Academic literature on the topic 'WIRELES COMMUNICATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WIRELES COMMUNICATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "WIRELES COMMUNICATION"
Feng Wang, M. T. Thai, Yingshu Li, Xiuzhen Cheng, and Ding-Zhu Du. "Fault-Tolerant Topology Control for All-to-One and One-to-All Communication in Wireles Networks." IEEE Transactions on Mobile Computing 7, no. 3 (March 2008): 322–31. http://dx.doi.org/10.1109/tmc.2007.70743.
Full textHandayani, Tri Febriana, Pande Ketut Sudiarta, and I. Made Oka Widyantara. "UJI KEAMANAN KOMUNIKASI VOIP MENGGUNAKAN SISTEM KEAMANAN SRTP-TLS PADA JARINGAN NIRKABEL." Jurnal SPEKTRUM 5, no. 1 (June 25, 2018): 13. http://dx.doi.org/10.24843/spektrum.2018.v05.i01.p02.
Full textShrestha, Sujan, and Subarna Shakya. "Technical Analysis of ZigBee Wireless Communication." December 2020 2, no. 4 (January 5, 2021): 197–203. http://dx.doi.org/10.36548/jtcsst.2020.4.004.
Full textWen, Li Jia, and Xin Li. "The Research of CIR Based on Communication Technology of GSM-R." Applied Mechanics and Materials 713-715 (January 2015): 1269–72. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1269.
Full textHadi, Teeb Hussein. "Types of Attacks in Wireless Communication Networks." Webology 19, no. 1 (January 20, 2022): 718–28. http://dx.doi.org/10.14704/web/v19i1/web19051.
Full textWang, Haichao, Jinlong Wang, Guoru Ding, and Zhu Han. "D2D Communications Underlaying Wireless Powered Communication Networks." IEEE Transactions on Vehicular Technology 67, no. 8 (August 2018): 7872–76. http://dx.doi.org/10.1109/tvt.2018.2832068.
Full textAhmed, Iqrar, Heikki Karvonen, Timo Kumpuniemi, and Marcos Katz. "Wireless Communications for the Hospital of the Future: Requirements, Challenges and Solutions." International Journal of Wireless Information Networks 27, no. 1 (October 28, 2019): 4–17. http://dx.doi.org/10.1007/s10776-019-00468-1.
Full textSuhartono, Joni. "Merencanakan Keamanan Jaringan Komputer." ComTech: Computer, Mathematics and Engineering Applications 2, no. 1 (June 1, 2011): 467. http://dx.doi.org/10.21512/comtech.v2i1.2784.
Full textRinne, Jukka, Jari Keskinen, Paul Berger, Donald Lupo, and Mikko Valkama. "M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components." Sensors 18, no. 11 (November 16, 2018): 3992. http://dx.doi.org/10.3390/s18113992.
Full textJavornik, Tomaž, Andrej Hrovat, and Aleš Švigelj. "Radio Technologies for Environment-Aware Wireless Communications." WSEAS TRANSACTIONS ON COMMUNICATIONS 21 (December 31, 2022): 250–66. http://dx.doi.org/10.37394/23204.2022.21.30.
Full textDissertations / Theses on the topic "WIRELES COMMUNICATION"
Kodikara, Patabandi C. K. "Multimedia communications over 3G wireless communication systems." Thesis, University of Surrey, 2004. http://epubs.surrey.ac.uk/844270/.
Full textWang, Shendi. "Efficient transmission design for machine type communications in future wireless communication systems." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/23647.
Full textBezuidenhout, Quintus. "Satellite communications strategy selection for optimal LEO satellite communication." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71930.
Full textENGLISH ABSTRACT: A low earth orbit satellite system can be useful in numerous communication applications where physical connections are not possible. Communication time available from any point on earth to the satellite is less than one hour per day. This one hour is fragmented into smaller time slots due to the satellite orbiting. This is not much time to transfer data and there is even less time available to transfer data when there are other external factors affecting the system. It is thus crucial to optimise the satellite communications link so that more data can be transferred per orbit. The goal of this thesis is to improve the performance of a low earth orbit satellite communication channel by varying certain parameters of the system, such as the protocol used, modulation scheme, packet size, transmission power etc. and then to observe how these parameters influence the system. The protocols that were chosen to be implemented are CSMA-CA, CSMA-CA with DSSS technology and Round-Robin Polling. A simulator for each protocol was designed with the Opnet platform, so that specific parameters could be changed and the results observed, in order to optimise the communications link between the satellite and ground stations. The results showed that there is no particular configuration of modulation scheme, packet size, transmission power etc. presenting the best overall solution for LEO satellite communications. It must be considered what the specific LEO satellite application would be used for and the characteristics required by that specific application. A suitable configuration must subsequently be chosen from the set of configurations available to satisfy most of the application requirements.
AFRIKAANSE OPSOMMING: ’n Satelliet met ’n lae wentelbaan kan gebruik word in verskeie kommunikasie toepassings waar fisiese verbindinge nie noodwendig moontlik is nie. Die kommunikasietyd van enige punt van aarde af na die satelliet, is minder as een uur per dag. Hierdie tyd word nog verder verklein omdat die satelliet besig is om, om die aarde te wentel. ’n Uur is glad nie baie tyd om data oor te dra nie en in realiteit is daar nog minder tyd beskikbaar as daar eksterne faktore op die sisteem inwerk. Dus is dit baie belangrik om die satelliet kommunikasiekanaal te optimiseer sodat soveel moontlik data as moontlik oorgedra kan word per omwenteling. Die doel van hierdie tesis is om die deurset van die kommunikasiekanaal van n lae wentelbaan satelliet te optimiseer, deur verskeie parameters te verander soos, protokol wat gebruik word, modulasie skema, pakkie grootte, transmissiekrag ens. en dan waar te neem hoe dit die sisteem beïnvloed. Die protokolle wat geïmplementeer is, is CSMA-CA, CSMA-CA met DSSS tegnologie en Round-Robin Polling. ’n Simulator vir elke protokol was ontwerp in die Opnet simulasie platform, sodat die spesifieke parameters verander kon word om die resultate te bestudeer met die doel om die kommunikasiekanaal tussen die satelliet en grond stasies optimaal te benut. Die resultate het bewys dat daar geen spesifieke konfigurasie van modulasie skema, pakkie grootte, transmissiekrag ens. is wat die algehele beste oplossing is nie. Die spesifieke applikasie waarvoor die lae wentelbaan satelliet gaan gebruik word moet geanaliseer word sowel as die spesifieke karakteristieke van daai applikasie. Daarvolgens moet n unieke konfigurasie opgestel word wat meeste van die applikasie se behoeftes bevredig.
Muhovic, Admir. "Secure Wireless Communication." Thesis, KTH, Kommunikationssystem, CoS, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92023.
Full textBehoven och efterfrågan av mobil och trådlös utrustning är i dagsläget allt större. Fördelarna med att använda sig av trådlös kommunikation är enkla att inse. Att kunna ha tillgång till elektroniskt lagrad information oavsett var man än befinner sig är en stor fördel. Vidare implementeras trådlös kommunikation allt mer i det vardagliga arbetet samtidigt som utrustning för denna sorts kommunikation är i ständig utveckling. I slutändan är användandet av trådlös kommunikation väldigt praktiskt samtidigt som det är effektivt. Användandet av trådlös utrustning och kommunikation medför ett risktagande då denna typ av kommunikation allmänt är osäker. Detta eftersom teknologin fortfarande är i utvecklingsfasen. De i dagsläget aktuella trådlösa protokollen är sårbara för attacker och det är dessutom enkelt att avlyssna trafiken. Felaktig installation av utrustning bidrar dessutom också till att den trådlösa kommunikationen blir sårbar. En del av den IT-utrustning som idag finns tillgänglig ute på marknaden och som alltmer används inom FMV har möjlighet att kommunicera trådlöst med omgivningen. Exempel på sådan utrustning är bärbara datorer, PDA:er, mobiltelefoner mm. Denna typ av utrustning, dvs. trådlös utrustning, skall enligt FMVs informationssäkerhetspolicy godkännas från säkerhetssynpunkt innan den får tas i bruk på FMV. Det innebär att man utför en analys av vilka risker som är förknippade med användandet av trådlös utrustning samt att man identifierar adekvata skyddsåtgärder. Till sin hjälp använder man sig av Kraven på SäkerhetsFunktioner (KSF) som består av tekniska och/eller administrativa krav. Syftet med detta examensarbete var att undersöka om det finns möjlighet att använda trådlös utrustning på FMV, dvs. att denna används på interna LAN på FMV. Med andra ord skall den trådlösa utrustningen kunna erbjuda ett skydd motsvarande högst informationssäkerhetsklassen HEMLIG/RESTRICTED (H/R). Examensarbetet innefattar en analys av vilka säkerhetsfunktioner idag finns tillgängliga ute på marknaden och utvärderar huruvida dessa säkerhetsfunktioner uppfyller kraven givna i Kraven på SäkerhetsFunktioner (KSF). Resultatet är ett förslag på de bästa säkerhetsmekanismerna inom restriktionerna av KSF och den tillgängliga utrustningen. Examensarbetet föreslår en teknisk lösning med lämpliga säkerhetsmekanismer. Dess för- och nackdelar har analyserats. Examensarbetet presenterar dessutom ett antal (administrativa) säkerhets policies som hanterar säkerhetsaspekter som inte omhändertas av KSF.
Cottingham, David Naveen. "Vehicular wireless communication." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611258.
Full textYin, Hujun. "Cross layer design and optimization of wireless networks /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5904.
Full textDong, Lu. "MIMO Selection and Modeling Evaluations for Indoor Wireless Environments." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19767.
Full textDagne, Carl, Johan Bengtsson, and Ingemar Lindgren. "Microwave Wireless Communication System." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-232.
Full textThe purpose of the project was to develop the hardware to a microwave wireless system working
at the frequency 2.45 GHz. The functionality of the system should also be easy to understand
since the system is to be used in an educational purpose. Much time has been spent impedance
matching components, a task that proved to be harder than we expected. Other work that has been
is layout of all parts, filter construction and the writing of an easy to understand thesis. After the
parts had been completed, they were tested in a network analyzer and/or spectrum analyzer.
Successful full system test has been done up to 400 meters, the length the system is to be used
for.
Herbert, Steven John. "Wireless communication in vehicles." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/280675.
Full textJiang, Junyi. "Optical wireless communication systems." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/387239/.
Full textBooks on the topic "WIRELES COMMUNICATION"
Broadband wireless communications: 3G, 4G, and wireless LAN. Boston: Kluwer Academic Publishers, 2001.
Find full textWireless optical telecommunications. London: ISTE Ltd., 2012.
Find full textWireless communication. New Delhi: Oxford University Press, 2009.
Find full textSayre, Cotter W. Complete wireless design. 2nd ed. New York: McGraw-Hill, 2008.
Find full textSayre, Cotter W. Complete Wireless Design. New York: McGraw-Hill, 2008.
Find full textMichael, Moher, ed. Modern wireless communications. Upper Saddle River, N.J: Pearson/Prentice Hall, 2005.
Find full textPrathima, Agrawal, ed. Wireless communications. New York: Springer, 2006.
Find full textSheikh, Asrar U. H. Wireless Communications. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9152-2.
Full textVitetta, Giorgio M., Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi, and Philippa A. Martin. Wireless Communications. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118576618.
Full textZhang, Keith Q. T. Wireless Communications. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119113263.
Full textBook chapters on the topic "WIRELES COMMUNICATION"
Kohno, Ryuji. "Spatial and Temporal Communication Theory Using Software Antennas for Wireless Communications." In Wireless Communications, 293–321. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-2604-6_15.
Full textHiggins, Henry. "Wireless Communication." In Body Sensor Networks, 155–88. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6374-9_4.
Full textKilinc, Enver Gurhan, Catherine Dehollain, and Franco Maloberti. "Wireless Communication." In Analog Circuits and Signal Processing, 77–103. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21179-4_4.
Full textCameron, Neil. "Wireless Communication." In Arduino Applied, 311–23. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3960-5_17.
Full textKrommenacker, Nicolas, Vincent Lecuire, Nicolas Salles, Serafim Katsikas, Christos Giordamlis, and Christos Emmanouilidis. "Wireless Communication." In E-maintenance, 247–72. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-205-6_10.
Full textMaclay, Walter N. "Wireless Communication." In Closing the Care Gap with Wearable Devices, 115–20. New York: Productivity Press, 2022. http://dx.doi.org/10.4324/9781003304036-15.
Full textBhagyaveni, M. A., R. Kalidoss, and K. S. Vishvaksenan. "Wireless Communication." In Introduction to Analog and Digital Communication, 203–35. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338673-13.
Full textBräunl, Thomas. "Wireless Communication." In Embedded Robotics, 131–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05099-6_9.
Full textKühner, Jens. "Wireless Communication." In Expert .NET Micro Framework, 203–8. Berkeley, CA: Apress, 2009. http://dx.doi.org/10.1007/978-1-4302-2388-7_7.
Full textBiswas, Rajib. "Wireless Communication." In Advanced Wireless Communication and Sensor Networks, 3–9. New York: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003326205-2.
Full textConference papers on the topic "WIRELES COMMUNICATION"
Kalaivani, R., and J. Vijithaananthi. "Intelligent and secure communication over wireles devices using network localization." In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2017. http://dx.doi.org/10.1109/i-smac.2017.8058338.
Full textPramono, Wahyudi Budi, Pandu Setiawan, and Firdaus. "Solar power supply for ZigBee wireles sensor network." In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic). IEEE, 2016. http://dx.doi.org/10.1109/isemantic.2016.7873862.
Full textNishida, Yuta, Yosuke Tanigawa, and Hideki Tode. "Cooperative packet transmission scheduling between multicast and unicast flows for communication efficiency in wireles LAN." In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2018. http://dx.doi.org/10.1109/ccnc.2018.8319282.
Full textShin, Daekyo, Soohyun Jang, and Pusik Park. "A Test Result on the Performance of Next Generation ITS Communication in the Railway Environment." In 2017 Joint Rail Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/jrc2017-2202.
Full textDeng, Qiuzhuo, Lu Zhang, Hongqi Zhang, Zuomin Yang, Xiaodan Pang, Vjačeslavs Bobrovs, Sergei Popov, et al. "Quantum Noise Secured Terahertz Communications." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w2a.33.
Full textJ. M., Aravind, and Arul Teen Y. P. "Oceanic Turbulence and Beam Propagation Characteristics of Underwater Optical Wireless Communication: A Brief Survey." In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/tgts6433/ngcesi23p92.
Full textM. Gallant, Linda, Gloria M. Boone, and Gregg Almquist. "Wireless Organizational Communication: A Framework for Communicative Informatics." In 2003 Informing Science + IT Education Conference. Informing Science Institute, 2003. http://dx.doi.org/10.28945/2709.
Full textZhong, Xu, and Yu Zhou. "Establishing and Maintaining Wireless Communication Coverage Among Multiple Mobile Robots via Fuzzy Control." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47989.
Full textHimsoon, T. Kee, and W. Pam Siriwongpairat. "Design and Analysis of 220 MHz RF Communications for Interoperable Positive Train Control System." In 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56073.
Full textKatterbauer, Klemens, and Abdallah Al Shehri. "Smart MIMO-OFDM Wireless Communication Frameworks for Subsurface Wireless Sensor." In SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210750-ms.
Full textReports on the topic "WIRELES COMMUNICATION"
Tailor, Sanjay. Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada310023.
Full textNguyen, Clark T. MEMS For Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada408056.
Full textGlatzmaier, Greg. Multi-Heliostat Wireless Communication Assessment. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1505157.
Full textBartone, Erik J., and John F. Carbone. Low Frequency Wireless Communications Technology. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/820935.
Full textKrogmeier, J., and Darcy Bullock. Statewide Wireless Communications Project, Volume 1: Communication Field Tests for Satellite, Cellular, and Spread Spectrum Radio. West Lafayette, IN: Purdue University, 2008. http://dx.doi.org/10.5703/1288284314218.
Full textRajaravivarma, Veeramuthu, and Krishna Sivalingam. Wireless Connectivity to ATM Communication Grid. Fort Belvoir, VA: Defense Technical Information Center, August 1998. http://dx.doi.org/10.21236/ada367858.
Full textTassiulas, Leandros. Research Problems in Wireless Communication Networks. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada380014.
Full textLi, Xiaohua E. Cooperative Communications for Wireless Information Assurance. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada437086.
Full textLi, Xiaohua. Wireless Information Assurance and Cooperative Communications. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada449197.
Full textScarfone, K. A., C. Tibbs, and M. Sexton. Guide to securing WiMAX wireless communications. Gaithersburg, MD: National Institute of Standards and Technology, 2010. http://dx.doi.org/10.6028/nist.sp.800-127.
Full text