict converter efficiency, mass, and volume based upon switching frequency, transmitter/receiver currents, and source voltage. To date, these models have been used to explore alternative designs for a DWPT intended to power Class 8-9 vehicles on IN interstates. Specifically, the models have been embedded within a genetic algorithm-based multi-objective optimization in which the objectives include minimizing system mass and minimizing loss. Several designs from the optimization are evaluated to consider practicality of the proposed designs.Tawfik, Jonathan Atef. "Thermal Feasibility and Performance Characteristics of an Air-Cooled Axial Flow Cylindrical Power Inverter by Finite Element Analysis." 2011. http://trace.tennessee.edu/utk_gradthes/912.
Full textYe, Chen. "USV charging based on WPT system." Master's thesis, 2020. http://hdl.handle.net/10071/21904.
Full textCom a crescente procura da exploração em ambientes aquáticos e subaquáticos , os veículos elétricos de superfície não tripulados ("electric unmanned surface vehicle" -USV) têm sido cada vez mais utilizados nestes últimos anos. No entanto, devido aos limites atuais relacionados com a tecnologia utilizada nas baterias, os dispositivos precisam de ser recarregados com frequência para poderem operar num ambiente aquático complexo. Para melhorar a segurança e a conveniência do carregamento da bateria de um USV, um sistema para recarregamento da bateria de um barco não tripulado através de transferência de energia sem fios("wireless power transfer" - WPT) é proposto nesta dissertação. Neste caso de estudo, o barco tem a capacidade de ser controlado para chegar a um ponto de recarregamento da bateria, que se encontra fixado por uma doca mecânica. Enquanto o sistema WPT érecarregado, os dados associados ao processo de recarregamento da bateria podem ser monitorizados por um computador host. O controlo da movimentação do barco é baseado num sistema embebido. A posição relativa entre a bobina transmissora e a bobina receptora deve ser detectada pelo sensor magnético, uma vez que a posição relativa tem um grande impacto na eficiência da transmissão. Em termos do computador host, foi utilizado o software LABVIEW para programar a interface que permite controlar o movimento do barco e recolher os dados. Finalmente, a eficácia do sistema proposto foi experimentada e testada num ambiente de laboratório.