Dissertations / Theses on the topic 'Wireless gas sensor'

To see the other types of publications on this topic, follow the link: Wireless gas sensor.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Wireless gas sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Smith, Clinton James. "High-accuracy laser spectrometers for wireless trace-gas sensor networks." Thesis, Princeton University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3604506.

Full text
Abstract:

The subject of this dissertation is the development of a wireless sensor network composed of instruments which employ both VCSELs and QCLs for accurate, highly sensitive, and reliable long-term monitoring of environmental trace-gases. The dissertation focuses on the development of low-power instruments and calibration methods that ensure the reliability of long-term measurements.

First the field deployment of a low-power, portable, wireless laser spectroscopic sensor node for atmospheric CO2 monitoring is demonstrated. The sensor node shows 0.14 ppmv Hz-1/2 1σ measurement sensitivity of CO2 concentration changes. It was first used to measure top-soil respiration rates in the laboratory and on forest floors in the field.

Then after a long-term field deployment to further assess instrument performance, new design solutions were implemented to improve fringe-limited precision of the nodes to 4-7 ppmv against a 400 ppmv CO2 background, making their performance comparable to higher power consuming commercial trace-gas analyzers. Three optimized nodes were then deployed into mixed landscapes as part of a solar powered CO2 monitoring wireless network. The three node network monitored CO2 in a grassy/woody courtyard, on top of the roof of an engineering building, and next to a road in the Princeton area. These works show that ultra-low powered VCSEL based sensor nodes can be placed in off-the-grid environments for autonomous distributed geographic monitoring of trace-gases in a manner which is impossible with current commercial techniques.

Next, this dissertation covers two techniques that were developed for the real-time calibration of laser-based trace-gas measurements. The first technique used an in-line reference gas cell and employed wavelength modulation spectroscopy (WMS) at higher harmonics to simultaneously probe the sample and reference spectra. The second technique used a revolving in-line reference cell to suppress background and other non-spectroscopic signals. These techniques were designed for eventual inclusion as a real-time calibration source for field deployable trace-gas sensors and wireless sensor networks.

Finally, this dissertation demonstrates the use of the CW injection current into a VCSEL in an external cavity configuration to tune the cavity emission's self-oscillation frequency and show through simulation and experiment that the tuning is dependent on VCSEL birefringence change.

APA, Harvard, Vancouver, ISO, and other styles
2

Kihlberg, David, and Amir Ebrahimi. "Wireless Gas Sensor Nodes : With focus on Long Range (LoRa) communication." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-168669.

Full text
Abstract:
Greenhouse gas emissions in indoor or outdoor areas are dangerous and can have short- or long-term effects on people’s health. There are several methods to monitor the air quality in such environments. This thesis project attempts to design and evaluate a wireless sensor network with two main characteristics such as long range and low power consumption. The sensor network is built upon Long Range Wide Area Network (LoRaWAN) protocol and is composed of sensor nodes and gateways. The sensor nodes are built upon a Raspberry Pi model 3B, a LoRa SX1276 transceiver and gas sensors. The sensors are intended to measure CO2, CH4, temperature, pressure and relative humidity. The collected data is then logged and sent to The Things Network (TTN) via a backhaul connection.
APA, Harvard, Vancouver, ISO, and other styles
3

Cobb, Derrick Ian. "Transimpedance-Based and Low-Power Bias Wireless PPB Hydrogen Gas Sensor." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1386074227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abhijith, N. "Semi Conducting Metal Oxide Gas Sensors: Development And Related Instrumentation." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/281.

Full text
Abstract:
A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds. Technological developments in the recent decades have brought along with it several environmental problems and human safety issues to the fore. In today's world, therefore, sensors, which detect toxic and inflammable chemicals quickly, are necessary. Gas sensors which form a subclass of chemical sensors have found extensive applications in process control industries and environmental monitoring. The present thesis reports the attempt made in development of Zinc oxide thin film based gas sensors. ZnO is sensitive to many gases of interest like hydrocarbons, hydrogen, volatile organic compounds etc. They exhibit high sensitivity, satisfactory stability and rapid response. In the present work the developed sensors have been tested for their sensitivity for a typical volatile organic compound, acetone. An objective analysis of the various substrates namely borosilicate glass, sintered alumina and hard anodized alumina, has been performed as a part of this work. The substrates were evaluated for their electrical insulation and thermal diffusivity. The microstructure of the gas sensitive film on the above mentioned substrates was studied by SEM technique. The gas sensitive Zinc oxide film is deposited by D.C reactive magnetron sputtering technique with substrate bias arrangement. The characterization of the as-deposited film was performed by XRD, SEM and EDAX techniques to determine the variation of microstructure, crystallite size, orientation and chemical composition with substrate bias voltage. The thesis also describes the development of the gas sensor test setup, which has been used to measure the sensing characteristics of the sensor. It was observed that the ZnO sensors developed with higher bias voltages exhibited improved sensitivity to test gas of interest. Gas sensors essentially measure the concentration of gas in its vicinity. In order to determine the distribution of gas concentration in a region, it is necessary to network sensors at remote locations to a host. The host acts as a gateway to the end user to determine the distribution of gas concentration in a region. However, wireless gas sensor networks have not found widespread use because of two inherent limitations: Metal oxide gas sensors suffer from output drift over time; frequent recalibration of a number of sensors is a laborious task. The gas sensors have to be maintained at a high temperature to perform the task of gas sensing. This is power intensive operation and is not well suited for wireless sensor network. This thesis reports an exploratory study carried out on the applicability of gas sensors in wireless gas sensor network. A simple prototype sensing node has been developed using discrete electronic components. A methodology to overcome the problem of frequent calibration of the sensing nodes, to tackle the sensor drift with ageing, is presented. Finally, a preliminary attempt to develop a strategy for using gas sensor network to localize the point of gas leak is given.
APA, Harvard, Vancouver, ISO, and other styles
5

Borkar, Chirag. "Development of Wireless Sensor Network System for Indoor Air Quality Monitoring." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177181/.

Full text
Abstract:
This thesis describes development of low cost indoor air quality (IAQ) monitoring system for research. It describes data collection of various parameters concentration present in indoor air and sends data back to host PC for further processing. Thesis gives detailed information about hardware and software implementation of IAQ monitoring system. Also discussed are building wireless ZigBee network, creating user friendly graphical user interface (GUI) and analysis of obtained results in comparison with professional benchmark system to check system reliability. Throughputs obtained are efficient enough to use system as a reliable IAQ monitor.
APA, Harvard, Vancouver, ISO, and other styles
6

Lama, Audrey. "Interactive Wireless Sensor for Remote Trace Detection and Recognition of Hazardous Gases." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1308.

Full text
Abstract:
The interactive wireless sensor detects many hazardous gases such as Hexane, Propane, Carbon monoxide and Hydrogen. These gases are highly toxic and used in different kinds of manufacturing industries, domestic purpose and so on. So, building a sensor that can detect this kind of gases can save the environment; prevent the potential for explosion, and endangering human life. In long term, interactive wireless sensor can also prevent the financial losses that might occur due to the hazardous incident that might occur due to these toxic gases. Hexane is a colorless, strong gas which inhaled in significant amounts by a person then he may suffer with hexane poisoning and suffocation. It also causes skin burns when exposed in high concentrations. Propane, carbon monoxide and hydrogen can easily freeze in room temperature, if in contact with eye, it could permanently damage eye or cause blindness. The advantage of this wireless sensor is the use of artificial olfactory system (electronic nose) that can be taught to detect these hazardous gases. This sensor has a unique molecular combination of analysts, impurities and background that corresponds to a gas leak. It consists of a chemiresistor, such as an array of conductometric sensors, and a mechanism analyzing the data in real time. A smell-print is composed of many molecules which reaches receptor in the human nose. When a specific receptor receives a molecule, it sends a signal to the brain where the smell is identified and associated with that particular molecule. Similar manner, albeit substituting sensors for the receptors, and transmitting the signal to a machine learning algorithm for processing, rather than to the brain. This wireless gas leak sensing consists of microchip Pic 32, integrated electronic nose, automated data analysis unit, power supply, and communications. The communication channel will use the ZigBee link, or the cellular links, or other specific frequency wireless link. The time-stamped and position-stamped sensor measurement data are transmitted to the central computer in predetermined periods of time. The data will be stored in the computer database for possible future analysis of the gas leak development process.
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Hawashem, Kamal. "Highly reliable and delay bound wireless sensor network protocol for oil and gas plants." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28218.

Full text
Abstract:
Communication networks for oil and gas plants predominantly employ wired communication infrastructure. The wired communication infrastructure is used to carry control and monitoring data used for plant process control and automation. Data carried on plants networks are of critical nature and thus require strict Quality of Services (QoS) treatment. The existing wired communication protocols provide required reliability and delay bound performance. However, wired communication infrastructure imposes high cost and lack flexibility. The advancements in Wireless Sensor Networks (WSN) make it an attractive alternative for wire based plant networks because of WSN low cost and flexibility. However, WSN suffers from error prone wireless medium, limited resources and lack of central control which make it challenging to meet plant networks QoS strict requirements. In this thesis, we propose a novel WSN architecture protocol called HARD for oil and gas plant networks which meet the strict QoS requirements. We have formulated the design guidelines for plant network WSN topology to meet the given QoS requirements. The maximum delay bound and the reliability performance have been formulated. Simulation results confirmed the analysis of the HARD protocol delay bound of 40ms and showed reliability performance of near 100% for experiments with failure probability of 60% and below.
APA, Harvard, Vancouver, ISO, and other styles
8

Fisher, Brian. "Surface Acoustic Wave (SAW) Cryogenic Liquid and Hydrogen Gas Sensors." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5208.

Full text
Abstract:
This research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a passive (or low-power), wireless, gas detection system, which continuously monitors multiple nodes and reports temperature and H2 gas presence. Passive, wireless, cryogenic liquid level and hydrogen (H2) gas sensors were developed on a platform technology called Orthogonal Frequency Coded (OFC) surface acoustic wave (SAW) radio frequency identification (RFID) tag sensors. The OFC-SAW was shown to be mechanically resistant to failure due to thermal shock from repeated cycles between room to liquid nitrogen temperature. This suggests that these tags are ideal for integration into cryogenic Dewar environments for the purposes of cryogenic liquid level detection. Three OFC-SAW H2 gas sensors were simultaneously wirelessly interrogated while being exposed to various flow rates of H2 gas. Rapid H2 detection was achieved for flow rates as low as 1ccm of a 2% H2, 98% N2 mixture. A novel method and theory to extract the electrical and mechanical properties of a semiconducting and high conductivity thin-film using SAW amplitude and velocity dispersion measurements were also developed. The SAW device was shown to be a useful tool in analysis and characterization of ultrathin and thin films and physical phenomena such as gas adsorption and desorption mechanisms.?
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
APA, Harvard, Vancouver, ISO, and other styles
9

Obiora, Obinna Chukwuemeka. "Wireless condition monitoring to reduce maintenance resources in the Escravos–Gas–To–Liquids plant, Nigeria / Obiora, O.C." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7040.

Full text
Abstract:
The purpose of this research is to reduce maintenance resources and improve Escravos–Gas–to–Liquids plant availability (EGTL) in Escravos, Nigeria using wireless condition monitoring. Secondary to the above is to justify the use of this technology over other conventional condition monitoring methods in petrochemical plants with specific reference to cost, reliability and security of the system. Wireless and continuous condition monitoring provides the means to evaluate current conditions of equipment and detect abnormalities. It allows for corrective measures to be taken to prevent upcoming failures. Continuous monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. Wireless/remote monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Bentley N, (2005). Using wireless techniques eliminate any need for special cables and wires with lower installation costs if compared to other types of condition monitoring systems. In addition to this, wireless condition monitoring works well under difficult conditions in strategically important locations. The Escravos gas–to–liquid plant in Nigeria, located in a remote and offshore area where accommodation and space for offices is a factor for monitoring plant conditions in every office, is a typical example. Wireless technology for condition monitoring of energized equipment is applicable to both standalone and remote systems. In the research work of Meyer and Brambley (2002), they characterized the current problem with regards to cost effectiveness and availability of wireless condition monitoring. Maintenance of rotating equipment provides probability estimates of the total impact of the problem, cost implication of plant equipment maintenance and describes a generic system in which these developing technologies are used to provide real–time wireless/remote condition monitoring for rotating main air compressor (MAC) units and their components as a case study. Costs with today’s technology are provided and future costs are estimated, showing that benefits will greatly exceed costs in many cases, particularly if low–cost wireless monitoring is used. With management trends such as “re–engineering” and “downsizing” of the available workforce, wireless condition–monitoring of critical machines has been given more importance as a way to ensure quality production with fewer personnel. Wireless condition–monitoring using inexpensive wireless communication technology frees up existing plant maintenance personnel work on machines that are signaling problems and focusing the maintenance efforts away from attempting to work on a large population of machines to only those machines requiring immediate attention. Lloyd and Buddy (200) suggested that Point–to–point wireless data transmission systems, an excellent example of recent technological advances in communication systems, are now practical and cost–effective for industrial use. While both complex infrastructures and complex protocols are required for cellular communications, non– cellular communication systems, such as the point–to–point wireless data transmission system example, require no elaborate infrastructure. Limited research was done on the immediate benefits of implementing wireless condition monitoring systems in plants. All papers on the subject have been drawn up by manufacturers of such equipment. This research will thus also deliver a "third–party" perspective on the effectiveness of such devices, justifying their impact on data gathering security, cost and reliability.
Thesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2012.
APA, Harvard, Vancouver, ISO, and other styles
10

Malaver, Rojas Jairo Alexander. "Development of gas sensing technology for ground and airborne applications powered by solar energy : methodology and experimental results." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/74644/1/74644.pdf.

Full text
Abstract:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
APA, Harvard, Vancouver, ISO, and other styles
11

Bhadra, Sharmistha. "Electrode-based wireless passive pH sensors with applications to bioprocess and food spoilage monitoring." IEEE, 2011. http://hdl.handle.net/1993/30366.

Full text
Abstract:
This thesis purposes and develops inductively coupled LC (inductive-capacitive) pH sensors based on pH-sensitive electrode pair. The LC resonator circuit is based on a varactor and measures the low frequency potential difference. For wireless pH monitoring, the resonator circuit is integrated with a pH-sensitive electrode pair. This sensor demonstrates a linear response over 2 to 12 pH dynamic range, 0.1 pH accuracy and long-term stability. Accurate measurement of pH using electrode-based sensors is affected by temperature variation. A technique of simultaneously measuring two parameters, pH and temperature, with a single RLC resonator based sensor is presented. An algorithm is developed, which applies both pH and temperature measurement to incorporate temperature compensation in pH measurement. For in-fluid applications, an encapsulation method is applied to the LC resonator based sensor to reduce the influence of medium permittivity and conductivity on the sensor measurement. Non-invasive way to obtain reliable pH information from bacterial culture bioprocesses is demonstrated with the fluid embeddable sensor. The pH sensor is remodeled to an acidic and basic volatile sensor by embedding the electrodes in a hydrogel host electrolyte. Tests demonstrate that the volatile sensor has a detection limit of 1.5 ppm and 2 ppm for ammonia and acetic acid vapor, respectively. Application of the volatile sensor to fish spoilage monitoring shows that the sensor is capable of detecting the product rejection level with good sensitivity in real-time. It is important to develop low cost wireless passive pH sensor technologies for embedded applications such as bioprocess and food spoilage monitoring. The electrode-based passive LC sensor approach employed in this thesis overcomes drawbacks of some of the early developed passive pH sensors and can lead to an inexpensive implementation using printed electronics technology.
APA, Harvard, Vancouver, ISO, and other styles
12

Silva, Ivanovitch Medeiros Dantas da. "An?lise de desempenho de sistemas de comunica??o sem-fio para monitoramento de unidade de produ??o de po?os petrol?feros terrestres." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15199.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:06Z (GMT). No. of bitstreams: 1 IvanovitchMDS.pdf: 411979 bytes, checksum: a431957d3dc2eb80548829e8010ed589 (MD5) Previous issue date: 2008-10-10
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The greater part of monitoring onshore Oil and Gas environment currently are based on wireless solutions. However, these solutions have a technological configuration that are out-of-date, mainly because analog radios and inefficient communication topologies are used. On the other hand, solutions based in digital radios can provide more efficient solutions related to energy consumption, security and fault tolerance. Thus, this paper evaluated if the Wireless Sensor Network, communication technology based on digital radios, are adequate to monitoring Oil and Gas onshore wells. Percent of packets transmitted with successful, energy consumption, communication delay and routing techniques applied to a mesh topology will be used as metrics to validate the proposal in the different routing techniques through network simulation tool NS-2
Grande parte do monitoramento de po?os petrol?feros terrestres realizados atualmente est? baseado em solu??es sem fio (wireless). Todavia, essas solu??es apresentam uma configura??o defasada tecnologicamente na medida em que s?o utilizados r?dios anal?gicos e topologias de comunica??o ineficientes. Por outro lado, tecnologias que adotam r?dios digitais podem proporcionar solu??es mais eficientes relacionadas com o consumo de energia, seguran?a e toler?ncia a falhas. O trabalho investiga se as Redes de Sensores Sem Fio, tecnologia de comunica??o que utiliza r?dios digitais, s?o adequadas para o monitoramento de po?os petrol?feros terrestres. Porcentagem de pacotes entregues com sucesso, consumo de energia, atrasos de comunica??o e t?cnicas de roteamento para uma topologia em malha s?o as m?tricas usadas para validar a proposta atrav?s da ferramenta de simula??o NS-2
APA, Harvard, Vancouver, ISO, and other styles
13

Rimer, Suvendi Chinnappen. "Energy efficient communication models in wireless sensor and actor networks." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/23253.

Full text
Abstract:
Sensor nodes in a wireless sensor network (WSN) have a small, non-rechargeable power supply. Each message transmission or reception depletes a sensor node’s energy. Many WSN applications are ad-hoc deployments where a sensor node is only aware of its immediate neighbours. The lack of a predefined route path and the need to restrict the amount of communication that occurs within the application area impose constraints on WSNs not prevalent in other types of networks. An area of active research has been how to notify the central sink (or monitoring hub) about an event in real-time by utilising the minimum number of messages to route a message from a source node to the destination sink node. In this thesis, strategies to limit communication within a WSN application area, while ensuring that events are reported on and responded to in real-time, is presented. A solution based on modelling a WSN as a small world network and then transmitting an initialisation message (IM) on network start-up to create multiple route paths from any sensor node to one or more sinks is proposed. The reason for modelling a WSN as a small world network is to reduce the number of nodes required to re-transmit a message from a source sensor node to a sink. The purpose of sending an IM at network start-up is to ensure that communication within the WSN is minimised. When routing a message to a static sink, the nodes closest to the static sink receive a disproportionate number of messages, resulting in their energy being consumed earlier. The use of mobile sinks has been proposed but to our knowledge no studies have been undertaken on the paths these mobile sinks should follow. An algorithm to determine the optimum path for mobile sinks to follow in a WSN application area is described. The purpose of an optimum path is to allow more equitable usage of all nodes to transfer an event message to a mobile sink. The idea of using multiple static sinks placed at specific points in the small world model is broadened to include using multiple mobile sinks called actors to move within a WSN application area and respond to an event in real-time. Current coordination solutions to determine which actor(s) must respond to the event result in excessive message communication and limit the real-time response to an event. An info gap decision theory (IGDT) model to coordinate which actor or set of actors should respond to the event is described. A comparison of the small world routing (SWR) model against routing using flooding and gossiping shows that the SWR model significantly reduces the number of messages transmitted within the network. An analysis of the number of IMs transmitted and received at individual node level shows that prudent selection of the hop count (number of additional nodes required to route a message to sink) to a sink node will result in a reduced number of messages transmitted and received per node within the network. The use of the IGDT model results in a robust decision on the actor(s) chosen to respond to an event even when uncertainty about the location and available energy of other actor(s) exists.
Thesis (PhD(Eng))--University of Pretoria, 2012.
Electrical, Electronic and Computer Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
14

Mohammadi, Saeed. "Phononic band gap micro/nano-mechanical structures for wireless communications and sensing applications." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41069.

Full text
Abstract:
Because of their outstanding characteristics, micro/nano-mechanical (MM) structures have found a plethora of applications in wireless communications and sensing. Many of these MM structures utilize mechanical vibrations (or phonons) at megahertz or gigahertz frequencies for their operation. On the other hand, the periodic atomic structure of crystals is the fundamental phenomenon behind the new era of electronics technology. Such atomic arrangements lead to a periodic electric potential that modifies the propagation of electrons in the crystals. In some crystals, e.g. silicon (Si), this modification leads to an electronic band gap (EBG), which is a range of energies electrons can not propagate with. Discovering EBGs has made a revolution in the electronics and through that, other fields of technology and the society. Inspired by these trends of science and technology, I have designed and developed integrated MM periodic structures that support large phononic band gaps (PnBGs), which are ranges of frequencies that phonons (and elastic waves) are not allowed to propagate. Although PnBGs may be found in natural crystals due to their periodic atomic structures, such PnBGs occur at extra high frequencies (i.e., terahertz range) and cannot be easily engineered with the current state of technology. Contrarily, the structures I have developed in this research are made on planar substrates using lithography and plasma etching, and can be deliberately engineered for the required applications. Although the results and concepts developed in this research can be applied to other substrates, I have chosen silicon (Si) as the substrate of choice for implementing the PnBG structure due to its unique properties. I have also designed and implemented the fundamental building blocks of MM systems (e.g., resonators and waveguides) based on the developed PnBG structures and have shown that low loss and efficient MM devices can be made using the PnBG structures. As an example of the possible applications of these PnBG structures, I have shown that an important source of loss, the support loss, can be suppressed in MM resonators using PnBG structures. I have also made improvements in the characteristics of the developed MM PnBG resonators by developing and employing PnBG waveguides. I have further shown theoretically, that photonic band gaps (PtBGs) can also be simultaneously obtained in the developed PnBGs structures. This can lead to improved photon-phonon interactions due to the effective confinement of optical and mechanical vibrations in such structures. For the design, fabrication, and characterization of the structures, I have developed and utilized complex and efficient simulation tools, including a finite difference time domain (FDTD), a plane wave expansion (PWE), and a finite elements (FE) tool, each of which I have developed either completely from scratch, or by modification of an existing tool to suit my applications. I have also developed and used advanced micro-fabrication recipes, and characterization methods for realizing and characterizing these PnBG structures and devices. It is agued that by using the same ideas these structures can be fabricated at nanometer scales to operate at ultra high frequency ranges. I believe my contributions has opened a broad venue for new MM structures based on PnBG structures with superior characteristics compared to the conventional devices.
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, Bin. "Energy Usage Evaluation and Condition Monitoring for Electric Machines using Wireless Sensor Networks." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14152.

Full text
Abstract:
Energy usage evaluation and condition monitoring for electric machines are important in industry for overall energy savings. Traditionally these functions are realized only for large motors in wired systems formed by communication cables and various types of sensors. The unique characteristics of the wireless sensor networks (WSN) make them the ideal wireless structure for low-cost energy management in industrial plants. This work focuses on developing nonintrusive motor-efficiency-estimation methods, which are essential in the wireless motor-energy-management systems in a WSN architecture that is capable of improving overall energy savings in U.S. industry. This work starts with an investigation of existing motor-efficiency-evaluation methods. Based on the findings, a general approach of developing nonintrusive efficiency-estimation methods is proposed, incorporating sensorless rotor-speed detection, stator-resistance estimation, and loss estimation techniques. Following this approach, two new methods are proposed for estimating the efficiencies of in-service induction motors, using air-gap torque estimation and a modified induction motor equivalent circuit, respectively. The experimental results show that both methods achieve accurate efficiency estimates within ¡À2-3% errors under normal load conditions, using only a few cycles of input voltages and currents. The analytical results obtained from error analysis agree well with the experimental results. Using the proposed efficiency-estimation methods, a closed-loop motor-energy-management scheme for industrial plants with a WSN architecture is proposed. Besides the energy-usage-evaluation algorithms, this scheme also incorporates various sensorless current-based motor-condition-monitoring algorithms. A uniform data interface is defined to seamlessly integrate these energy-evaluation and condition-monitoring algorithms. Prototype wireless sensor devices are designed and implemented to satisfy the specific needs of motor energy management. A WSN test bed is implemented. The applicability of the proposed scheme is validated from the experimental results using multiple motors with different physical configurations under various load conditions. To demonstrate the validity of the measured and estimated motor efficiencies in the experiments presented in this work, an in-depth error analysis on motor efficiency measurement and estimation is conducted, using maximum error estimation, worst-case error estimation, and realistic error estimation techniques. The conclusions, contributions, and recommendations are summarized at the end.
APA, Harvard, Vancouver, ISO, and other styles
16

Babb, Jeffrey Ross. "BRIDGING THE GAP BETWEEN PUBLIC VISITORS AT LACAWAC SANCTUARY AND LAKE RESEARCHERS: DEVELOPING OUTREACH MATERIALS ON ADVANCED ENVIRONMENTAL SENSORS." Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1375723733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kuo, Lu-Chung, and 郭儒璋. "A development on the wireless SAW gas sensor." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/63784442286378713042.

Full text
Abstract:
碩士
國立臺灣大學
應用力學研究所
103
For the sake of human safety and industry applications, the gas detection is gradually taken seriously. CO is one of the most harmful pollutants which is colorless, odorless and tasteless. When human inhale the CO, it could cause the symptoms of headaches, dizziness and even death. Furthermore, CO is able to poison the noble metals making poor performance on the catalyst like Pt used in fuel cells. Hence, monitoring the condition of hydrogen gas is important for environmental protection and human safety. The CO SAW sensor is developed for its stability, sensitivity, convenience and low cost.   In this thesis, the SAW resonator component was based on 128˚YX-LiNbO3 and the operating frequency was designed as 433MHz. The senor can operate at room temperature without a heater. It is available to combine the antenna with the SAW device to be a passive wireless SAW sensor. With mobile device, the sensor can link up with wireless system and monitor in real-time.   First, the impedance load sensor and SAW resonator were designed according to the couple of mode(COM) and fabricated by MEMS technique. For higher sensitivity and better surface-area-to-volume ratio, the zinc oxide nanorod was used to be as sensing material. Furthermore, the gold particle decorated ZnO nanorod as a catalyst for strengthening the sensitivity of carbon monoxide. Second, the signal of the impedance loaded SAW sensor was analyzed in signal processing. Finally, the wireless passive sensor was completed by combining with an antenna. Besides, the sensing distance of the passive sensor could be increased by power amplify applying background reflection.
APA, Harvard, Vancouver, ISO, and other styles
18

Lo, Jing-Pin, and 羅京聘. "High-Selectivity Multiple-Gas Sensing Module for Wireless Sensor Network System." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/10762217967315261799.

Full text
Abstract:
碩士
國立臺灣大學
電子工程學研究所
97
Home Safety has always been one of the objectives pursued. With the advances in technology and sensor technology, people at any time to monitor changes in the environment around them and make up with contingency measures in a timely manner to prevent disasters from happening. For example, in the life of the gas is one of the important energy and cooking or day-to-day use of hot water. However, that neglect could cause carbon monoxide poisoning or gas explosion incident. Therefore, how we can make good use of the gas sensing system to provide real-time early warning sensor for carbon monoxide leakage detection, or too confined caused by the sharp drop in oxygen to give warning predictable and effective to reduce the accident rate that is an important issue. General commercial gas sensor alarm system is employed most of the cable transmission, through the transmission line into the future implementation of data transmission, so in the construction, design and cost-employed on a more convenient and not expensive. In order to improve the shortcomings of this paper the direction of research for the combination of carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) gas combined with high-selectivity multiple-gas sensing module for wireless sensor network system. By composite gas sensors to monitor environmental changes in the gas and with wireless transmission technology, to monitor the information sent to the Center for the Analysis of the data processing, once the monitoring of environmental changes in the concentration of gas will be issued warning message to avoid disaster Took place to achieve real-time monitoring of management
APA, Harvard, Vancouver, ISO, and other styles
19

Hu, Gushin, and 胡家信. "Using Wireless Sensor Network On Hydrogen Sulfide Monitoring System For The Oil And Gas Industry." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/32868155653498783140.

Full text
Abstract:
碩士
義守大學
資訊工程學系碩士在職專班
100
In recent years, there have been more and more petroleum industry accidents in Taiwan. Most of accidents were happened due to leakage of flammable gas piping, so the industry adopts wired monitoring systems to prevent such accidents. However, wired monitoring systems have some drawbacks such as huge consumption of wires, high maintenance costs, difficulty of installment and inflexibility, resulting in ineffective sensing of gas leakage. Recent advances in wireless technology have enabled the development of low-power, low-cost, low-rate, low-complexity wireless sensor nodes. WSN (wireless sensor network, WSN) has been well developed in recent years and widely applied to home automation, health care, remote control, natural environment monitoring, etc. WSN enables a cost-efficient means to provide additional measurement points through the elimination of cables and the possibility of sensing into areas that are too remote or hostile for wired systems. In this paper, the wireless sensor network will be used to improve existing wired sensing system. We proposed a wireless Hydrogen Sulfide Monitoring System to detect the leakage of Hydrogen Sulfide piping and provide relevant people with available information.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography